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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise
problems on thermo-mechanical FEA:

O Balance laws and constitutive equations of isotropic thermo-mechanics
O Stationary thermo-mechanical FEA with solid, plate, and beam elements

O Virtual work densities of solid, plate, and beam models
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MULTIPHYSICS FEA

Multiphysics simulation employs temperature, water contents, etc. with additional balance
laws and constitutive equations to predict displacement, temperature, concentration etc.
under complex interactions. A thermo-mechanical model considers the effect of temperature

on mechanical behavior:

O As an unwanted mechanical effect, pipelines and continuous welded rails may bend or

buckle in a hot summer.

O Press fit take advantage of thermal expansion and contraction: enveloping parts are
assembled into position while hot, then allowed to cool and contract back to their former

size. Loosening of a jar lid under heating is based on the opposite mechanism.

O Temperature changes may induce very large stresses.
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant €

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €

Balance of energy (Thermodynamics 1) €

Entropy growth (Thermodynamics 2)
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BALANCE OF ENERGY

The rate of change of kinetic and internal energies equals the powers of external forces and
added heat, i.e., U +T =Ry + Py where

Internal energy U :IQ pedV

Kineticenergy T :jQ %pV-VdV

Power of forces Ry =jQ f-vdV +jag2 t-VdA

Power of heat PQ = j sdV + j hdA
Q oQ

Temperature ¢, heat Q, and internal energy U are concepts of continuum mechanics that
do not have direct counterparts in particle mechanics (force and displacements have).
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6.1 LINEAR THERMO-MECHANICS

Balance law Local formin Q Local form on oQ
Dm
— =0 °—] —
Dt P Y
Dp - 0°U B, B}
—r_F p°—=V-6+f n-o=t
Dt ot?
LY & =6, -
Dt
DU + K) oe . - _ o
=Ry + R °—=6:d;+s-V f-G=h
Dt Rv +Fo P po c g g
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BOUNDARY VALUE PROBLEM

Given the initial stationary equilibrium temperature and displacement on Q, the aim is to
find new stationary equilibrium temperature and displacement, when external forces,
heating etc. are changed in some manner.

_ QG
Balance of momentun V.6+f =0 in Q,

Balance of energy —-V-g+s=0 In Q,
Displacement BC:s fi-g=t or G=§ onoQ,

Temperature BC:s ni-g=h or $=98 on oQ.

Constitutive equations of the form ¢G(9) (heat flux) and & (U, %) (stress) are needed for a
closed equation system in terms of displacement and temperature.
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GENERALIZED HOOKE’S LAW

The generalized Hooke’s law, also considering the change of temperature Ag=9-9°, Is

given by (6 =0 and A3 =0 at the initial geometry)

rgxx —aA ] . A ((TXX\ (7/xy\ . (ny\

Strain-stress: <&,y —0AS =z 1 —vioyw and <7y, >:6< Oyz ¢
(22 A v Loy L/ 2x ) (O 2x |

rgxx\ (aux / 6% (7/xy\ (aux /8y+8uy | Ox)

Strain-displacement: &, r=<0uy /0y and §yy, p=y0uy/0z+0u,/dy
&4, |OUy o0z 7x) |0uz [ ox+ouyloz |

Above, E Is the Young’s modulus, v the Poisson’s ratio, G=E/(2+2v) the shear

modulus, and « the thermal expansion coefficient. Strain and stress are symmetric.
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FOURIER LAW OF HEAT CONDUCTION

When bodies at different temperatures are in contact, heat flows toward the cooler body
until temperatures are the same. The Fourier law of heat conduction for an isotropic

homogeneous material are (stress is assumed to vanish at the initial geometry) is given by

Oy Ky kxy Kyz [ (031 0x] (091 6X) Isotropic
Heat-temperature: <qy r=—| Ky, Ky Ky, |908/0y r=—kq03/dy, o eorio
q; Ky Ky Ky 03/ 0z] 08/ 0z

Thermal conductivity k([N /(Ks)] or [W/(Km)]) depends on the material. The forms for
the uni-axial and planar problems can be deduced from the generic form in the same manner

as those for the stress-strain relationship.
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EXAMPLE. Derive the stress-strain-temperature relationship of isotropic homogeneous

material under (a) the xy —plane stress and (b) uni-axial stress conditions. Start with the

generic strain-stress-temperature relationship.

O xx Exx c 1
Answer <oy e =[E]; &y —aAI 11+ and oy =E(gy —aAS)
1-v
Oxy | | Vxy L
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e Under the plane stress assumption, only oy, oy, and oy, are non-zeros. The
relationship for the in-plane normal stress resultants follows from the generic strain-

temperature-stress relationship modified according to the kinetic assumption:

Exy —OAY . 1 v 0 ||ox Oy Exx c n
e —aAGr=—|—v 1 0 0w & 0w r=IEl.{&wn r—aAZ <15,
" Elo 0 20 N v 1=vio

Ty o) L A+v) ] oy | Oy | T xy | Y

S

e Under the uni-axial stress assumption, only oy, Is non-zero. The relationship follows
directly from the generic strain-stress-temperature relationship. Inversion gives the

stress-strain-temperature relationship for the uni-axial case

6‘XX—0!A19=%GXX < oy =E(gy —0AY). €
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MATERIAL PARAMETERS

Material p [kg/m®] E [GPa] v [1]
Steel 7800 210 0.3
Aluminum 2700 70 0.33
Copper 8900 120 0.34
Glass 2500 60 0.23
Granite 2700 65 0.23
Birch 600 16 -
Rubber 900 102 0.5
Concrete 2300 25 0.1
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MATERIAL PARAMETERS

Material K[W/(Km)] a [um/ mK] c [J/kgK]
Steel 45...50 12...13 520
Aluminum 205...240 23...24 900
Copper 385...400 17

Glass, ordinary  0.8...1 8...9 800
Granite 0.7...0.9

Wood 0.1...0.2 30 1300
Rubber 0.2 0.1

Concrete 1 12 850
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VARIATIONAL REPRESENTATION

The variational form 6P =6P™ + 5P =0 V44 is the concise representation of the
stationary heat conduction boundary value problem. In terms of density expressions ¢ pg‘t
ext

15pQ

ext

, and 8 pso

Internal part: SP™ :J‘Q spitav |

External part: sP® :jQ spStdv +j8£2 Spse dA.

The variational form lacks a clear physical interpretation although the meaning is clear from
the mathematical viewpoint. The physical dimensions of 6P [WK] and 6W [J] differ, the

former being power and the latter work.
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In derivation, the local form of energy balance is multiplied by 6, integrated over the
domain followed by integration by parts in the heat flux term. Manipulations give the

equivalent representations

-V-G+s=0 in Q <

jQ SH=V -G +s)dV = jQ (VSS-G+59s)dV — jaQ 59 -GdA=0 V59.

Assumption 69 =0 (temperature specified) or i-Gg+h =0 (heat flux specified) on oQ
gives the final form

SP=0 V&9 where SP= jQ VS9-Gdv + jQ 59sdV + jaQ S9hdA . €
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DENSITY EXPRESSIONS

The integrands of the variational form represent the model in the same manner as the virtual

work densities in principle of virtual work:

(05910x)" [ay]  [es9/ox)" [8810x) Isotropic

Internal part: 5p}5‘t:<8519/8y> 10y r=—100810y kq03/0y ¢, material
068/oz] |q, 0o08loz| |08z

External parts: 5p&t =69s and Spgy = 69h.

Thermal conductivity k [W /(Km)], power of heat per unit volume s [W/ m3], and power

of heat per unit area h [W/mz] may depend on position. For non-isotropic materials

thermal conductivity iIs a (positive definite) matrix.
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6.2 THERMO-MECHANICAL FEA

O Model the structure as a collection of beam, plate, etc. elements. Derive the element
contributions W& = SW' + sW & 4 sW P and 5P = sP"™ + 5P in terms of nodal

displacements/rotation components of the structural coordinate system and temperature.

O Sum the element contributions to end up with the variational expression for the structure.
Re-arrange to get oW + 0P = —5aTR(a, b)—r5bTR(b) (7 is a dimensionally correct

but otherwise arbitrary constant).

O Use the principle oW +70P =0 Vda,ob and the fundamental lemma of variation
calculus to deduce R(a,b) =0 and R(b) =0. Solve the linear algebraic equations for the
nodal displacements, rotations, and temperatures (due to the one-sided coupling of the

stationary problem, solving the temperature first is always possible).
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BAR MODE

Assuming that v=0, w=0, ¢ =0 and a linear interpolation to the axial displacement u(x)

and temperature $(x)

spint _ _ 0% T@ 1 14
8% h|-1 1||&]|
échI_ 5Ux1 TO!_EA -1 -1 A‘91
U] 2 |1 1A%
Spext _ O TA_Sh 1
6% 2 1)

Heat flux through the end-planes is treated by point elements in the same manner as traction

on the end-plates by point forces and moments.
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EXAMPLE 6.1 The bar of the figure consists of three linear elements of identical lengths.
Determine the stationary temperatures &% at node 2 and $; at node 3 when the end
temperature is $° and heat generation s per unit volume are constants. Take only the heat

conduction along the bar axis into account. Problem parameters E, A, and k are constants.
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e Element contributions for the temperature distribution problem are (temperature is not

affected by displacement)

5Pint__ 5‘91 Tﬁ 1 -1 ‘91 5Pext_ 5‘91 TA_Shl
8% h|-1 1||&]| 6% 2 1)

e When the actual nodal values are substituted there, element contributions simplify to

T
o =-{at el e
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=-—{of el -

e Variational expression for a structure is the sum of the element contributions

sp-_[9%] (— Tt SAITL_ASL )2,
595 -1 2||%| L |$] 6 |2
e Variational principle 6P =0 Voa and the fundamental lemma of variation calculus

Imply a linear equation system and thereby the solution

i R IR R
L -1 2||&%[ L |9 6 |2 9 9 k
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EXAMPLE 6.2 The bar of the figure consists of two elements having the same material
properties. Stress is zero, when the temperature in the wall and bar is $°. Determine the
stationary displacement uy, and temperature 9, at node 2, when the temperature of the
right end is increased to 2.9°. Take only the heat conduction along the bar axis into account.

Use two linear elements. Problem parameters E, A, k, and « are constants.

Answer uxzz—%LaSO and .92:%90
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Element contributions for the thermo-mechanical problem needed in this case are (no

heat production, nor external distributed forces, and A9 =9-9°).

.
swint __JoUx TE L —Lual gyt JOUxa| @EA[-1 —11[ 0
5UX2 h|-1 1 Uy ’ 5UX2 9 1 1 ‘92_90 ;

T
0% | h|-1 1||H
As the nodal values for bar 1 are uy; =0, Uyp =Ux o, A% =0,and AS =% —4°, the

element contributions SW ™ + oW P! and 5P simplify to

" 0 1'2EA[1 -1][ O o0 TwEA[-1 -1]( ©
== E— E— e
5UX2 L -1 1 Uy 2 5UX2 2 1 1 \92—190
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2EA aEA
ow? =—5UX2TUX2 +5UX2T(~92 —-9°),

|
1 0 % 1 1] o % o
{2 2 s

e As the nodal values for bar 2 are uy,3=0, Uy =Uyxo, A% =29-8"=8° and
A9y =9, — %, the element contributions SW'™ + sW ' and sP™ simplify to

2] oux ToEAl 1 —1](uyxs . [duxa TaEA[-1 -1](9, - n
0 L -1 1]]o0 0 2 |1 1] &

) 2EA aEA
oW =—5UX2TUX2 —5Ux27~92’

o [6%T kA1 -1][ &%) .o KA
oF __{ o} T{—l 1}{290}_ o8~ (% =25).
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e Variational expressions for the mechanical and thermal parts are sums of the element

contributions

OW = oW + oW 2 :—5ux2(#ux2 +“TEA9°),

5P =P+ 5P =59 @(292 ~39°).

e Variational principle SW +z0P =0 Voa and the fundamental lemma of variation

calculus imply the equations

4—IEAUX2 +aTEA‘90:O and @(292—3190):0 =

92%190 and uxzz—%go. &

6-25



e In Mathematica notation, the problem description is given by

model properties geometry
1 BAR ({E, a, k}, {A}, {{0, G0} }} Line[{1, 2}]
2 BAR ({E, a, k}, {A}, {{0, 90} }) Line[{2, 3}]
{X,Y,Z} {ux,uy,uz} {Ox,6y,07} 9
1 {0, 9, 0} {0, 0, 0} {0, 0, 0} 50
2 | {5,0,0}  {uX[2],0,0)  {0,0,0] 0[2]
3 L, 0, 0) (0,0, 0) {0, 0, 0) 2 90

{

1 390
UX[2] - Lo 9, 90[2] > =

|
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6.3 ELEMENT CONTRIBUTIONS

Variational expressions for the elements combine the density expressions of a model and
approximations depending on the element shape and type. To derive the expression for an

element:

O Start with the densities swiyt, swSt, swl', 5plt, and & p&tof the model. If not given

In the formulae collection, derive the expressions starting from the 3D versions.

O Represent the unknown functions by interpolation of the nodal displacements, rotations,

and temperatures. Substitute the approximations into the density expressions.

O Integrate the densities over the domain occupied by the element to end up with
W = WM 4 sW 4 SW P! and 5P = 5P™ + 5P
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal
displacements and rotations in terms of shape functions. In thermo-mechanical analysis,

temperature is represented in the same manner by using nodal temperatures.

Approximation u=N'a,v=NTa, ..., $=N'a alwaysof the same form!
Shape functions N ={N{(x,y,z) N»(X,y,z) ... Np(x,y,2)}
Parameters a={a, a, ... a,}

Nodal parameters ae{uy,uy,u;,6,6y,6,,9+ may Dbe just displacement or rotation
components or a mixture of them (as with the Bernoulli beam model). Nodal parameters

may also represent temperature.
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SOLID MODEL

The model does not contain any kinetic or kinematic assumptions. Virtual work densities of

int ext

the internal and external distributed forces owg and owg are the same as in linear

displacement analysis. The additional terms are

(05U ] ox )

swP =1 asvioy |
oow/ oz |
(059 1 OX

Spit =—26591 oy
0591 &2

T Ge tdA
EaA9<lm
1-2v
kl)
T (691 6x)
. kiogloyr, SpSt=69s.
| |88lez

The solution domain can be represented, e.g., by tetrahedron elements with linear

Interpolation of u(x,y,z), v(x,y,z), w(x,y,z) and 3(x,V, z).
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EXAMPLE 6.3 Consider a tetrahedron of edge length L on a horizontal floor. Determine
displacement uy3 when temperature is increased by constant A9 and before that stress
vanishes. Assume that uy 3 =Uy3 =0 and that the bottom surface is fixed. Stress vanishes

at the initial geometry when u,5 = 0. Material parameters E, v =0, and « are constants.

Answer: Uz3=LoAS

H o
’ T
TR
e R
£ AR
ik
R
S

=

&

e

e R
S R
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e Only the shape function N3 =z /L of node 3 is needed as the other nodes are fixed.

Approximations to the displacement components are

u=0,v=0,and w=£u23, giving a—W=@=O, and a—W:EUZB.
L ox oy 0z

e As temperature is known, it is enough to consider the displacement problem. With the

approximation, the internal and coupling densities simplify to (v =0)

\T [~ =

0 c 1-v v 1% 0 | c
swot=—{ 0 ¢ v 1-v v { 0 t=——uUz3duys,
1+v)1-2v) | 2
(duz3 /L v v 1l-v]|luzz/L
( O \T rl\ 5
5szp| = 0 : EaA9< 1t = Uz3 EaAS.
1-2v
ﬁUZB/L, 1)
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e Virtual work expressions are integrals of the densities over the volume. Here, the

densities are constants, and it is enough to multiply by the volume 13/6

oW = [ owgdv = —5u23%ELuzg,

SW P! = jQ swldv = 5u23% L*EaAd.

e Variational principle (here principle of virtual work) sW = oW '™ + sw ! =0 implies
that

—%ELUZB—I—%LZEQASZO e U23=|—C¥A19- €
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PLATE MODEL

Virtual work densities combine the plane-stress and plate bending modes. Assuming that
the material coordinate system is placed at the mid-plane, and material properties do not

depend on the transverse coordinate,

T 2 T
oou [ Ox 1 025w/ ox? 1
§Wf)p| _ j A 9dz ak M j zA 9dz —— ak ,
oov | oy 1-v (1 82§W/8y 1-v (1
(05910x) (081X
spit=_2o5910y: kiodlayr, SpSt=59s and SpE = 59h.

os9lez] |09léz]

Approximation to the transverse displacement depends only on the planar coordinates but
temperature and its approximation may depend on all the coordinates.
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The constitutive equations of a linearly elastic isotropic material and kinetic assumption

o,, =0 give the non-zero stress components

oy r =[Els 1

J \

Exx
Eyy
Y xy

> — A9

J

1-v

Z

sWith <

S

Exx
Eyy
V' xy

J

N\

( A

ou [ ox
ov /oy

. — 73

(ou /oy +ov/ox|

N

( 0w/ ox2

8°w/ oy°

V

20°w | Bxoy

The generic expression of 5Wig9t simplifies to a sum of thin slab, bending and interaction

parts. Assuming that material properties do not depend on z, and that the origin of the

material coordinate system is placed at the mid-plane, virtual work density of internal

forces consists of the internal parts of the plate thin-slab and bending modes 5Wig9t and

the coupling parts for the thin-slab and bending modes (the integral is over the thickness)
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.
oou [ ox aE |1
sweP! = A9dz—{"%,
‘ {aav/ay}j 1—1/{1}
T
o25wW | ox2 1
§Wf)p|=—{ W X} jzASdza—E{ } &«

8% 5w/ oy> 1-v 1

e As temperature is not assumed to be constant in the thickness direction, variational
expression for the temperature calculation is based on the generic expressions.

Therefore, also the approximation, e.g., of the type
F(X,Y,2) = NT(x, y)a(z) where a(z)=ag+a,z

Is used for the actual domain of the plate.
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EXAMPLE 6.4 Consider the triangular thin slab shown. Determine displacements uy 4 and
Uy1, When temperature is increased by constant A% and before that stress vanishes. Use a
linear approximation and assume plane stress conditions. Thickness of the slab is t and

material parameters E, v, and « are constants.

Y,y

u 1
Answer { Xl}:—H—VLaAS{}
qu 2 1
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e The non-zero displacement components are Uy; =Uyx and uy; = Uyq. The linear shape

functions Ny =(L-x—-y)/L, N, =x/L and N3 =y/L can be deduced from the figure.
Therefore, approximations are

1 1
u:Nluxlzt(L—x—y)um and v:Nluylzt(L—x—y)qu =

aU__UXl (9u__ux1 8V__UY1 and @__m
OX L oy L~ ox L oy L

e Densities of internal and coupling terms simplify to

- ( —5UX1 ! 1 Et (1 v 0 1 —Ux1 )
§W|nt = —< —5UY1 > 5 5 v 1 0 < _qu R —
k_é‘qu_é‘qu, L 1-v _O 0 (1—1/)/2_ \_qu_qu,
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T
- OUy 1 Et |1 v Et (1 1| (u 1
5W|nt — _ ( 5 4 ) X1 _2’

5UY1 1—v4|lv 1 2(1+V) 1 1 Uy1 | L

T
ou 1

sug = 0xal T Eat g 2L
5UY1 L1-v 1

e Integration over the element gives (densities are constants)

T
WM = [ sultda - oux1 Bt bovi Bt LU
Q @ 5UY1 2(1—1/2) v 1 4(1+V) 1 1 Uy 1 ’

.
ou 1

WP = [ swildA=—{" X LEat  gll.
Q 5UY1 21—v 1

e Variation principle oW = oW'™ + sW® =0 v a and fundamental lemma of variation

calculus imply the equilibrium equations
6-38



Et {1 v} Et
( 5 +
20—v) v 1] 4(+v)

Uy 1 1+v

|

11
11

1
= ——LaA 9 &
2 1]

i

Ux1
Uy

§

Uy U A-v)+112 viQ-v)+1/2] 14y
vi@-v)+1/2 1/(1-v)+1/2

LEatAS

21-v
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EXAMPLE 6.5 Simply supported plate of the figure is assembled at constant temperature
39°. Find the transverse displacement when the upper side temperature is 49° and that of
the lower side 2.9°. Assume that temperature in plate is linear in z. Use the polynomial
approximation w(x, y) =a(xy/ L2)(1— X/L)A—y/L).Problem parameters E, v, p,  and t

are constants.

Answer  w(X, y)_—%agom v)—ﬁ(l——)(l—l)

6-40



e Assuming that the material coordinate system is chosen so that the plate bending and

thin slab modes decouple, the bending mode virtual work densities of the internal and

coupling parts are given by

(Rowiad | 1, o [ dwied ;
swit =—1 a%swioy? | Dlv 1 0 ! o*w/oy? | where D=;—21E2,
k282§W/axay) 0 0 (d-v)/2] kzazw/axay) o
5 T
SugP = — {525"” o } [ 2A8dz.7= aE {1}
025w 1 dy? 1-v {1

e Approximation to the transverse displacement and its derivatives are

(X, y) = a—(l——)(l—l) =
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2 2 2
a_W__Za_(l_l) W—_z a2 (1-2y, a—wzai(l—zﬁ)(l—zl).
o> 13 oy> 137 L7 oxay L2 L L

e Temperature difference and its weighted integral over the thickness (integral of the

coupling term)
1 z Z
A =9(2)-39° = (— _)290 (E—?)4190—319°=—?219° =

t/2
j 7A9dz = —j 720 g0dz = — L go¢2
—-t/2  { 6

e When the approximation is substituted there, virtual work expressions of the internal and

coupling terms simplify to
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221t3 E

é\Nlnt 5 |ntdxd — a

sw Pl — j j 5wcp'dxdy_—5a%1“—E90t

e Virtual work expression is the sum of the internal and coupling parts

3
216 E  1aE g0

SW = oW M 4 sW P = _sa(
45 12121-v% 91-v

e Principle of virtual work oW =0V oa and the fundamental lemma of variation calculus

give

2 2
az—%aélo(lﬂ/)l'— = W(X, y)——%ago(uv)l'——(l——)(l— =) . €&
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BEAM MODEL

Virtual work densities combine the bar, bending, and torsion modes. Assuming that material
properties are constants, and the material coordinate system is placed so that the first and

the cross moments of the cross section vanish

( \T

déu/ dx (1) (0591x)" (8910x
swP' = Ea({ d%svidx® | [A9{-y{dA, sp3t=—1059/ay; kiod/ay, and

d2sw/ dx? |~ 00910z) |o8lez)

SpSt =69s and Spsy = o9h.

Approximation to the transverse displacement depends only on the axial coordinate but

temperature and its approximation may depend on all the coordinates in the expressions.
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The

displacement

components

of the

Bernoulli

beam

model

are

Uy =u—(dw/dx)z—(dv/dx)y, uy=v-¢z and u,=w+gy. With the Kkinetic

assumption o, = o, =0, stress and strain components take the forms
P 24 yy

o O Mm

o @ o

O o o

L/ xz

—EaA$< 0

-

> Where <

xz

du _dzwz_dzvy
dx dx? = dx?
_,d¢
dx
dg
y dx

N\

Assuming that material properties are constants, and the material coordinate system is

placed so that the first and the cross moments of the cross section vanish, the virtual

work density of the coupling term simplifies to (after integration over the cross section)
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dou K 5w d25v

swd' = Ea (

j yAddA). €

As temperature 1s not assumed to be constant in the thickness direction, variational
expression for the temperature calculation is based on the generic expressions.

Accordingly, the approximation depends on all the coordinates. Approximation of the

type

(X, Y, z):NT(x)a(y, z) where a(y,z)=ag+ayy+a,z

Is one of the possibilities.
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BAR MODE

Assuming that v=0, w=0, ¢ =0 and a linear interpolation to the axial displacement u(x)

and temperature $(x)

spint _ _ 0% T@ 1 14
8% h|-1 1||&]|

échI_ 5Ux1 TO!_EA -1 -1 A‘91
U] 2 |1 1A%

spext _ | 0% TA_Shl
6% 2 1)

Heat flux through the end-planes is treated by point elements in the same manner as traction

on the end-plates by point forces and moments.
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e Bar model assumes that v(x) = w(x) =0 or that coupling between the bar and bending

modes vanish. After integration over the cross section, the generic expressions for the

3D case simplify to

suilt = U A QU 5 et = suf,, oWl _ DU Epnng,
dx dx dx
~dég, ,dI

5 int — kA ’ 5 ext :588’
Pa ax - dx Po

In which cross-sectional area A, Young’s modulus E, external force per unit length f,
, thermal conductivity k, coefficient of thermal expansion «, and heat production rate

per unit length s may depend on x.

e Linear interpolants to the axial displacement and temperature are
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u=F{h-x x}{qu}, 9={h-x x}{jlz},and A9=T{h-x x}{igﬁz}.

e After substituting the approximations into the densities and integration over the domain

occupied by the element with the assumedly constant material properties
T
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BENDING MODES

Assuming a cubic interpolation to w(x) and v(x) and linear interpolation to the

“coefficients” of the representation Ag(x,z) =A% (X)+A3, (X)y+AE,(x)z, the coupling

term
1 1 1 1
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Under the assumptions used, the displacement-temperature coupling of the bar and the

bending modes can be treated by adding a coupling term for each mode.
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e Cubic interpolants to the transverse displacements and the “Taylor series” type linear

approximation to the temperature difference are

\T ( \T
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A9={ } {A‘gl} y{ } {AS }+z{l_§} {ASH} where & =2
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e When the approximation is substituted there, integration of the density over the cross
sections gives the coupling expression (notice that the first term of the temperature

approximation contributes to the bar mode only).
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