Symmetries, reciprocal space and Bloch's theorem

March 6th 2023

A reminder from session #1

Hamiltonians can be described in a second quantized formalism

Today's learning outcomes

- We can classify quantum matter according which symmetries it breaks
- Symmetry allows to simplify quantum problems
- Non-interacting systems with translational symmetry can be solved using Bloch's theorem

Complexity in nature

Liquid crystals

Galaxies

Complex materials

How can we extract robust conclusions from complex systems?

The key idea of symmetry

Symmetries allow to "guess" solutions without explicitly solving a problem

even without understanding the microscopic mechanism governing the system

The key idea of symmetry

The underlying laws of physics are symmetric But the real system may or may not be symmetric

No symmetry

Spontaneous symmetry breaking

Symmetry

Mathematical constrained solution

Symmetry breaking

An example of symmetry breaking

Pick your bread in a group meal

Solution #1

Solution #2

Spontaneous symmetry breaking

Central idea: a ground state can break the symmetry of a Hamiltonian

It can happen in the thermodynamic limit (infinite particles)

Hamiltonian for a ferromagnet $H = -\sum \vec{S}_i \cdot \vec{S}_j$

Solution #1

Nature (fluctuations) will choose one of the ground states as the macroscopic one

Classifying quantum matter according to symmetries

Broken time-reversal symmetry

Classical magnets

 $\mathbf{M}
ightarrow - \mathbf{M}$

Broken rotational symmetry *Ferroelectrics* $\bigcirc \quad \bigcirc$ $\mathbf{r} \to R\mathbf{r}$

Broken gauge symmetry Superconductors

 $\langle c_{\uparrow} c_{\downarrow} \rangle \to e^{i\phi} \langle c_{\uparrow} c_{\perp} \rangle$

How is symmetry related with quantum materials?

(Broken) symmetries allow to classify matter

Symmetry classification

Ferromagnets Superconductors Ferroelectrics

Topological classification

Trivial insulators Topological insulators Topologically ordered matter

Emergent excitations when symmetries get broken

Phonons Crystals $\langle \vec{R} \rangle \neq 0$

Spin 0 Charge 0 Gapless Magnons Magnets $\langle \vec{S} \rangle \neq 0$

Spin 1

Charge 0

Gapless/Gaped

Spin 0 Charge 0 Gaped

Higgs mode Superconductors $\langle c_{\uparrow}c_{\downarrow}\rangle \neq 0$

How to know if a material is magnetic?

Measure its Hall conductivity

Current generated perpendicular to a bias voltage

Measure its magneto-optical Kerr effect

Different reflection for left-handed and right-handed polarized light

What a material being "ferromagnetic" means?

An intuitive definition

A formal definition

"It sticks to your fridge"

 $\Theta |\Psi\rangle \neq |\Psi\rangle$

Time reversal operator

Wavefunction

It breaks time-reversal symmetry

A physical definition of a magnet

Time reversal operator

Magnetic materials are not invariant under time reversal symmetry

The role of symmetry

Symmetries enforce observables to vanish

$$\langle A \rangle = 0$$

Certain operator

Magnetic moment Electric dipole Hall conductivity

Symmetries constrain the mathematical solution of a problem

Why is symmetry important?

Symmetries help to characterize complex problems capturing their physics

New quantum excitations when symmetries are broken (Goldstone modes)

Symmetries allow to greatly simplify quantum problems

Infinite systems can be "folded" to small systems (Bloch's theorem)

"Infinite system" Hamiltonian
$$H = \sum_k H_k$$

(finite) Bloch's Hamiltonian

Simplifying problems using symmetries

A familiar example using symmetries

Back to electromagnetism

Imagine an infinite charged plane

Option #1

 \vec{E}

Option #2

E

What is the direction of the electric field?

A familiar example using symmetries

Back to electromagnetism

Imagine an egg-shaped charge

What is the direction of the electric field in position x?

The intuitive notion of symmetry

Symmetry: Transformation performed in a system, that keeps it invariant

Arbitrary rotation

90 degrees rotation

Right-left reflection

(Symmetry) transformations in quantum physics

(Symmetry) transformations in quantum physics

A generic symmetry transformation

 $|\phi\rangle = S|\Psi\rangle$

By definition, any symmetry transformation must leave any wavefunction normalized

$$\langle \phi | \phi \rangle = \langle \Psi | S^{\dagger} S | \Psi \rangle = \langle \Psi | \Psi \rangle \quad \longrightarrow \quad S^{\dagger} = S^{-1}$$

The Hermitian of a symmetry is its own inverse

Symmetry transformations

A wavefunction is symmetric under a transformation if

$$S|\Psi\rangle = \lambda |\Psi\rangle$$

 λ is the eigenvalue of the transformation

What is the eigenvalue of this transformation?

 Ψ

A symmetry transformation

What is the eigenvalue $~\lambda~$ of this transformation? $S|\Psi\rangle=\lambda|\Psi\rangle$

Symmetry transformation in a wavefunction

Hamiltonian

Eigenfunctions
$$H = t\Psi_{\alpha}^{\dagger}\Psi_{\alpha} - t\Psi_{\beta}^{\dagger}\Psi_{\beta}$$

$$\Psi_{\alpha}^{\dagger} = \frac{1}{\sqrt{2}}[c_{1}^{\dagger} + c_{2}^{\dagger}] \qquad \Psi_{\beta}^{\dagger} = \frac{1}{\sqrt{2}}[c_{1}^{\dagger} - c_{2}^{\dagger}]$$

What are their eigenvalues λ_γ under mirror symmetry?

$$\begin{array}{l}c_1 \to c_2\\c_2 \to c_1\end{array} \qquad S |\Psi_{\gamma}\rangle = \lambda_{\gamma} |\Psi_{\gamma}\rangle$$

Symmetries in a Hamiltonian

A Hamiltonian is invariant under a transformation if

$$SHS^{-1} = H$$
$$[S, H] = SH - HS = 0$$

A reminder from linear algebra

If two linear operators commute, there is a common basis of eigenstates

$$S|\Psi_n\rangle = \lambda_n |\Psi_n\rangle$$

Symmetry eigenvalue

 $H|\Psi_n\rangle = E_n|\Psi_n\rangle$

Eigenvalues of symmetry operations

Recall the property of symmetry operations

 $S^{\dagger} = S^{-1}$

All the eigenvalues of symmetry operations are complex numbers in unit circle

$$S|\Psi\rangle = \lambda|\Psi\rangle$$

Guessing the form of wavefunctions

Take this Hamiltonian

$$H = c_1^{\dagger} c_2 + c_2^{\dagger} c_3 + c_3^{\dagger} c_1 + h.c.$$

We know that 120 degrees rotation leaves the Hamiltonian invariant

What are the eigenvalues under the rotation symmetry operation?

Rotation operator Symmetry eigenvalue $R|\Psi\rangle=e^{i\phi}|\Psi\rangle$

Guessing the form of wavefunctions

Take this Hamiltonian

$$R|\Psi\rangle = e^{i\phi}|\Psi\rangle$$

Rotating three times brings the system back to itself $R^3 = I$

 $(e^{i\phi})^3 = 1$

Possible phases

$$\phi = \frac{2n\pi}{3} \quad n = 0, 1, 2$$

Guessing the form of wavefunctions

Take this Hamiltonian

The possible form of an eigenstate

$$\Psi^{\dagger} = \alpha_1 c_1^{\dagger} + \alpha_2 c_2^{\dagger} + \alpha_3 c_3^{\dagger}$$

 $lpha_i$ Complex number

 $\phi = \frac{2n\pi}{3} \quad n = 0, 1, 2$ $R|\Psi\rangle = e^{i\phi}|\Psi\rangle$

What are the exact coefficients of the wavefunction?

Guessing a harder wavefunction

Take this Hamiltonian

What are the symmetry eigenvalues? $R|\Psi\rangle=e^{i\phi}|\Psi\rangle$

For the ground state, what is the value of

Guessing a harder wavefunction

Take this Hamiltonian

 $H = \sum_{ij} t_{ij} c_i^{\dagger} c_j$

What are the symmetry eigenvalues? $R|\Psi\rangle=e^{i\phi}|\Psi\rangle$

For the ground state, what is the value of

Lattice models in experiments

Manipulating individual atoms at the atomic scale

https://www.youtube.com/watch?v=oSCX78-8-q0

The smallest film created by humankind

Translational symmetry in chains

One dimensional tight binding chain

$$H = \sum_{n=-\infty}^{\infty} c_n^{\dagger} c_{n+1} + h.c.$$

The Hamiltonian commutes with the translation operator \rightarrow Bloch's theorem

$$T: c_n \to c_{n+1} \qquad [H, T] = 0 \qquad T |\Psi_{\phi}\rangle = e^{i\phi} |\Psi_{\phi}\rangle$$

 $\phi \equiv$ Bloch phase of the wavefunction

 $\phi \in [0, 2\pi)$

Translational symmetry in chains

One dimensional tight binding chain

$$H = \sum_{n=-\infty}^{\infty} c_n^{\dagger} c_{n+1} + h.c.$$

$$[H, T] = 0$$
$$T|\Psi_{\phi}\rangle = e^{i\phi}|\Psi_{\phi}\rangle$$
$$H|\Psi_{\phi}\rangle = \epsilon_{\phi}|\Psi_{\phi}\rangle$$

The mapping between $\,\phi\,$ and ϵ_{ϕ} is what we call band structure

 $e^{i\phi} \equiv$ Symmetry eigenvalue $\epsilon_{\phi} \equiv$ Energy eigenvalue

Translational symmetry in chains

In the original (real-space) basis

T

In the diagonal basis

$$\begin{split} H &= \sum_{n=-\infty}^{\infty} c_n^{\dagger} c_{n+1} + h.c. \qquad H = \sum_{\phi} \epsilon_{\phi} \Psi_{\phi}^{\dagger} \Psi_{\phi} \\ \text{From the symmetry eigenvalue, we can determine the expansion of } \Psi_{\phi}^{\dagger} \\ \Psi_{\phi}^{\dagger} T^{-1} &= e^{i\phi} \Psi_{\phi}^{\dagger} \qquad \Psi_{\phi}^{\dagger} = \sum_{n} a_{n,\phi} c_n^{\dagger} \qquad a_{n,\phi} = e^{in\phi} \end{split}$$

And by taking that eigenfunction, we get the eigenvalues of the Hamiltonian

$$\Psi_{\phi}^{\dagger} = \sum_{n} e^{in\phi} c_{n}^{\dagger} \qquad \quad H |\Psi_{\phi}\rangle = \epsilon_{\phi} |\Psi_{\phi}\rangle \qquad \quad \epsilon_{\phi} = 2\cos\phi$$

Computing electronic band structures with Python

Example script for a 1D tight binding chain

from pyqula import geometry
g = geometry.chain() # create a chain geometry
h = g.get_hamiltonian() # get the tight binding Hamiltonian
(k,e) = h.get_bands() # get the band structure

Computing electronic band structures with Python

Let us consider now a model in a 1D ladder

Example script for a 1D tight binding ladder

from pyqula import geometry g = geometry.ladder() # create a ladder geometry h = g.get_hamiltonian() # get the tight binding Hamiltonian (k,e) = h.get_bands() # get the band structure

Band structure

Translational symmetry in lattices

Two possible symmetry operations

$$T_{x}|\Psi_{(\phi_{x},\phi_{y})}\rangle = e^{i\phi_{x}}|\Psi_{(\phi_{x},\phi_{y})}\rangle$$
$$T_{y}|\Psi_{(\phi_{x},\phi_{y})}\rangle = e^{i\phi_{y}}|\Psi_{(\phi_{x},\phi_{y})}\rangle$$
$$\phi_{x} \in [0,2\pi) \qquad \phi_{y} \in [0,2\pi)$$

The "phases" live in the reciprocal space

 2π $\vec{\phi} = (\phi_x, \phi_y) \in$ ϕ_y

Reciprocal space

The symmetry eigenvalues live in the "reciprocal space"

$$T_{x}|\Psi_{(\phi_{x},\phi_{y})}\rangle = e^{i\phi_{x}}|\Psi_{(\phi_{x},\phi_{y})}\rangle$$
$$T_{y}|\Psi_{(\phi_{x},\phi_{y})}\rangle = e^{i\phi_{y}}|\Psi_{(\phi_{x},\phi_{y})}\rangle$$

Effectively, the 2D reciprocal space is a torus (periodic boundary conditions)

Take home

- Symmetries allow to
 - Classify quantum matter
 - Simplify quantum problems
 - Solve single-particle models with translational symmetry
- Remember to submit the exercise by Friday 23:59 in MyCourses

In the next session

• How to predict macroscopic properties of crystals from microscopic models

