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Convex Sets

Let x∗ be a solution to

max f (x) s.t g(x) ≤ 0

Geometrically, the Lagrange multiplier conditions told us that

{x : g(x) ≤ 0} and {x : f (x) ≥ f (x∗)}

are “tangent.”

For nice convex sets, it looks like this tangency is sufficient.



Convex Sets

Definition (Convex Sets)

A set A ⊆ Rn is convex if for any λ ∈ [0, 1], any x , y ∈ A,
λx + (1− λ)y ∈ A



Hyperplanes

Fix a vector d ∈ Rn \ {0} and a constant c ∈ R. These define a
hyperplane:

H(d , c) = {x : d · x = c}

where d determines the orientation, and c determines the position.



Supporting and Separating Hyperplanes

Definition (Supporting Hyperplane)

H(d , c) is a supports set A through point x ∈ A if d · x = c and
d · y ≤ c for all y ∈ A

Definition (Separating Hyperplane)

H(d , c) (strictly) separates sets A and B if for all a ∈ A, b ∈ B,
d · a ≤ (<)c ≤ (<)d · b



Separating Hyperplane Theorem

Theorem (Separating Hyperplane Theorem)

Let A,B be non-empty, closed, disjoint, convex sets. Suppose A is
compact. Then there exists a hyperplane H(d , c) s.t. H(d , c)
strictly separates A and B.



Separation and Optimization

Suppose the feasible set:

F = {x : g(x) ≤ 0}

is convex, closed, and compact. Suppose that for every k

UC (k) = {x : f (x) ≥ k}

are convex and closed.

We can then provide a simple geometric characterization of
optimality.



Separation and Optimization

Rewording this observation:

Theorem

Consider a strictly increasing function f : RM → R with closed,
convex UC (k) and a set F ⊆ RM closed, compact and convex, x∗

solves
max
x∈F

f (x)

if and only if there exists some d ∈ Rn \ {0} such that both of the
following are true:

▶ x∗ solves max d · x s.t. x ∈ F .

▶ x∗ solves min d · x s.t x ∈ UC (f (x∗)).

This gives us a first necessary and sufficient condition for
optimality.



Proof

(If:) Let x∗ be a maximum.

▶ x∗ cannot be an interior point of F or UC (f (x∗)).

▶ Therefore, there exists a hyperplane H(d , d · x∗) that
separates F and UC (f (x∗)).

▶ So x∗ solves both the maximization and minimization problem

(Only if) Suppose that for some feasible x∗ there exists a d s.t. x∗

solves both the maximization and minimization problem.

▶ Then the hyperplane H(d , d · x∗) separates F and UC (f (x∗)).

▶ So any x s.t. f (x) > f (x∗) is not an element of F . So x∗ is a
maximizer.
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Separation

Our primitives were functions, not sets.

Definition (Upper and Lower Contour sets)

The upper contour sets of f : Rn → R are the sets
UC (k) = {x : f (x) ≥ k} for each k . The lower contour sets are
LC (k) = {x : f (x) ≤ k}.

Definition (Quasiconvexity)

A function f : X → R is called quasiconvex (quasiconcave) if its
lower (upper) contour sets are convex.



Quasiconcavity

Some alternative formulations of Quasiconcavity:

Theorem

f : X → R with convex domain X is quasiconcave if and only if for
any x , y ∈ X, λ ∈ (0, 1), f (λx + (1− λ)y) ≥ min(f (x), f (y))

Theorem

f : X → R, X convex, f differentiable is quasiconcave iff

f (y) ≥ f (x) ⇒ Df (x)(y − x) ≥ 0



Quasiconcavity

So now we know that if g is quasiconvex and f is quasiconcave
and both are continuous then any d where we can jointly solve the
pair of optimization problems identify the maximizer.

▶ x∗ solves max d · x s.t. g(x) ≤ 0.

▶ x∗ solves min d · x s.t f (x) ≥ f (x∗).

Let’s connect these back to KKT conditions.



Quasiconcavity

Suppose f and g are differentiable, and that x∗ is a satisfies the
KKT conditions and ∇f (x∗) ̸= 0, Dg(x∗) satisfies the rank
condition. Guess d = ∇f (x∗), we can use this to show that x∗ is a
maximizer.

▶ We can write the maximization problem as

maxλ′Dg(x∗) · x s.t. g(x) ≤ 0

which by complementary slackness, λ positive, and
quasiconvexity of g(x) is solved by x∗.

▶ Quasiconcavity of f directly implies that x∗ solves the
minimization problem.



Quasiconcavity and KKT

We could similarly show that this pair of problems imply the KKT
conditions

▶ If d ̸= ∇f (x∗) then x∗ doesn’t solve the minimization
problem.

▶ If d ̸= λ′Dg(x∗) for some λ that satisfies complementary
slackness then x∗ does not solve the maximization problem.



Linear Production

Consider the following simple model of a firm.

▶ The firm sells x ∈ Rn units of each output according to price
vector p.

▶ The firm has access to a set of production processes described
by matrix A ∈ Rm×n, c ∈ Rm, where c is the amount of
inputs it has.

▶ So the firm solves:

max
x∈Rn

+

p · x

s.t. Ax ≤ c



Linear Production

max
x∈Rn

+

p · x

s.t. Ax ≤ c

This is a linear program.

▶ Each row of the matrix describes a different way the firm can
use inputs to produce outputs.

▶ There’s a massive literature on linear programming, I mostly
leave this for future courses.



Linear Production

The KKT conditions are especially simple here. Let (A)i denote
the kth column of A. Accounting for non-negativity we get

xi (pi − λ′(A)i ) = 0 for all i ∈ {1, 2, . . . n}
λk(Ax − c)k = 0 for all k ∈ {1, 2, . . .m}

λ, x ≥ 0

We often talk about interpreting λ as a “shadow price”, this can
be made very clear in this problem.



Linear Production

To see this, consider the following alternative program:

min
y∈Rm

+

y · c

s.t. y ′A ≥ p

We can interpret y as the price to rent each technology.



Linear Production
The solution to the dual problem puts a price on each production
technology.

The dual’s KKT conditions are

µi (pi − y ′(A)i ) = 0

yk(Aµ− c)k = 0

y , µ ≥ 0

These look familiar. The multipliers in the original problem are
exactly these rental prices in the dual problem.
▶ The original problem can in some sense be reformulated as

solving for a “price” for each constraint.
▶ In fact, note that

p · x = λ′A · x
= y ′A · µ
= y · c

at the optimum of the respective programs.



Concavity

Quasiconcavity is a bit awkward. Let’s define a stronger property

Definition (Concavity)

A function f : X → R, X convex, is concave if for any λ ∈ (0, 1),
f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y).



Concavity

Theorem

Suppose f is twice continuously differentiable. The following are
equivalent:

▶ f (x) is concave.

▶ f (y) ≤ f (x) +∇f (x) · (y − x).

▶ D2f (x) is negative semidefinite.

These give us a natural economic interpretation for concave
functions.



Concavity and Uniqueness

Suppose f : X → R, X convex, f strictly concave. Then f has a
unique maximum.

▶ Suppose not. Then there exist maximizers x∗, y∗ s.t.
f (x∗) = f (y∗) and x∗ ̸= y∗.

▶ But, by strict concavity
f (λx∗ + (1− λ)y∗) > λf (x∗) + (1− λ)f (y∗) > f (x∗).

This property holds under strict quasiconcavity as well.



Necessary and Sufficient Conditions

We can use concavity to get simple necessity condition for KKT
conditions

Theorem (Slater’s Condition)

The KKT conditions are necessary if f is concave, each constraint
is convex and there exists an x where g(x) << 0. We have strong
duality,

min
λ≥0

L(λ) = max
x∈X

f (x) s.t. g(x) ≤ 0.

and a sufficient condition

Theorem

The KKT conditions are sufficient for a maximum if ∇f (x) ̸= 0 for
all feasible f , f is quasiconcave and the constraints are
quasiconvex.



KKT-Sufficiency

Theorem (KKT sufficiency)

Suppose ∇f (x) ̸= 0 for all feasible x, f quasiconcave, gi
quasiconvex for all i ∈ {1, 2, . . .m}. Then any point satisfying the
KKT conditions is a global max.

Proof:
▶ Fix a (x∗, λ∗) that satisfies the KKT conditions. For any y

∇f (x∗) · (y − x∗)−
m∑
i=1

λ∗
i ∇gi (x

∗) · (y − x∗) = 0

By quasiconvexity

λ∗
i ∇gi (x

∗) · (y − x) ≤ 0

since for any feasible y , if gi binds at x
∗, gi (y) ≤ gi (x

∗) and
g ’s are quasiconvex.

▶ So ∇f (x∗)(y − x∗) ≤ 0, and thus f (x∗) ≥ f (y) by
quasiconcavity.



What does Concavity Capture

▶ Concavity is a natural assumption to place on utility or
production.

▶ Convexity is a natural assumption to place on costs.

▶ Concavity is a natural assumption use to model preferences
over risky alternatives

It implies an decision maker with concave utility over
outcomes of a lottery U(x) will always take the sure thing
over the lottery

U(E (X )) ≥ E (U(X ))

▶ Many endogenous objects are naturally concave or convex.
The value of information is convex, the expenditure function
is convex



Portfolio Choice
A standard simplification in finance is that decision maker’s
preferences depend only on the mean and variance of their returns.
This leads to the natural problem of finding the minimum variance
portfolio

Suppose there are two risky assets, µ = (µ1, µ2) are their means,
Σ is their variance, covariance matrix. Assume they are not
perfectly correlated There’s also a riskless asset (s) with return µ3.
Let’s solve

min
(x ,s)∈R3

x ′Σx

s.t. µ3s + µ · x ≥ M

s + x1 + x2 ≤ 1

where µ3 < µ2 < µ1 and σ2 < σ1. The interesting case is M > µ3.

Note that the objective is strictly convex and the constraints are
linear, so we can use KKT conditions here.



Portfolio Choice

The KKT conditions give us

2σ2
1x1 + 2σ12x2 = λ1µ1 − λ2

2σ2
2x2 + 2σ12x1 = λ1µ2 − λ2

λ1µ3 − λ2 = 0

as well as complementary slackness and positivity of the multiplier.



Portfolio Choice

Simplifying a bit:

σ2
1x1 + σ12x2 = λ1(µ1 − µ3)

σ2
2x2 + σ12x1 = λ1(µ2 − µ3)

λ1 = 0 would only be possible if the assets were perfectly
correlated, so both constraints bind and the FOCs tell us that

x2
x1

=
σ2
1 + ρσ1σ2

µ1−µ3
µ2−µ3

σ2
2
µ1−µ3
µ2−µ3

+ ρσ1σ2

where ρ is the correlation.



Portfolio Choice

Some things to note:

▶ x1 must always be positive to satisfy our constraints. The sign
of this fractions determines whether you buy or sell x2.

▶ The proportion of x1 relative x2 is independent of the target
mean.

▶ The optimal portfolio is a mixture of the safe asset and a risky
portfolio whose composition doesn’t change.

▶ The mean/variance frontier has a nice structure since the
optimal composition of the risky portfolio is fixed.
▶ Consider the portfolio given by solving

x2 =
σ2
1 + ρσ1σ2

µ1−µ3

µ2−µ3

σ2
2
µ1−µ3

µ2−µ3
+ ρσ1σ2

x1

x1 + x2 = 1

and let µy denote it’s mean and σy denote it’s variance.



So we can reformulate the minimization problem as

min
y ,s∈R+

σ2
yy

2 s.t. µ3s + µyy = M and s + y = 1

This problem is very easy.

Varying M tells us the lowest variance portfolio we can get for each
target mean. The set of feasible mean/variance combinations is
thus

Variance ≥
(
M − µ3

µy − µ3

)2

σ2
y .

So the problem of maximizing a utility function that only depends
on the mean and variance is a maximization problem with a convex
feasible set.


