Session #1: Introduction, second quantization, mean-field and spontaneous symmetry breaking

February 27th 2023

Today's learning outcomes

- Describe what is a quantum material
- Explain why do we need quantum mechanics to understand quantum materials
- Explain the basics of second quantization
- Explain the basics of mean-field and spontaneous symmetry breaking

Humankind and materials ages

Some of the future materials will rely on controlling quantum properties of matter

The impact of quantum materials

For medicine

For renewable energies

For quantum computing

Superconductors

Semiconductors

Semiconductors & superconductors

The UN sustainable development goals

Quantum materials and UN sustainable development goals

Quantum computing creates a whole new industry based on quantum materials

Quantum materials provide the platform for solar energy and future low consumption electronics

The development of quantum materials requires wide international cooperation

Quantum materials and UN sustainable development goals

For renewable energies

For quantum computing

Semiconductors

Semiconductors & superconductors

The impact of quantum materials in society

https://www.youtube.com/watch?v=3De1rLxvzyU

Which materials will we try to understand?

Dirac matter (graphene)

Semiconductors (GaN)

Ferromagnets (CrO₂)

Fractional matter (GaAs)

Superconductors (AI)

Quantum excitations in quantum materials

Solid state matter is made of electrons, protons, neutrons and photons

But in solid state materials, we can have emergent collective new excitations

From atoms to quantum matter

How do we understand and predict properties as we put more and more atoms together?

How do we describe guantum matter?

We use quantum mechanics to understand electrons in materials

Two main kinds of phenomena can emerge

Single particle phenomena

Many-body phenomena

Two different kinds of quantum mechanical formalism

Systems where our number of particles is constant

First quantization, description based on a Hilbert space Describes metals, semiconductors, insulators <u>Highly successful and easy formalism</u>

Systems where the number of particles fluctuates

Second quantization, description based on a Fock space Describes superconductors, superfluids, correlated matter <u>Leads to much exotic phenomena, yet also more challenging</u>

A reminder of a simple single particle state

Particle in a box $H|\Psi angle=E_n|\Psi angle$

A reminder of a simple single particle state

These two states describe having one particle, in one of the possible energy level

From single particle to many body

But what if our state is a combination of states with different numbers of particles?

A state having both 0 particles and 2 particles

How do we describe states like these?

Non-constant number of particles

Why is this even relevant to understand materials?

Magnetic ordering of materials depends on processes in which the number of electrons fluctuates

Goodenough-Kanamori rules

The effective description of superconductors does not conserve electron number

Bogoliubov-de Gennes formalism

The idea of second quantization

Define operators that can create or destroy particles

$$C_i$$
 Annihilation operator, destroys a particle in site i C_i^{\dagger} Creation operator, creates a particle in site i

The Hamiltonian is written in terms of creation and annihilation operators

$$\mathbf{H} = \mathbf{c}_0^{\dagger} c_1 + h.c.$$

The idea of second quantization

Lets see some examples using the two-levels presented before

=| $c_0^{\dagger}|\Omega\rangle =$ $c_1^{\dagger} |\Omega\rangle =$ $c_0^{\dagger} c_1^{\dagger} |\Omega\rangle = [-]$

The "vacuum" state

One particle in level #0

One particle in level #1

Two particles in level #0 & #1

Fermionic quantum statistics in second quantization

Fermi-Dirac statistics for electrons

- \rightarrow Wavefunctions are antisymmetric with respect to interchanging labels
- \rightarrow There can only be 0 or 1 fermion per level

$$\{c_i^{\dagger}, c_j\} = c_i^{\dagger} c_j + c_j c_i^{\dagger} = \delta_{ij} \qquad \{c_i, c_j\} = 0$$

Anti-symmetric wavefunction

$$c_0^{\dagger} c_1^{\dagger} |\Omega\rangle = -c_1^{\dagger} c_0^{\dagger} |\Omega\rangle$$
$$c_0^{\dagger} c_0^{\dagger} |\Omega\rangle = 0$$

At most one fermion per site

Different kinds of Hamiltonians

Single particle Hamiltonians

$$\mathbf{H} = \sum_{ij} t_{ij} c_i^{\dagger} c_j$$

Insulators, semiconductors, metals

Many-body Hamiltonian

$$\mathbf{H} = \sum_{ijkl} V_{ijkl} c_i^{\dagger} c_j c_k^{\dagger} c_l$$

Fractional quantum Hall states, superconductors, quantum magnets

With second quantization, both cases can be treated on the same footing

Modes in a single particle Hamiltonian

To solve a single particle Hamiltonian, we just have to diagonalize the matrix

$$\mathbf{H} = \sum_{ij} t_{ij} c_i^{\dagger} c_j \qquad \qquad \mathbf{H} = \sum_{\alpha} \epsilon_{\alpha} \Psi_{\alpha}^{\dagger} \Psi_{\alpha}$$

If take a certain finite geometry, we can find the confined modes

Let us do it for graphene islands

Solving tight binding models

pyqula

from pyqula import geometry
g = geometry.honeycomb_lattice()
h = g.get_hamiltonian()
h.add_rashba(0.2) # Rashba spin-orbit coupling
h.add_zeeman([0.,0.,0.6]) # Zeeman field
from pyqula import topology
(kx,ky,omega) = h.get_berry_curvature() # compute Berry curvature
c = h.get_chern() # compute the Chern number

- Python library
- Ideal for complex models/calculations
- For writing in Python

https://github.com/joselado/pygula

Quantum-lattice

- User-friendly interface for tight binding models
- Ideal for simple models and quick checks
- Fully interface-based, no scripting

https://github.com/joselado/quantum-lattice

What about interactions?

But what happens when we put interactions?

$$H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} V_{ijkl} c_i^{\dagger} c_j c_k^{\dagger} c_l$$

The role of electronic interactions

Electronic interactions are responsible for symmetry breaking

Broken time-reversal symmetry

Classical magnets

 $\mathbf{M} \rightarrow -\mathbf{M}$

Broken crystal symmetry Charge density wave

 $\mathbf{r}
ightarrow \mathbf{r} + \mathbf{R}$

Broken gauge symmetry Superconductors

 $\langle c_{\uparrow} c_{\downarrow} \rangle \to e^{i\phi} \langle c_{\uparrow} c_{\downarrow} \rangle$

A simple interacting Hamiltonian

From now on lets consider we have a spin degree of freedom \uparrow,\downarrow

What is the ground state of this Hamiltonian?

1 / > 0

Magnetism

U < 0 Superconductivity

The mean-field approximation, superconductivity

Mean field: Approximate four fermions by two fermions times expectation values

Four fermions (not exactly solvable)

Two fermions (exactly solvable)

$$Uc_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\downarrow}^{\dagger}c_{i\downarrow} \approx U\langle c_{i\uparrow}^{\dagger}c_{i\downarrow}^{\dagger}\rangle c_{i\uparrow}c_{i\downarrow} + h.c.$$
$$Uc_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\downarrow}^{\dagger}c_{i\downarrow} \approx \Delta c_{i\uparrow}c_{i\downarrow} + h.c.$$

For U < 0

 $\Delta \sim \langle c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} \rangle$

is the superconducting order

i.e. attractive interactions

The mean-field approximation, magnetism

Mean field: Approximate four fermions by two fermions times expectation values

Four fermions (not exactly solvable)

Two fermions (exactly solvable)

$$Uc_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\downarrow}^{\dagger}c_{i\downarrow} \approx U\langle c_{i\uparrow}^{\dagger}c_{i\uparrow}\rangle c_{i\downarrow}^{\dagger}c_{i\downarrow} + \dots + h.c.$$

$$Uc_{i\uparrow}^{\dagger}c_{i\uparrow}c_{i\downarrow}^{\dagger}c_{i\downarrow} \approx M\sigma_{ss'}^{z}c_{i,s}^{\dagger}c_{i,s'} + h.c.$$

Magnetic order

 $M \sim \langle c_{i\uparrow}^{\dagger} c_{i\uparrow} \rangle - \langle c_{i\downarrow}^{\dagger} c_{i\downarrow} \rangle$

For U > 0 i.e. repulsive interactions

Gauge symmetry and superconductivity

What we know from quantum mechanics

"The phase of a wavefunction (field operator) does not have physical meaning"

This is what we know as gauge symmetry

$$c_n \to e^{i\phi} c_n$$
$$c_n^{\dagger} \to e^{-i\phi} c_n^{\dagger}$$

How does the superconducting pairing transform under a gauge transformation?

$$\Delta \sim \langle c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} \rangle$$

Gauge symmetry and superconductivity

What we know from quantum mechanics

"The phase of a wavefunction (field operator) does not have physical meaning"

This is what we know as gauge symmetry

$$c_n \to e^{i\phi} c_n$$

 $c_n^{\dagger} \to e^{-i\phi} c_n^{\dagger}$

How does the superconducting pairing transform under a gauge transformation?

$$\Delta \to e^{-2i\phi} \Delta$$

A superconductor breaks gauge symmetry

Take home

- Quantum materials realize a wide range of exotic phenomena
- Second quantization is a versatile language to understand quantum phenomena
- Symmetry breaking leads to new quantum states

After today's session

- Submit the exercise by Friday 23:59
- Make the groups for the presentations (DL 6.4)
- Choose your individual project

In the next session

Towards understanding crystals, when we have many, many atoms together arranged in a periodic manner

How to exploit symmetries to simplify quantum problems How symmetries lead to conservation laws in quantum materials