
MEC-E8001 Finite Element Analysis, week 7/2023

1. The variational densities (correspond to virtual work densities of a displacement problem) of a
heat conduction problem in a bar are given by int ( / ) ( / )p d dx kA d dx      and extp s  
in which   is the temperature, A is the cross-sectional area, k  is the thermal conductivity, and
s  is the rate of heat production per unit length. Determine the element contributions intP   and

extP  if the approximation to temperature is linear, length of the element is h, and the given
functions of the density expression are constants.
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2. Determine the stationary displacement 2Xu and
temperature 2 at node 2, when the temperature of
the left and right ends are  and 2 , respectively.
Use just one three node quadratic element. Stress is
zero initially when the temperature in the wall and
bar is  . Problem parameters E , A , k , and   are
constants.
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3. Determine the static displacements 2 3Z Zu u  of nodes 2
and 3 due to the temperature increase   at nodes 2 and 3
(actually in the wall). The material constants are E and α.
The cross-sectional area of bar 1 and 3 is A  and that of bar
2 is 2A . The initial temperature is  .
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4.  The truss shown consists of bars having the same cross-
sectional area A , Young’s modulus E , coefficient of ther-
mal expansion  , and thermal conductivity k .  The truss
is stress-free when the initial temperature of all the nodes
is  . Determine the stationary displacement 1Xu of node
1, when the temperature of node 2 is changed to 2  and
nodes 1, 3 and 4 are in temperature  .
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5. A thin triangular slab (plane stress conditions) is allowed to
move horizontally at node 1 and nodes 2 and 3 are fixed. Stress
is zero when temperature (assumed constant) is  . Determine
the non-zero displacement component 1Xu , if the temperature
of slab is increased to 2 .

Answer 1 (1 )Xu L     

6. Nodes 1 and 3 of a thin rectangular slab (assume plane
stress conditions) shown are allowed to move horizon-
tally and nodes 2 and 4 are fixed. Stress is zero when
temperature is  . Determine the displacement com-
ponents 1 3X Xu u if the temperature of slab is in-
creased to 2 . Also, determine the strain and stress in
the slab. Material parameters and thickness are E ,  ,
 and t , respectively.
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7. Determine the stationary temperature distribution in a
thin slab shown. Edge 1-2 is at constant temperature 
and heat flux through the other edges vanishes. Use a
two-triangle mesh with 3  and 4 3   as the unknown
node temperatures and consider 1 2      as known.
Thickness t , thermal conductivity k , and heat produc-
tion rate per unit area s  are constants.
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8.  Determine the stationary temperature distribution in a thin
slab shown. Edge 1-2 is at constant temperature   and
heat flux through the other edges vanishes. Use a rectangle
element with bilinear approximation and consider

1 2      as known and 4 3   as the unknown nodal
temperatures. Thickness t , thermal conductivity k , and
heat production rate per unit area s  are constants.
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9.  At the initial temperature  and without external forces, the length of
the bar shown is L. Calculate the displacement of node 2 due to the com-
bined effect of gravity and change of temperature with the nodal values

1 2    and 2   . Cross sectional area A , coefficient of thermal ex-
pansion  , and density   are considered as constants. Use linear inter-
polation to displacement and temperature and start with the virtual work
density expressions.

Answer 2
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10.  The simply supported plate shown is assembled at
constant temperature 3 . Find the transverse disp-
lacement when the upper side temperature is 4  and
that of the lower side 2 . Assume that temperature
in plate is linear in z  and does not depend on x  or y
. Use ( , ) a sin( / )sin( / )w x y x L y L   as the approx-
imation.  Problem parameters E,  , ρ,   and t are
constants. Integrals of sin and cos functions satisfy
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The variational densities (correspond to virtual work densities of a displacement problem) of a heat
conduction problem in a bar are given by int ( / ) ( / )p d dx kA d dx      and extp s    in which
  is the temperature, A is the cross-sectional area, k  is the thermal conductivity, and s  is the rate of
heat production per unit length. Determine the element contributions intP   and extP  if the approx-
imation to temperature is linear, length of the element is h, and the given functions of the density
expression are constants.

Solution
In a pure heat conduction problem, density expressions of the bar model are given by

int d dp kA
dx dx
      and extp s  

in which   is the temperature, k  the thermal conductivity, and s  the rate of heat production (per
unit length). Although the physical meanings of the quantities differ from those of the displacement
problem, finite element method works in the same manner. In particularly, the element contributions
are derived in the same manner.

Assuming an element of size h and nodal values 1  and 2 , the linear approximation to temperature,
its variation, and their derivatives become
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When the approximations are substituted there, the variational density expressions take the forms
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Element contributions are obtained as integrals over the domain occupied by the element
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Determine the stationary displacement 2Xu and temper-
ature 2 at node 2, when the temperature of the left and
right ends are  and 2 , respectively. Use just one
three node quadratic element. Stress is zero initially
when the temperature in the wall and bar is  . Problem
parameters E , A , k , and   are constants.

Solution
In a temperature dependent case, variational density expressions of the bar model are

int d u duw EA
dx dx
    , cpl d uw EA

dx
     ,   and int d dp kA

dx dx
     .

In the second expression,        is the temperature difference between the deformed and initial
geometries (same material point). Variational expression is of the form W P   in which   is an
arbitrary but dimensionally correct multiplier (expression should be dimensionally homogeneous).
The coupling in the stationary thermo-mechanical problem is one-sided so that it is possible to solve
for the temperature first.

Approximation with the three-node element is quadratic. The shape functions can be deduced from
the figure 1 (1 )(1 2 )N     , 2 4(1 )N     and 3 (2 1)N     in which /x L  . The non-zero
nodal displacements and temperatures are 2 2x Xu u  and 2  (material and structural coordinate sys-
tems coincide here). Therefore
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Temperature difference between the deformed and initial geometries is
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When the approximations are substituted here, density expressions cplintw w w       and
intp p    simplify to
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Element contributions are integrals of the densities over the element domain
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Variation principle and the fundamental lemma of variation calculus give the equations
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Determine the static displacements 2 3Z Zu u  of nodes 2 and
3 due to the temperature increase   at nodes 2 and 3 (actu-
ally in the wall). The material constants are E and α. The cross-
sectional area of bar 1 and 3 is A  and that of bar 2 is 2A .
The initial temperature is  .

Solution
As temperature is known and the external distributed force vanishes, only the virtual work expres-
sions of the internal and coupling parts
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are needed in the calculations. Term        is the difference between temperature at the de-
formed and initial geometries.

The nodal displacements and temperatures of bar 1 1 0xu  , 3 3 / 2x Zu u , 1 0       , and

3     give  (notice that the variation of a given function is always zero)
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The nodal displacements and temperatures of bar 2 2 2 3x Z Zu u u   , 3 3x Zu u , 2    , and
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The nodal displacements and temperatures of bar 3 4 0xu  , 2 2 3/ 2 / 2x Z Zu u u   ,

1 0       , and 3     give
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Virtual work expression of the structure is the sum of element contributions
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Principle of virtual work and the fundamental lemma of variation calculus imply
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The truss shown consists of bars having the same cross-sec-
tional area A , Young’s modulus E , coefficient of thermal ex-
pansion  , and thermal conductivity k .  The truss is stress-
free when the initial temperature of all the joints is  . Deter-
mine the stationary displacement 1Xu of node 1, when the
temperature of node 2 is changed to 2  and nodes 1, 3 and 4
are in temperature  .

Solution
Let us start with the virtual work density although also the virtual work expressions are available in
the formulae collection. As temperature is known and external distributed force vanishes, the virtual
work density simplifies to

cplint
Ω ( )d u duw w w EA

dx dx
           .

The nodal displacements and temperatures of bar 1 are 1 3 0x xu u  ,  and 1 3 0     . Using
linear approximations to the axial displacement and temperature
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The nodal displacements and temperatures of bar 2 are 1 1x Xu u , 2 0xu  , 1 0  , and

2 2           . With the linear approximations to axial displacement and temperature
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The nodal displacements and temperatures of bar 3 are 1 1 / 2x Xu u , 4 0xu  , 1 0  , and

4 0   . With the linear approximations to axial displacement and temperature
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A thin triangular slab (plane stress conditions) is allowed to move
horizontally at node 1 and nodes 2 and 3 are fixed. Stress is zero
when temperature (assumed constant) is  . Determine the non-
zero displacement component 1Xu , if the temperature of slab is in-
creased to 2 .

Solution
As temperature is known and the external distributed force vanishes, the virtual work densities needed
here are (formulae collection)
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in which        is the difference between temperature at the deformed and initial and deformed
geometries. At the initial geometry stress is assumed to vanish.

Approximation is the first thing to be considered. Linear shape functions can be deduced from the
figure
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Approximations to the displacement components and temperature difference are
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When the approximations are substituted there, virtual work densities take the forms
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Virtual work expression is the integral of the density over the domain occupied by the element.
Here, virtual work density is constant so that it is enough to multiply by the area:
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Principle of virtual work and the fundamental lemma of variation calculus give
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Nodes 1 and 3 of a thin rectangular slab (assume plane stress
conditions) shown are allowed to move horizontally and
nodes 2 and 4 are fixed. Stress is zero when temperature is
 . Determine the displacement components 1 3X Xu u if
the temperature of slab is increased to 2 . Also, determine
the strain and stress in the slab. Material parameters and
thickness are E ,  ,  and t , respectively.

Solution
As temperature is known and the external distributed force vanishes, virtual work densities needed
here are (formulae collection)
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in which        is the difference between temperature at the deformed and initial geometries.

Approximations are the first thing to be considered. As the origin of the material xy  coordinate
system is placed at node 1 and the axes are aligned with the axes of the structural XY  coordinate
system
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When the approximations are substituted there, virtual work density simplifies to
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Virtual work expression is integral of the density over the domain occupied by the element. Here,
virtual work density is constant so that it is enough to multiply by the area:
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Strain components can be obtained from derivatives of the displacement components u  and v
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Cauchy stress components can be calculated from the stress-strain relationship of plane-stress case of
the thin slab model taking into account the temperature change (see the lecture notes)
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Determine the stationary temperature distribution in a thin
slab shown. Edge 1-2 is at constant temperature   and heat
flux through the other edges vanishes. Use a two-triangle
mesh with 3  and 4 3   as the unknown node temperatures
and consider 1 2      as known. Thickness t , thermal
conductivity k , and heat production rate per unit area s  are
constants.

Solution
The density expressions associated with the pure heat conduction problem in a thin slab are
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in which   is the temperature, k  the thermal conductivity, and s  the rate of heat production (per
unit area). For a thin-slab element, element contributions need to be calculated from scratch starting
with the densities and approximations.

The shape functions of element 1 (deduced from the figure) 1 1 /N y L  , 4 /N x L , and

3 1 41 ( ) /N N N y x L      give approximations
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When the approximation is substituted there, density expression simplifies to
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Element contribution is the integral of the density expression over the domain occupied by the ele-
ment:
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The shape functions of element 2 (deduced from the figure) 1 1 /N x L  , 4 /N y L , and
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When the approximation is substituted there, density simplifies to
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Element contribution is the integral of the density expression over the domain occupied by the ele-
ment, so
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Determine the stationary temperature distribution in a thin slab
shown. Edge 1-2 is at constant temperature   and heat flux
through the other edges vanishes. Use a rectangle element with
bilinear approximation and consider 1 2      as known
and 4 3   as the unknown nodal temperatures. Thickness t ,
thermal conductivity k , and heat production rate per unit area
s  are constants.

Solution
The density expressions associated with the pure heat conduction problem in a thin slab are
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in which   is the temperature, k  the thermal conductivity, and s  the rate of heat production (per
unit area). For a thin-slab element, element contributions need to be calculated from scratch starting
with the densities and approximation.

The shape functions can be deduced from the figure. Approximation
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 When the approximation is substituted there, density simplifies to
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Element contribution is the integral of the density expression over the domain occupied by the ele-
ment:
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At the initial temperature  and without external forces, the length of the
bar shown is L. Calculate the displacement of node 2 due to the combined
effect of gravity and change of temperature with the nodal values 1 2  
and 2   . Cross sectional area A , coefficient of thermal expansion  , and
density   are considered as constants. Use linear interpolation to displace-
ment and temperature and start with the virtual work density expressions.

Solution
Here temperature is given and the aim is to find the deformation implied by the temperature change.
Virtual work density expressions of the bar model needed in the calculation are

int d u duw EA
dx dx
    , cpl d uw EA

dx
       and ext

xw u f   .

in which   is the temperature change,   coefficient of thermal expansion, and xf  the distributed
force per unit length.

The given nodal temperatures are 1 2    and 2   . As the initial temperature is  , the changes
of the nodal values are 1     and 2 0  .  Linear interpolations to displacement and temperature
in terms of the nodal values are
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When the approximation is substituted there, density expression cplint extw w w w         sim-
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The simply supported plate shown is assembled at
constant temperature 3 . Find the transverse
displacement when the upper side temperature is 4  and
that of the lower side 2 . Assume that temperature in
plate is linear in z  and does not depend on x  or y . Use

( , ) a sin( / )sin( / )w x y x L y L   as the approximation.
Problem parameters E,  , ρ,   and t are constants. Inte-
grals of sin and cos functions satisfy
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Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple, the plate model virtual work densities of internal force and coupling terms are given by
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The coupling term contains an integral of temperature over the thickness of the plate. Approxima-
tion to the transverse displacement and its derivatives are
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Temperature difference and its weighted integral over the thickness (integral of the coupling term)
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When the approximation to the transverse displacement is substituted there, virtual work densities of
the internal and the coupling parts simplify to

3
int 4 2 2 2 2

2a ( ) 2[sin ( )sin ( )(1+ ) (1 )cos ( )cos ( )]a
12(1 )

t E x y x yw
L L L L L
       


    


,
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Virtual work expressions are integrals of the densities over the domain occupied by the plate/element

3
int int 4 2

20 0
a4 ( ) ( ) a

212(1 )
L L t E LW w dxdy

L
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3 1
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Virtual work expression is the sum of the parts

3 2
int cpl 4 2

2
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2 3 112(1 )
t E L EtW W W

L
     


     


.

Principle of virtual work 0W   a  and the fundamental lemma of variation calculus give
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