Symmetries, reciprocal space and Bloch's theorem

March $6^{\text {th }} 2023$

A reminder from session \#1

Hamiltonians can be described in a second quantized formalism

$$
H=\sum_{i j} t_{i j} c_{i}^{\dagger} c_{j}
$$

Annihilation operator
Creation operator

And can be diagonalized

$$
H=\sum_{n} \epsilon_{n} \Psi_{n}^{\dagger} \Psi_{n}
$$

$$
\Psi_{n}^{\dagger}=\sum_{i} a_{n, i} c_{i}^{\dagger}
$$

Today's learning outcomes

- We can classify quantum matter according which symmetries it breaks
- Symmetry allows to simplify quantum problems
- Non-interacting systems with translational symmetry can be solved using Bloch's theorem

Complexity in nature

Liquid crystals

Galaxies

Complex materials

How can we extract robust conclusions from complex systems?

The key idea of symmetry

Symmetries allow to "guess" solutions without explicitly solving a problem

even without understanding the microscopic mechanism governing the system

The key idea of symmetry

The underlying laws of physics are symmetric But the real system may or may not be symmetric

No symmetry
Spontaneous symmetry breaking

Symmetry
Mathematical constrained solution

Symmetry breaking

An example of symmetry breaking
Pick your bread
(O) 0101101 Roam ion ion olio

Spontaneous symmetry breaking

Central idea: a ground state can break the symmetry of a Hamiltonian It can happen in the thermodynamic limit (infinite particles)

Hamiltonian for a ferromagnet $H=-\sum_{i j} \vec{S}_{i} \cdot \vec{S}_{j}$
Solution \#1
${ }^{i j}$ Solution \#2

Nature (fluctuations) will choose one of the ground states as the macroscopic one

Classifying quantum matter according to symmetries

Broken

time-reversal symmetry Classical magnets

$\mathbf{M} \rightarrow-\mathbf{M}$

Broken
rotational symmetry
Ferroelectrics

$\mathbf{r} \rightarrow R \mathbf{r}$

Broken gauge symmetry Superconductors

How is symmetry related with quantum materials?

(Broken) symmetries allow to classify matter

Symmetry classification

Ferromagnets
Superconductors
Ferroelectrics

Topological classification
Trivial insulators
Topological insulators
Topologically ordered matter

Emergent excitations when symmetries det broken

Phonons
Crystals $\langle\vec{R}\rangle \neq 0$

Spin 0
Charge 0 Gapless

Magnons
Magnets $\langle\vec{S}\rangle \neq 0$

Spin 1
Charge 0
Gapless/Gaped

Higgs mode
Superconductors $\left\langle c_{\uparrow} c_{\downarrow}\right\rangle \neq 0$

Spin 0
Charge 0 Gaped

How to know if a material is magnetic?

Measure its Hall conductivity

Current generated perpendicular to a bias voltage

Measure its magneto-optical Kerr effect

Different reflection for left-handed and right-handed polarized light

What a material being "ferromannetic" means?

An intuitive definition

"It sticks to your fridge"

A formal definition

Time reversal operator
Wavefunction

It breaks time-reversal symmetry

A physical definition of a mannet

Magnet

Not a magnet

Time reversal operator
Magnetic materials are not invariant under time reversal symmetry

The role of symmetry

Symmetries enforce observables to vanish

$$
\langle A\rangle=0
$$

Symmetries constrain the mathematical solution of a problem

$$
\Psi(r, \theta, \phi)=Y_{l m}(\theta, \phi) R(r)
$$

Certain operator

Magnetic moment Electric dipole Hall conductivity

Periodic crystals

$$
\Psi(\mathbf{R}+\mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{R}} \Psi(\mathbf{r})
$$

Why is symmetry important?

Symmetries help to characterize complex problems capturing their physics

New quantum excitations when symmetries are broken (Goldstone modes)

$$
H=-\sum_{\substack{i j\rangle}} \vec{S}_{i} \cdot \vec{S}_{j} \longrightarrow \begin{gathered}
\begin{array}{c}
\text { Symmetry breaking } \\
\text { (ferromagnetism) }
\end{array} \\
\text { Interacting local } \\
\text { magnetic moments }
\end{gathered} \quad \rightarrow \sum_{k} \epsilon_{k} b_{k}^{\dagger} b_{k}
$$

Symmetries allow to greatly simplify quantum problems Infinite systems can be "folded" to small systems (Bloch's theorem)

$$
\xrightarrow{\boldsymbol{\rightharpoonup}}=\sum_{k} H_{k}
$$

Simplifying problems using symmetries

A familiar example using symmetries

Back to electromagnetism

Imagine an infinite charged plane

Option \#1

Option \#2

What is the direction of the electric field?

A familiar example using symmetries

Back to electromagnetism

Imagine an egg-shaped charge
Option \#1

What is the direction of the electric field in position x ?

The intuitive notion of symmetry

Symmetry: Transformation performed in a system, that keeps it invariant

Arbitrary rotation

90 degrees rotation

Right-left reflection

(Symmetry) transformations in quantum physics

How does a transformation affect a wavefunction?

$$
\| \quad|\phi\rangle=S|\Psi\rangle
$$

"New" wavefunction
"Old" wavefunction
(Symmetry) transformation

Rotate 90 degrees

(Symmetry) transformations in quantum physics

A generic symmetry transformation

$$
|\phi\rangle=S|\Psi\rangle
$$

By definition, any symmetry transformation must leave any wavefunction normalized

$$
\langle\phi \mid \phi\rangle=\langle\Psi| S^{\dagger} S|\Psi\rangle=\langle\Psi \mid \Psi\rangle \quad \longrightarrow \quad S^{\dagger}=S^{-1}
$$

The Hermitian of a symmetry is its own inverse

Symmetry transformations

A wavefunction is symmetric under a transformation if

$$
S|\Psi\rangle=\lambda|\Psi\rangle
$$

λ is the eigenvalue of the transformation

What is the eigenvalue of this transformation?
$|\phi\rangle$

Rotate 90 degrees

$|\Psi\rangle$

$$
+1^{-1}+1
$$

-1

A symmetry transformation

Rotate 90 degrees

$$
S|\Psi\rangle
$$

What is the eigenvalue λ of this transformation?

$$
S|\Psi\rangle=\lambda|\Psi\rangle
$$

Symmetry transformation in a wavefunction

Hamiltonian

$$
H=t\left[c_{1}^{\dagger} c_{2}+c_{2}^{\dagger} c_{1}\right]
$$

Eigenfunctions $\quad H=t \Psi_{\alpha}^{\dagger} \Psi_{\alpha}-t \Psi_{\beta}^{\dagger} \Psi_{\beta}$

$$
\Psi_{\alpha}^{\dagger}=\frac{1}{\sqrt{2}}\left[c_{1}^{\dagger}+c_{2}^{\dagger}\right] \quad \Psi_{\beta}^{\dagger}=\frac{1}{\sqrt{2}}\left[c_{1}^{\dagger}-c_{2}^{\dagger}\right]
$$

What are their eigenvalues λ_{γ} under mirror symmetry?

$$
\begin{aligned}
& c_{1} \rightarrow c_{2} \\
& c_{2} \rightarrow c_{1}
\end{aligned} \quad S\left|\Psi_{\gamma}\right\rangle=\lambda_{\gamma}\left|\Psi_{\gamma}\right\rangle
$$

Symmetries in a Hamiltonian

A Hamiltonian is invariant under a transformation if

$$
\begin{gathered}
S H S^{-1}=H \\
{[S, H]=S H-H S=0}
\end{gathered}
$$

S Symmetry transformation
H Hamiltonian

A reminder from linear algebra

If two linear operators commute, there is a common basis of eigenstates

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle
$$

$$
S\left|\Psi_{n}\right\rangle=\lambda_{n}\left|\Psi_{n}\right\rangle
$$

Eigenvalues of symmetry operations

Recall the property of symmetry operations

$$
S^{\dagger}=S^{-1}
$$

All the eigenvalues of symmetry operations are complex numbers in unit circle

$$
S|\Psi\rangle=\lambda|\Psi\rangle
$$

Complex eigenvalue
Real number
${ }^{-} \lambda=e^{i \phi}$

Guessing the form of wavefunctions

Take this Hamiltonian

$$
H=c_{1}^{\dagger} c_{2}+c_{2}^{\dagger} c_{3}+c_{3}^{\dagger} c_{1}+h . c .
$$

We know that 120 degrees rotation leaves the Hamiltonian invariant

What are the eigenvalues under the rotation symmetry operation?
Rotation operator

$$
R|\Psi\rangle=e^{i \phi}|\Psi\rangle
$$

Guessing the form of wavefunctions

Take this Hamiltonian

Possible phases

$$
\phi=\frac{2 n \pi}{3} \quad n=0,1,2
$$

Guessing the form of wavefunctions

Take this Hamiltonian

$$
\phi=\frac{2 n \pi}{3} \quad n=0,1,2
$$

$$
R|\Psi\rangle=e^{i \phi}|\Psi\rangle
$$

The possible form of an eigenstate

$$
\Psi^{\dagger}=\alpha_{1} c_{1}^{\dagger}+\alpha_{2} c_{2}^{\dagger}+\alpha_{3} c_{3}^{\dagger}
$$

α_{i} Complex number

What are the exact coefficients of the wavefunction?

Guessing a harder wavefunction

Take this Hamiltonian

What are the symmetry eigenvalues?

$$
R|\Psi\rangle=e^{i \phi}|\Psi\rangle
$$

For the ground state, what is the value of

$$
\left.\left|\langle\Omega| c_{1} \Psi_{G S}^{\dagger}\right| \Omega\right\rangle\left.\right|^{2}
$$

Guessing a harder wavefunction

Take this Hamiltonian
What are the symmetry eigenvalues?

$$
R|\Psi\rangle=e^{i \phi}|\Psi\rangle
$$

For the ground state, what is the value of

$$
\left.\left|\langle\Omega| c_{1} \Psi_{G S}^{\dagger}\right| \Omega\right\rangle\left.\right|^{2}
$$

Lattice models in experiments

Manipulating individual atoms at the atomic scale

https://www.youtube.com/watch?v=oSCX78-8-q0

The smallest film created by humankind

Translational symmetry in chains

The Hamiltonian commutes with the translation operator \rightarrow Bloch's theorem

$$
T: c_{n} \rightarrow c_{n+1} \quad[H, T]=0 \quad T\left|\Psi_{\phi}\right\rangle=e^{i \phi}\left|\Psi_{\phi}\right\rangle
$$

$\phi \equiv$ Bloch phase of the wavefunction

Translational symmetry in chains

One dimensional tight binding chain

$$
\begin{gathered}
{[H, T]=0} \\
T\left|\Psi_{\phi}\right\rangle=e^{i \phi}\left|\Psi_{\phi}\right\rangle \\
H\left|\Psi_{\phi}\right\rangle=\epsilon_{\phi}\left|\Psi_{\phi}\right\rangle
\end{gathered}
$$

The mapping between ϕ and ϵ_{ϕ} is what we call band structure

$$
e^{i \phi} \equiv \text { Symmetry eigenvalue } \quad \epsilon_{\phi} \equiv \text { Energy eigenvalue }
$$

Translational symmetry in chains

In the original (real-space) basis
In the diagonal basis

$$
H=\sum_{n=-\infty}^{\infty} c_{n}^{\dagger} c_{n+1}+h . c .
$$

$$
H=\sum_{\phi} \epsilon_{\phi} \Psi_{\phi}^{\dagger} \Psi_{\phi}
$$

From the symmetry eigenvalue, we can determine the expansion of Ψ_{ϕ}^{\dagger} $T \Psi_{\phi}^{\dagger} T^{-1}=e^{i \phi} \Psi_{\phi}^{\dagger}$

$$
\Psi_{\phi}^{\dagger}=\sum_{n} a_{n, \phi} c_{n}^{\dagger}
$$

$$
a_{n, \phi}=e^{i n \phi}
$$

And by taking that eigenfunction, we get the eigenvalues of the Hamiltonian

$$
\Psi_{\phi}^{\dagger}=\sum_{n} e^{i n \phi} c_{n}^{\dagger} \quad H\left|\Psi_{\phi}\right\rangle=\epsilon_{\phi}\left|\Psi_{\phi}\right\rangle \quad \epsilon_{\phi}=2 \cos \phi
$$

Computing electronic band structures with Python

pyquia Python library

Installation

```
pip install pyqula
```

Example script for a 1D tight binding chain


```
from pyqula import geometry
g = geometry.chain() # create a chain geometry
h = g.get_hamiltonian() # get the tight binding Hamiltonian
(k,e) = h.get_bands() # get the band structure
```


Computing electronic band structures with Python

Let us consider now a model in a 1D ladder

Example script for a 1D tight binding ladder
Band structure

Translational symmetry in lattices

Reciprocal space

The symmetry eigenvalues live in the "reciprocal space"

$$
\begin{aligned}
& T_{x}\left|\Psi_{\left(\phi_{x}, \phi_{y}\right)}\right\rangle=e^{i \phi_{x}}\left|\Psi_{\left(\phi_{x}, \phi_{y}\right)}\right\rangle \\
& T_{y}\left|\Psi_{\left(\phi_{x}, \phi_{y}\right)}\right\rangle=e^{i \phi_{y}}\left|\Psi_{\left(\phi_{x}, \phi_{y}\right)}\right\rangle
\end{aligned}
$$

Effectively, the 2D reciprocal space is a torus (periodic boundary conditions)

Take home

- Symmetries allow to
- Classify quantum matter
- Simplify quantum problems
- Solve single-particle models with translational symmetry
- Remember to submit the exercise by Friday 23:59 in MyCourses

In the next session

- How to predict macroscopic properties of crystals from microscopic models

