MEC-E8001 Finite Element Analysis, week 7/2023

1. The variational densities (correspond to virtual work densities of a displacement problem) of a
heat conduction problem in a bar are given by 5pigr2‘t =—(d6%/ dx)kA(d %/ dx) and 5p8‘t =095
in which 4 is the temperature, A is the cross-sectional area, k is the thermal conductivity, and
s is the rate of heat production per unit length. Determine the element contributions SP™ and
5P if the approximation to temperature is linear, length of the element is h, and the given

functions of the density expression are constants.

T T
Answer 5Pi”t=—{5‘91} @{1 _1}{‘91}, §pext:{5‘gl} ﬂ{l}
5% hl-1 1% s%| 21

2. Determine the stationary displacement uy, and
temperature 9, at node 2, when the temperature of
the left and right ends are 9° and 2.9°, respectively.
Use just one three node quadratic element. Stress is
zero initially when the temperature in the wall and
bar is 9°. Problem parameters E, A, k,and « are
constants.

Answer Uy, =—%Laz9°, % =gz9°

3. Determine the static displacements u;, =—-uz3 of nodes 2
and 3 due to the temperature increase A9 at nodes 2 and 3
(actually in the wall). The material constants are E and «.
The cross-sectional area of bar 1 and 3 is A and that of bar
2 is ~2A. The initial temperature is 9°.

Answer Uzy =-Uz3 = —g LaA S

4. The truss shown consists of bars having the same cross-
sectional area A, Young’s modulus E, coefficient of ther-
mal expansion « , and thermal conductivity k. The truss
is stress-free when the initial temperature of all the nodes
is 9°. Determine the stationary displacement uy4 of node
1, when the temperature of node 2 is changed to 2.9° and
nodes 1, 3 and 4 are in temperature 9°.

Answer Uy, =-— La$°
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A thin triangular slab (plane stress conditions) is allowed to
move horizontally at node 1 and nodes 2 and 3 are fixed. Stress
is zero when temperature (assumed constant) is 9° . Determine
the non-zero displacement component uy, if the temperature
of slab is increased to 29°.

Answer uyq; =—-(1+v)alL$°

Nodes 1 and 3 of a thin rectangular slab (assume plane

stress conditions) shown are allowed to move horizon- y
tally and nodes 2 and 4 are fixed. Stress is zero when
temperature is 9°. Determine the displacement com-
ponents uyq =uy3 If the temperature of slab is in-
creased to 29°. Also, determine the strain and stress in

the slab. Material parameters and thickness are E, v, y
a and t, respectively.

Exx 1 Oxx
=a3°1+v):0¢,
0

Answer Uy; =-Lad°(1+v), &y Oyy

Vxy Oxy

Determine the stationary temperature distribution in a

thin slab shown. Edge 1-2 is at constant temperature 9° y

and heat flux through the other edges vanishes. Use a
two-triangle mesh with 9; and 9, = $; as the unknown
node temperatures and consider 4 =% =9° as known.
Thickness t, thermal conductivity k, and heat produc-
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tion rate per unit area s are constants. L

1sL?
Answer % = gz
2 tk
Determine the stationary temperature distribution in a thin
slab shown. Edge 1-2 is at constant temperature $° and
heat flux through the other edges vanishes. Use a rectangle

element with bilinear approximation and consider L

9 =% =9 asknown and 9, = Y5 as the unknown nodal
temperatures. Thickness t, thermal conductivity k, and

L7

o

"

]
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o

heat production rate per unit area s are constants.

2
Answer !93:19°+££
2 tk

X, X



9.

10.

X, X
At the initial temperature $° and without external forces, the length of 2 :

the bar shown is L. Calculate the displacement of node 2 due to the com-

bined effect of gravity and change of temperature with the nodal values g l
9 =29 and & =9°. Cross sectional area A, coefficient of thermal ex-
pansion « , and density o are considered as constants. Use linear inter-
polation to displacement and temperature and start with the virtual work
density expressions.

:1:3-:3:3-:3:3:-3:3:3-:3:3-:3:3:-3:3:3-:1:3-:3:3:-3:3%3:3-:3:3:-3:3%3:3—:'%)—

Answer Uy, :%LQ"—% 12

The simply supported plate shown is assembled at
constant temperature 3.9°. Find the transverse disp-
lacement when the upper side temperature is 4.9° and
that of the lower side 29°. Assume that temperature
in plate is linear in z and does not depend on x or y
. Use w(x,y)=asin(zx/L)sin(zy/L) asthe approx-
imation. Problem parameters E, v, p, « and t are
constants. Integrals of sin and cos functions satisfy

L .2, Xy, (L 2, Xy, L L . Xy 2L
jo sin’ (7 ")dx = jo cos” (7 )dx =— and jo S|n(7zt)dx_7.

012
Answer  w(x, y):—Ea‘g L

7[4

(1+v)sin(7r%)sin(7r%)



The variational densities (correspond to virtual work densities of a displacement problem) of a heat
conduction problem in a bar are given by 5pigr2‘t =—(do%/ dx)kA(d %/ dx) and 5p8‘t =09s inwhich
4 is the temperature, A is the cross-sectional area, k is the thermal conductivity, and s is the rate of
heat production per unit length. Determine the element contributions SP™ and 5P if the approx-
imation to temperature is linear, length of the element is h, and the given functions of the density

expression are constants.

Solution
In a pure heat conduction problem, density expressions of the bar model are given by

: dog, dg
spit — _Z A" and sp&t = 59s
PO X dx PO

in which @ is the temperature, k the thermal conductivity, and s the rate of heat production (per
unit length). Although the physical meanings of the quantities differ from those of the displacement
problem, finite element method works in the same manner. In particularly, the element contributions
are derived in the same manner.

Assuming an element of size h and nodal values $ and &%, the linear approximation to temperature,
its variation, and their derivatives become

e = ST -
o HaHRE I - sl AR

When the approximations are substituted there, the variational density expressions take the forms

w3 s -5 0

ext | 0% Tl h—Xx
oW =) W x

Element contributions are obtained as integrals over the domain occupied by the element

int _ h inty, 5‘91 Tﬁ 1 -1 ‘S%L
ey ) <

.
5 1

5P9Xt=jh Sp&tax = G sh]ll &
0 5% [ 21



Determine the stationary displacement uy, and temper-
ature &% at node 2, when the temperature of the left and
right ends are g°and 29°, respectively. Use just one
three node quadratic element. Stress is zero initially
when the temperature in the wall and bar is 3°. Problem
parameters E, A, k, and « are constants.

Solution
In a temperature dependent case, variational density expressions of the bar model are
int _ dou _, du cpl _dou

oWy =——EA—, Sw EAcA S, and O
Q dx dx Q dx “ P

n__d59,,dg

Q7 dx dx

In the second expression, A9 = 9—9° is the temperature difference between the deformed and initial
geometries (same material point). Variational expression is of the form SW +zoP in which 7 is an
arbitrary but dimensionally correct multiplier (expression should be dimensionally homogeneous).
The coupling in the stationary thermo-mechanical problem is one-sided so that it is possible to solve
for the temperature first.

Approximation with the three-node element is quadratic. The shape functions can be deduced from
the figure Ny =(1-&)(1-2&), N, =4(1-¢&)& and N3 =£(2£-1) inwhich £=x/L. The non-zero
nodal displacements and temperatures are u,, =uy, and & (material and structural coordinate sys-
tems coincide here). Therefore

Q-5)a-28)"( 0

u=t A-9E | Jugp-aa-Dtu, = Soata-2Xu,
&(2£-1) 0
L-&)a-29))" (& . o
9=1 41-9¢ | | % (=[-57+6()1F+4-(1-D) =
£(e-1) | (2%
d8 _1 o inX\goialq »X
d_x_L( 5+12L)8 +4L(1 2L)92.

Temperature difference between the deformed and initial geometries is
X ,. X X X

A§=9-F =—(6—-5)F+4—(1--),.
1 ( 1 ) 1 ( L)Sz

When the approximations are substituted here, density expressions 5WQ:5W5“+5W§§' and
int

OPq =0pq simplify to

EA X 42 X EA _x,. X X X
OWn =—0Uy > —[4(1-2)]uy, +4(1-2—)oUy » —a[—(6—-5)%°+4—(1-—)%],
0 X2 L2[ ( L)] x2 +4( L) X2 Ol[L( C ) L( L) ]



5po =% kA4 (-2 )5,

Element contributions are integrals of the densities over the element domain

L 16 AE 2 .
oW :.[0 5Wde=—5ux2(?Tux2 +§AEa.9 ),

16 Ak

L Ak
5P = jo FPodx = =58, (> =5 ~8-—9°).

Variation principle and the fundamental lemma of variation calculus give the equations

EEUXZ+EAE0&9"=O and EA—kzgz—SA—kzgozo
3 L 3 3 L L

Uy o =—%Laz9° and 19222190. €«



Determine the static displacements u;, =—uz3 of nodes 2 and

3 due to the temperature increase A$ at nodes 2 and 3 (actu- 5
ally in the wall). The material constants are E and a. The cross-
sectional area of bar 1 and 3 is A and that of bar 2 is v/2A.

The initial temperature is 9°.

¢ |

Solution
As temperature is known and the external distributed force vanishes, only the virtual work expres-
sions of the internal and coupling parts

T T
swint —_ Sug | EA| 1 —1lfuy and SO Suy | aEA[-1 -1][A4
§UX2 h|-1 1 Uyo 5UX1 2 1 1 Azgz
are needed in the calculations. Term A9 =9-9° is the difference between temperature at the de-

formed and initial geometries.

The nodal displacements and temperatures of bar 1 uy; =0, Uy3 =Uz3 12, A =%-8=0,and
A% =A8 give (notice that the variation of a given function is always zero)

&le_{auzj/ﬁ}T(%{—ll ;lHqu?ﬁ}_a—?H _lHAO‘g})

EA aEA
oWl =_su Uy o — A9).
SN TR N

The nodal displacements and temperatures of bar 2 u,, =uz;, =-Uz3, Uz =Uz3, AY =AY, and
A% =AY give

2] S, S s ) o

5“23 L -1 1 Uz3 2 1 1 AG
é\NZ = —5UZ3(4\/§%U23 —4\/§aTEAA19) .

The nodal displacements and temperatures of bar 3 u,, =0, uxzz—uzzlx/ﬁzumlﬁ,
AG=9%-9%=0,and AG=A9 give

&NSZ_{&ZS/\/E}T(%Lll llHuzsiﬁ}_a—EA{_ll 11HA0*9}) =

EA aEA
SW3 = _su Uyn — A9).
v o




Virtual work expression of the structure is the sum of element contributions

EA aEA EA aEA
OW =—5U5 <2 Uy — AP —O0Us2 (2 =20, — 4228209 &
73 (2\@_ 2375 ) —ouz3( [ Uz3 5 )

EA aEA

U7, —5———A9).
RSN )

oW = —5UZ3(9

Principle of virtual work and the fundamental lemma of variation calculus imply

9 5 5
——EAU,,—EA0A3=0 << Urr=—alA8 . €«
L Z3 B Z3 90!



The truss shown consists of bars having the same cross-sec-
tional area A, Young’s modulus E, coefficient of thermal ex-
pansion «, and thermal conductivity k. The truss is stress-
free when the initial temperature of all the joints is $° . Deter-
mine the stationary displacement uy, of node 1, when the
temperature of node 2 is changed to 29° and nodes 1, 3 and 4
are in temperature 9°.

Solution
Let us start with the virtual work density although also the virtual work expressions are available in
the formulae collection. As temperature is known and external distributed force vanishes, the virtual
work density simplifies to

int dou

SWo = Swit + swlP! = v EA(S—u—aAS) :
X X

The nodal displacements and temperatures of bar 1 are u,y =u,3=0, and A% =A% =0. Using
linear approximations to the axial displacement and temperature
dou du 1 L
u=0and A9=0 = OWo=—""—EA(—-aAF)=0 = W =| JSwpdx=0.
Q=" ( i ) jo o
The nodal displacements and temperatures of bar 2 are uy; =uyx;, Uy, =0, A$ =0, and
AS, =29°-8°=9° . With the linear approximations to axial displacement and temperature

X X ou u X
U=(1-")uy, and Ag=—9° SWe =—(——Z2DEA-ZXL 2 9°) =
( L) X1 3 = oW =—( 3 YEA( LT )

L
OW? = [ " Swedx = —5ux1EA(“—>L<1+a%,9°) .

The nodal displacements and temperatures of bar 3 are u,; = ux1/\/§, Uys =0, A9 =0, and
A8, =0 . With the linear approximations to axial displacement and temperature

u=(1—ﬁ)% and A9=0 = 5WQ=—(—5gil)EA(—u2XL1) -
V2L EA

SW3 = OWndx =-5u Uyq.
Jo o} X155 o Uxt

Virtual work expression of a structure is the sum of element contributions

SW = WL+ W2 1 W3 = —Suy EA[(L+——)UXL 4 9ol

227 L 2

Principle of virtual work sW =0 Véa and the fundamental lemma of variation calculus imply



@+

1
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u
)A.{_

al9°£=0 =
2

qu =—alLg°
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A thin triangular slab (plane stress conditions) is allowed to move
horizontally at node 1 and nodes 2 and 3 are fixed. Stress is zero
when temperature (assumed constant) is 9°. Determine the non-
zero displacement component uy, if the temperature of slab is in-
creased to 2.9°.

Solution |« -]
As temperature is known and the external distributed force vanishes, the virtual work densities needed
here are (formulae collection)

oou [ ox ou / ox osulox)T c 1
SWit = — o6V 1 oy t[E], ov | oy , 5WE{)|={85V/8X} 1_“tA,9{1}
08U | By + 08V | % oul oy + vl ox v

in which A8 = 8- 9° isthe difference between temperature at the deformed and initial and deformed
geometries. At the initial geometry stress is assumed to vanish.

Approximation is the first thing to be considered. Linear shape functions can be deduced from the
figure

X Yy X-=Yy
N;=1-—, Ng==, and Np,=1-N;—Nq=——=.
1 L 3 L 2 1 3 L

Approximations to the displacement components and temperature difference are

u=(1—%)ux1, v=0, and A9=9°.

When the approximations are substituted there, virtual work densities take the forms

.
—oUyq/L 1 v 0 —Uyq/L
- X1 Et X1 1 Et
5WQ =— 0 > v 1 0 0 :—5Ux1—2 2Ux1,
0 1=v"o 0 a-wiz2|| o L 1-v

T
—OUyq /L 1
swg! =170 Bt go "l _suy LB go -
0 1-v 1 L1-v

§WQ :é,wg]t +§W£C2p| =_§UX1 Et qu _§UX1 Et

> ad®.
L 1—y¢ L L 1-v

Virtual work expression is the integral of the density over the domain occupied by the element.
Here, virtual work density is constant so that it is enough to multiply by the area:

|2 1 Et 1 Et
OW = SWe — = —OUy 1 (= —— Uy +=——— La ).
0 x1(21_V2 xito 7 Lad)



Principle of virtual work and the fundamental lemma of variation calculus give

Eiux1+EELoa9°:0 < Uy =—-(1+v)alLy®. €
212 21-v



Nodes 1 and 3 of a thin rectangular slab (assume plane stress
conditions) shown are allowed to move horizontally and 4
nodes 2 and 4 are fixed. Stress is zero when temperature is

9°. Determine the displacement components Uy =Uyg if L
the temperature of slab is increased to 29°. Also, determine
the strain and stress in the slab. Material parameters and
thicknessare E, v, a and t, respectively.

Solution
As temperature is known and the external distributed force vanishes, virtual work densities needed
here are (formulae collection)

oou [ ox ou / ox osulox)T c 1
SWit = — o6V 1 oy t[E], ov | oy , 5WE{)|={85V/8X} 1_“tA,9{1}
05U 1 By + 05V | X oul oy +ov ] ox v

in which A9 =9-9° is the difference between temperature at the deformed and initial geometries.

Approximations are the first thing to be considered. As the origin of the material xy —coordinate
system is placed at node 1 and the axes are aligned with the axes of the structural XY — coordinate
system

Q-&1-7)]" (uxs

1- 0

fl( Sg;7) u :(1_%)qu, v=0, and Ag=¢" (constant).
=& X1
n 0

When the approximations are substituted there, virtual work density simplifies to

T
—Ouyq /L 1 v 0 —Uyq/L
X1 £ X1 SUyq /L T Et 1
SWey = — 0 v 1 0 0 + —ad° &
1-2 0 1-v 1
0 0 0 1-v)/2 0

_OUyy Et uy; duyg Et o

5 9.
L 1-yv¢ L L 1-v

Virtual work expression is integral of the density over the domain occupied by the element. Here,
virtual work density is constant so that it is enough to multiply by the area:

qu —5UX1% La$°.

OW = Sw L2 = —su
Q Xll_vz 1—v

Principle of virtual work and the fundamental lemma of variation calculus give



1_E‘t/2 ux1+1litVLal9°:0 S Uy =—(1+v)aly. €

Strain components can be obtained from derivatives of the displacement components u and v

Exx ou / ox 1
Eyy (= ov /oy =1+v)ad°:0;. €
Vxy ou /oy +ov/ox 0

Cauchy stress components can be calculated from the stress-strain relationship of plane-stress case of
the thin slab model taking into account the temperature change (see the lecture notes)

Oyx 1 v 0 Exx 1
E
Ow (= (v 1 0 ew r—L+v)aAdi1l}) <
W= 2 vy
Oyy 10 0 (1-v)/2 Vxy 0
| . 1 v 0 1 1 0
Oyy =1 2( v 1 0 ad (1+v){0r—(1+V)a8° 1) =—Ead’{1}. €
o Volo o @-v)i2 0 0 0
Xy L



Determine the stationary temperature distribution in a thin
slab shown. Edge 1-2 is at constant temperature $° and heat A
flux through the other edges vanishes. Use a two-triangle
mesh with % and 9, = % as the unknown node temperatures
and consider § =% =9° as known. Thickness t, thermal
conductivity k, and heat production rate per unit area s are
constants.

| -
Solution
The density expressions associated with the pure heat conduction problem in a thin slab are

.

; 0910 0810

Spot =— 0051 0X| | and opSt = 595 .
0s91ay|  |asley

in which @ is the temperature, k the thermal conductivity, and s the rate of heat production (per
unit area). For a thin-slab element, element contributions need to be calculated from scratch starting
with the densities and approximations.

The shape functions of element 1 (deduced from the figure) N;=1-y/L, N,=x/L, and
N3 =1-N;—Ny =(y—X)/L give approximations

T

VAR
9= N4 !93 :(1_1)190_{_1!93’ %:0’ @:!93_8 and
L L OX oy L
N3 (%
s9=259, 99 -0, 905 _ 2% (variation of 9° vanishes).
L 0 oy L

When the approximation is substituted there, density expression simplifies to

.

- 05918 0910 g

5Py =Pt +5pSt = — RSB T L PUL LA R
o591oy|  \08idy L L L

Element contribution is the integral of the density expression over the domain occupied by the ele-
ment:

-5 L
2 3

5P = —59(tk

The shape functions of element 2 (deduced from the figure) N;=1-x/L, Ny=y/L, and
N, =1-N; —N4 =(x—-Yy)/L give approximations



N )T (90
g=IN,t ool ma-Yygo Vg, 99 29 _B=F oy
U7 T X ey L

NgJ [
59=Y 59, 299 _o, 999 _ 9% (yariation of g° vanishes).
L ox oy L

When the approximation is substituted there, density simplifies to

5P =Pt +5p&t =—%tk¥+%55@s.

Element contribution is the integral of the density expression over the domain occupied by the ele-
ment, SO

G- 12

SP? = —595(tk ——35).
Gtk =——-=5)

Variation principle 6P = SP+6P? =0 Voa and the fundamental lemma of variation calculus im-
ply that

tk(!93—z9°)—L—23—0 N 93—9°+£ &
2 a 2tk



Determine the stationary temperature distribution in a thin slab
shown. Edge 1-2 is at constant temperature 9° and heat flux
through the other edges vanishes. Use a rectangle element with
bilinear approximation and consider $ =9 =9° as known L
and 9, = % as the unknown nodal temperatures. Thickness t,
thermal conductivity k, and heat production rate per unit area \
S are constants.

Solution
The density expressions associated with the pure heat conduction problem in a thin slab are

.

; 0810 0%/ 0

Spot =— 0091 x| " X1 and Spt = 59s .
0s91ay|  |asley

in which @ is the temperature, k the thermal conductivity, and s the rate of heat production (per
unit area). For a thin-slab element, element contributions need to be calculated from scratch starting
with the densities and approximation.

The shape functions can be deduced from the figure. Approximation

L-x/L)A-y/L)" (9

L)(1-y/L 9 _g
(x/L)A-y/L) Yy B8 B9 K8
@-x/L)(y/L) K L L OX oy L
(x/L)(y/L) %

59=Y 59, 999 _o, 999 _ 9% (yariation of 9° vanishes).
L 0 oy L

When the approximation is substituted there, density simplifies to

Spo =5pst+5pSt =—%tk—'93 [‘9 +%5933.

Element contribution is the integral of the density expression over the domain occupied by the ele-
ment:

1Lt L L2
5P :jo jo S podudy = ~58[tk(d - 9°) -—s].

Variation principle 6P =0 V¢&a and the fundamental lemma of variation calculus imply that

tk(!93—z9°)—L—25—0 N 513—19%£ &
2 a 2kt



X, X
At the initial temperature 9° and without external forces, the length of the 2 913—“
bar shown is L. Calculate the displacement of node 2 due to the combined
effect of gravity and change of temperature with the nodal values $ =29 9 1
and $, = 9°. Cross sectional area A, coefficient of thermal expansion « , and
density p are considered as constants. Use linear interpolation to displace-
ment and temperature and start with the virtual work density expressions.

N~

Solution
Here temperature is given and the aim is to find the deformation implied by the temperature change.
Virtual work density expressions of the bar model needed in the calculation are

int _ dou _, du cpl _ dou

Swiit — 2N A swP =2 EAGA S and owEt =su f, .
Q dx dx Q T Q X

in which A9 is the temperature change, o coefficient of thermal expansion, and f, the distributed
force per unit length.

The given nodal temperatures are $ = 29° and %, = 9°. Asthe initial temperature is $°, the changes
of the nodal valuesare A9 =9° and A$, =0. Linear interpolations to displacement and temperature
in terms of the nodal values are

1-x/L)T[ 0] «x du 1 dsu 1
u= =—Uyxo, —=—Uxo, and—:—5Ux2,
x/L Uy o L dx L dx L

T
1-x/L| |$°
A9 = —1-Y)e.
x/L 0 L
When the approximation is substituted there, density expression owq = 5W}Qt +5W§2p' +5W8(t sim-
plifies to

EAx

§WQ =—5UX2EUX2 +§UXZT

X X
1-—)8°—-duy,— pgA.
2 =) x27 P9
Virtual work expression is the integral of the density over the element domain

POAL
,

oW :_5UX2%UX2 +5UX2%‘90_5UX2

Principle of virtual work SW =0 Voa and the fundamental lemma of variation calculus give

—Esz-l‘EAazgo—pgAL:O = UXZZnggo—p—ng. €«
L 2 2 2 2E




The simply supported plate shown is assembled at
constant temperature 3%°. Find the transverse
displacement when the upper side temperature is 49° and
that of the lower side 29°. Assume that temperature in
plate is linear in z and does not depend on x or y. Use
w(Xx, y)=asin(zx/L)sin(zy/L) as the approximation.
Problem parameters E, v, p, « and t are constants. Inte-
grals of sin and cos functions satisfy

L .2, Xy, (L 2, Xy, L L . Xy 2L
jo sin’ (7 ")dx = jo cos” (7 )dx =— and jo S|n(7zt)dx_7.

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple, the plate model virtual work densities of internal force and coupling terms are given by

.
025w/ ox? , 0°w/ ox? -
- 025w/ Ax 1
Swiit = -1 525w/ oy? ;—Z[E]G o’wioy® |, owd=— { W } [ A8d21 {1}
o2ow/ -V
2025w/ oxdy 2621 o0y wi oy”

The coupling term contains an integral of temperature over the thickness of the plate. Approxima-
tion to the transverse displacement and its derivatives are

w(x, y)=asin(7z%)sin(7z%) N

o’w  o%w T2 . X\ y 0°w T\ X y
—=——>=-a(—)sin(r—)sin(r=), ——=a(—)"cos(z—)cos(r=).
2 =gz = () sinE Dsin(r 1), S =a () eos(r )eos(r )

Temperature difference and its weighted integral over the thickness (integral of the coupling term)

AG=9(z)-39° = (— —)290 (%—%)490—39°=—%29° N
/2
[ zAgdz——jt 2209007 = — L got? |
" 6

When the approximation to the transverse displacement is substituted there, virtual work densities of
the internal and the coupling parts simplify to
t°E

§wi”t=—§a—2( )4 2sin2 (22 )sm (”y)(1+v)+(1 V)cos2(ZX )cos &l )]a
12(1-v2) L

aE

) ] 1
SweP! = —sa(ZYsin(r Dsin(z L) = got2 .
5 (L) (ﬁL) (7f|_)3 =y



Virtual work expressions are integrals of the densities over the domain occupied by the plate/element

3£
int int
oW j j OWgy dxdy——5a4 20 v)(L) (—)

2
SWeP — j j SW Cp'dxdy——éa:Q"aEt
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Virtual work expression is the sum of the parts
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Principle of virtual work sW =0 Vda and the fundamental lemma of variation calculus give
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