Quantitative Business Research Methods – Day 3

Spring 2023 Sami Kajalo

Causality and Experiments

Ordinary versus scientific meaning of causality

Ordinary meaning	Scientific meaning				
X is the only cause of Y	X is only one of a number of possible causes of Y				
X must always lead to Y	The occurrence of X makes the occurrence of Y more probable (X is a probabilistic cause of Y)				
It is possible to prove that X is a cause of Y	We can never prove that X is a cause of Y. At best, we can infer that X is a cause of Y				

Conditions for causality

- Concomitant variation is the extent to which a cause, X, and an effect, Y, occur together or vary together in the way predicted by the hypothesis under consideration.
- The time order of occurrence condition states that the causing event must occur either before or simultaneously with the effect; it cannot occur afterwards.
- The absence of other possible causal factors means that the factor or variable being investigated should be the only possible causal explanation.

Aalto University School of Business

Causality and experiments: Definitions and concepts

- **Independent variables** are variables or alternatives that are manipulated and whose effects are measured and compared, for example, price levels.
- **Test units** are individuals, organisations or other entities whose response to the independent variables or treatments is being examined, for example, consumers or stores.
- **Dependent variables** are the variables which measure the effect of the independent variables on the test units, for example, sales, profits and market shares.
- **Extraneous variables** are all variables other than the independent variables that affect the response of the test units, for example, store size, store location and competitive effort.

Validity in experimentation

• **Internal validity** refers to whether the manipulation of the independent variables or treatments actually caused the observed effects on the dependent variables. Control of extraneous variables is a necessary condition for establishing internal validity.

 External validity refers to whether the cause-and-effect relationships found in the experiment can be generalised. To what populations, settings, times, independent variables and dependent variables can the results be projected?

Univariate vs. Multivariate Techniques

Univariate techniques

A?

Aalto University School of Business

Multivariate techniques

Aalto University School of Business

Basic Statistics

• The **mean**, or average value, is the most commonly used measure of central tendency. The mean, \overline{X} , is given by:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

where

 X_i = observed values of the variable X

n = number of observations (sample size).

• The **mode** is the value that occurs most frequently. It represents the highest peak of the distribution. The mode is a good measure of location when the variable is inherently categorical or has otherwise been grouped into categories.

Basic Statistics

• The **median** of a sample is the middle value when the data are arranged in ascending or descending order. If the number of data points is even, the median is usually estimated as the midpoint between the two middle values – by adding the two middle values and dividing their sum by 2. The median is the 50th percentile.

Basic Statistics

- The **variance** is the mean squared deviation from the mean. The variance can never be negative.
- The **standard deviation** is the square root of the variance.

$$\mathbf{S}_{\mathbf{X}} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}}$$

• The **coefficient of variation** is the ratio of the standard deviation to the mean expressed as a percentage, and it is a unitless measure of relative variability. $CV = \frac{S_x}{\overline{v}}$

Hypothesis testing

- A null hypothesis is a statement of the status quo, one of no difference or no effect. If the null hypothesis is not rejected, no changes will be made.
- An alternative hypothesis is one in which some difference or effect is expected. Accepting the alternative hypothesis will lead to changes in opinions or actions.

Data Analysis with SPSS Software

Analysis with SPSS

- Most important analysis with SPSS:
- 1. Crosstabulation (tables with percentages) and Chi-square test
- 2. Comparing means of two groups and T-test
- 3. Comparing means of more than two groups and Analysis of Variance (ANOVA)

Chi-square test

Crosstabulation and Chi-square test

- Tests the probability that the table is not a result of randomness (instead there is statistical significance).
- Two conditions need to be met if we want to use chi-square:
 - 1. Max 20 percent of the expected frequencies can be < 5
 - 2. All expected frequencies must be > 1
 - SPSS shows these statistics when using the Chi-square test but does not tell you when the conditions are met.

Chi-square test: Example

J. of the Acad. Mark. Sci. (2015) 43:1-13

- Here, two datasets (1996 and 2013) are compared. Null hypothesis is that there is equal distribution of companies from different industry sectors in both datasets.
- Chi-square is not significant (p=.20) so null hypothesis is accepted.

3

Table 1Sample structure Characteristics 1996 2013 Industry sectors Consumer packaged goods 33 % 34 % Electrical equipment 30 % 24 % Mechanical machinery 37 % 42 % Goodness of fit with 1996 sample $\chi^{2}(2)=3.24 \ (p=.20)$ H₀: Equal distribution as 1996 sample Aalto University Source: Homburg, C., Vomberg, A., Enke, M. and Grimm, P.H. (2015), "The loss of the marketing School of Business department's influence: is it really happening? And why worry?", Journal of the Academy of Marketing Science, Vol. 43 No. 1, pp. 1–13.

Chi-square test with SPSS

- Analyze Descriptive Statistics Crosstabs
- Choose Chi-Square test in the statistics.

• • •	Crosstabs	
 SUST2 Collaborative consu SUST3 Collaborative consu SUST3 Collaborative consu SUST5 Collaborative consu SUST5 Collaborative consum CSR1 Collaborative consum CSR2 Collaborative consum CSR3 Collaborative consum BL1 I would like to use ofte BL2 I would like to recomm BL3 I would like to recomm GREEN1 I actively recycle it GREEN2 I try to repair or r GREEN3 I actively try to re 	Row(s): SWLS1 In most ways my life is Column(s): What is your gender? [Gender] Layer 1 of 1 Previous Next	Exact Statistics Cells Format Style Bootstrap
Display clustered bar charts Suppress tables ? Reset I	Display layer variables in table layers Paste Canc	el OK

Chi-square test with SPSS

• If Sig. related to Chi-Square test is below 0.05 we conclude that the result is statistically significant (not result of randomness).

Comparing means and t-test

- The t-test checks for differences between the means of two groups:
 - e.g. is there a statistically significant difference between the sales of product A and the sales of product B.
 - e.g. is there a statistically significant difference between the attitudes of men and women as measured by a survey item.

T-test: Example

 Table 2
 Influence of departments over specific issues: results of 1996 and 2013 (with t-tests comparing influence over time)

Decisions regarding		Marketing		Sales		R&D		Operations			Finance				
		2013	Δ	1996	2013	Δ	1996	2013	Δ	1996	2013	Δ	1996	2013	Δ
Pricing	24	19	-5*	47	50	3	4	6	2	7	9	2	18	17	-1
New product development	31	24	-7**	26	30	4*	27	32	5*	8	8	0	8	6	-2
Strategic direction of the business unit	39	30	-9***	34	41	7**	8	11	3	5	6	1	13	12	-1
Major capital expenditures	14	11	-3*	14	16	2*	12	14	2	23	21	-2	37	38	1
Expansion into new geographic markets	36	21	-15***	49	61	12***	2	3	1	2	2	0	11	11	0
Choices of strategic business partners	27	18	-9***	53	57	4	6	10	4*	5	6	1	9	9	0
Design of customer service and support	29	26	-3	54	59	5	4	5	1	6	5	-1	6	6	0
Customer satisfaction improvement programs	42	45	3	41	45	4	5	3	-2*	5	3	-2*	6	5	-1
Distribution strategy	32	23	-9***	59	67	8**	2	2	0	3	4	1	5	4	-1
Advertising messages	62	70	8**	33	25	-8**	3	3	0	1	0	-1*	2	1	-1
Customer satisfaction measurement	54	56	2	37	37	0	3	1	-2*	3	3	0	3	3	0

p < .05; **p < .01; ***p < .001

We present the decision areas in decreasing order of their importance for the success of the strategic business unit (assessed by our key informants). The number in each cell is the mean of the number of points given by the key informants to each department, using a constant-sum scale of 100. Sum may not add up to 100 due to rounding. Values for 2013 are adjusted by sales volume according to 1996. The " Δ -columns" display *t*-tests that were performed to compare the relative influence of each department between 1996 and 2013

Aalto University School of Business Source: Homburg, C., Vomberg, A., Enke, M. and Grimm, P.H. (2015), "The loss of the marketing department's influence: is it really happening? And why worry?", Journal of the Academy of Marketing Science, Vol. 43 No. 1, pp. 1–13.

T-test with SPSS

• Analyze – Compare means – Independent Samples T test

 What is your age in years? [Age] ENJ2 I think collaborative cons ENJ3 I think collaborative cons ENJ4 I think collaborative cons ENJ5 I think collaborative cons ECON1 I can save money if I p ECON2 My participation in coll ECON3 My participation in coll ECON4 My participation in coll SUST1 Collaborative consumpt SUST2 Collaborative consumpt SUST3 Collaborative consumpt Reset Paste 	 Define Groups Use specified values Group 1: 1 Group 2: 2 Cut point: ? Cancel Continue

T-test with SPSS

 If p value of Levene's test is small (p < .05), the variances are not equal and we must use "equal variances not assumed" t-test. Here, we use "equal variances assumed" t-test. And the t-test result is not significant (no difference between opinions of males and females).

Group Statistics										
	What is your gender?	N	Mean	Std. Deviation	Std. Error Mean					
ENJ1 I think collaborative consumption is enjoyable.	Male	89	5.3820	1.17266	.12430					
	Female	111	5.1802	1.27349	.12087					

		Levene's Test f Varia				t-test f	or Equality of Me	ans			
						Significance		Mean	Std. Error	95% Confidence Differ	Interval of the ence
		F	F Sig.		df	One-Sided p	Two-Sided p	Difference	Difference	Lower	Upper
ENJ1 I think collaborative consumption is enjoyable.	Equal variances assumed	.101	.750	1.154	198	.125	.250	.20184	.17497	14320	.54688
	Equal variances not assumed			1.164	194.198	.123	.246	.20184	.17338	14011	.54380

Analysis of Variance (ANOVA)

Comparing means and ANOVA

- ANOVA tests for differences in the mean across groups
 - Allows (much) more complex hypothesis testing than t-test.
 - E.g. there can be more than two groups.

ANOVA: Example

Source: Jin, Z., Hewitt-Dundas, N. and Thompson, N.J. (2004), "Innovativeness and performance: evidence from manufacturing sectors", Journal of Strategic Marketing, Vol. 12 No. 4, pp. 255–266.

Cluster	Sales gro	owth	Employm	Employment growth			
	Mean	Standard deviation	Mean	Standard deviation			
Non-innovator (N = 249)	25.2	50.2	11.2	41.1			
Creator (N = 127)	39.9	64.3	22.2	41.0			
All-round innovator (N = 44)	74.3 I	108.7	44.7	68.8			
Adopter (N =)	46.37	76.9	27.4	55.5			
Total	37.11	67.2	9.8	47.9			
F	14.0		14	.7			
Significance	0.000		0.000				

TABLE 5. Types of innovator and organisational performance: one-way ANOVA

One-way ANOVA: Hypotheses 1 and 2 were tested via one-way ANOVA, using organisational performances (sales growth and employment growth) as dependent variables. The results of the test are shown in Table 5 below.

Consistent results for both indices of organisational performance were obtained, and Hypotheses 1 and 2 are fully supported. It is clearly demonstrated that innovative companies have better performance than non-innovative companies, and that all-round innovators have better performance than adopters or creators.

ANOVA with SPSS

• Analyze – Compare Means – One-way ANOVA

	Depend	dent List:	Contracto	Statistics
SUST1 Collaborative consumption	💉 GR	EEN2 I try to repair or reuse item	Contrasts	Descriptive
SUST2 Collaborative consumption			Post Hoc	Fixed and random effects
SUST3 Collaborative consumption SUST4 Collaborative consumption			Options	Homogeneity of variance test
SUST5 Collaborative consumption	•		Pootstrap	Brown-Forsythe test
CSR1 Collaborative consumption			Bootstrap	Welch test
CSR3 Collaborative consumption BL1 I would like to use often colla				Means plot
BL2 I would like to recommend co	Factor:			Missing Values
BL3 I would like to keep close rel	💌 🛷 Wh	at is your age in years? [Age]		 Exclude cases analysis by analysis
GREEN3 I actively try to reduce m	🗸 Esti	mate effect size for overall tests		O Exclude cases listwise
? Reset Paste		Cance	е ок	Confidence Intervals
				Level(%): 0.95

?

Cancel

Continue

ANOVA with SPSS

From means we see that older people are more willing to repair or reuse items.

Descriptives

GREEN2 I try to repair or reuse items rather than throwing them away.

					95% Confident Me	e Interval for an		
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
18 to 24	9	5.3333	1.32288	.44096	4.3165	6.3502	3.00	7.00
25 to 34	91	5.3407	1.45465	.15249	5.0377	5.6436	1.00	7.00
35 to 44	56	5.6429	1.35417	.18096	5.2802	6.0055	1.00	7.00
45 to 54	29	6.1724	.88918	.16512	5.8342	6.5106	4.00	7.00
55 to 64	10	5.8000	.91894	.29059	5.1426	6.4574	4.00	7.00
65 plus	5	6.4000	.54772	.24495	5.7199	7.0801	6.00	7.00
Total	200	5.5950	1.33788	.09460	5.4084	5.7816	1.00	7.00

Oneway

ANOVA

GREEN2 I try to repair or reuse items rather than throwing them away.

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	19.960	5	3.992	2.303	.046
Within Groups	336.235	194	1.733		
Total	356.195	199			

The p-value is significant. Age has a statistically significant impact on the attitude towards repairing or reusing items.

Thank you!

