Band-structure theory

March 13th 2023

A reminder from session #2

One dimensional tight binding chain

The Hamiltonian commutes with the translation operator

 $\phi \in [0, 2\pi)$

 $T: c_i \to c_{i+1}$ [H, T] = 0 $T|\Psi_{\phi}\rangle = e^{i\phi}|\Psi_{\phi}\rangle$

 $\phi \equiv$ Bloch phase of the wavefunction

Today's learning outcomes

The spectra of non-interacting infinite periodic systems can be folded to a collection of finite systems

Today's plan

- Single band 1D band-structures
- Multi-band 1D band-structures
- Single band high dimensional band-structures
- Key properties of electronic dispersions
- ARPES

The physics of band-structures

Dirac fermions

Weyl semimetals

Topological insulators

Momentum

Artificial band-structures with cold-atoms

Atoms trapped with lasers allow to realize artificial band structures

Electronic band-structures

Atom #1

Atom #2

We will focus on the band-structures associated to electronic states

Band-structures in materials beyond electrons

Magnons

Phonons

BdG quasiparticles

Magnets

Any crystal

Superconductors

Single orbital band-structures

Basis of our Hamiltonian

Atomic orbital (non-orthogonal between different sites)

We will take as basis orthogonalized orbitals (Wannier states)

$$\langle n|n+1\rangle = 0$$
 $\int \Psi_n(\mathbf{r})\Psi_{n+1}^*(\mathbf{r})d^N\mathbf{r} = 0$

From the finite to the infinite limit

We take a periodic large system, and then the limit when the sites are infinite

A note on translational symmetry

For any generic wavefunction

$$\phi(x+a) = e^{i\hat{p}a}\phi(x)$$
 ·
Momentum $\hat{p} = -i\partial_x$

For a Bloch wavefunction

$$\Psi(x+a) = e^{i\phi}\Psi(x)$$

Taylor expansion

 $e^{i\phi}$ symmetry eigenvalue

- k Crystal momentum
- a lattice constant

$$e^{i\phi} \equiv e^{ika}$$

One dimensional band structure

We know that for an infinite 1D periodic system

$$H = \sum_{n} c_{n}^{\dagger} c_{n+1} + h.c.$$

The Hamiltonian is diagonalized as

$$H = \sum_{\phi} \epsilon_{\phi} \Psi_{\phi}^{\dagger} \Psi_{\phi} \qquad \qquad \Psi_{\phi}^{\dagger} \sim \sum_{n} e^{i\phi n} c_{n}^{\dagger} \qquad \qquad \langle \Psi_{\phi} | \Psi_{\phi'} \rangle = \delta_{\phi,\phi'}$$

How do we compute the Hamiltonian eigenvalues ϵ_{ϕ} ?

One dimensional band structure

One dimensional band structure

Hamiltonian 1D periodic system

$$H = \sum_{n} c_n^{\dagger} c_{n+1} + h.c.$$

$$H = \sum_{\phi} \epsilon_{\phi} \Psi_{\phi}^{\dagger} \Psi_{\phi}$$

 $\epsilon_{\phi} = 2\cos\phi$ - Electronic dispersion

$\phi \in [0, 2\pi)$

Bloch wavefunctions

$$\Psi_{\phi}^{\dagger} \sim \sum_{n} e^{i\phi n} c_{n}^{\dagger}$$

Question: one dimensional band-structure

What is the band-structure of the following Hamiltonian?

$\begin{array}{l} \text{Option A} \\ \epsilon_{\phi} = 2\cos\phi + 2\eta\cos2\phi \end{array}$

Option B $\epsilon_{\phi} = 2\cos\left(\phi + \eta\right)$

Question: one dimensional band-structure

What is the band-structure of the following Hamiltonian?

Solution: Option A $\epsilon_{\phi} = 2\cos\phi + 2\eta\cos 2\phi$

Multi-orbital band-structures

Multi-orbital band-structures

Multi-orbital band-structures

Intra-cell hoppings

Inter-cell hoppings

Multi-orbital band-structures

$$H = \sum_{n,\alpha,\beta} t_{\alpha\beta} c^{\dagger}_{\alpha,n} c_{\beta,n} + \sum_{n,\alpha,\beta} \gamma_{\alpha\beta} c^{\dagger}_{\alpha,n} c_{\beta,n+1} + h.c.$$

Unitary transformation

$$\Psi_{\phi,\alpha}^{\dagger} \sim \sum_{n,\beta} e^{i\phi n} U_{\alpha\beta} c_{n,\beta}^{\dagger} \qquad \qquad H = \sum_{\phi,\alpha} \epsilon_{\phi,\alpha} \Psi_{\phi,\alpha}^{\dagger} \Psi_{\phi,\alpha}$$

 $\epsilon_{\phi,\alpha}$ are the eigenvalues of the matrix $h(\phi) = t_{\mu\nu} + \gamma_{\mu\nu} e^{i\phi} + h.c.$

Question: one dimensional multi-orbital band-structure

What is the band-structure of the following Hamiltonian?

$$H = \sum_{i=-\infty}^{\infty} c_{A,i}^{\dagger} c_{B,i} + \eta c_{B,i}^{\dagger} c_{A,i+1} + h.c.$$

Option A $\epsilon_{\phi} = \pm |1 + \eta e^{-i\phi}|$

 $\begin{array}{l} \text{Option B} \\ \epsilon_{\phi} = 2\cos\phi + 2\eta\cos\phi \end{array}$

Question: one dimensional multi-orbital band-structure

What is the band-structure of the following Hamiltonian?

$$H = \sum_{i=-\infty}^{\infty} c_{A,i}^{\dagger} c_{B,i} + \eta c_{B,i}^{\dagger} c_{A,i+1} + h.c.$$
Solution: $h(\phi) = \begin{pmatrix} 0 & 1 + \eta e^{-i\phi} \\ 1 + \eta e^{i\phi} & 0 \end{pmatrix}$
Option A $\epsilon_{\phi} = \pm |1 + \eta e^{-i\phi}|$

Higher dimensional band-structures

Higher dimensional band-structures

 T_x Translation in x

Two possible symmetry operations

$$T_{x}|\Psi_{(\phi_{x},\phi_{y})}\rangle = e^{i\phi_{x}}|\Psi_{(\phi_{x},\phi_{y})}\rangle$$
$$T_{y}|\Psi_{(\phi_{x},\phi_{y})}\rangle = e^{i\phi_{y}}|\Psi_{(\phi_{x},\phi_{y})}\rangle$$
$$\phi_{x} \in [0,2\pi) \qquad \phi_{y} \in [0,2\pi)$$

The "phases" live in the reciprocal space

Reciprocal space

The phase is associated to the Bloch wavevector \vec{k}

$$\phi_x \equiv \vec{a}_1 \cdot \vec{k}$$

 $\phi_y \equiv \vec{a}_2 \cdot \vec{k}$

 $\vec{k}~$ Is a vector in the Brillouin zone

Two possible symmetry operations

$$T_{x}|\Psi_{(\phi_{x},\phi_{y})}\rangle = e^{i\phi_{x}}|\Psi_{(\phi_{x},\phi_{y})}\rangle$$
$$T_{y}|\Psi_{(\phi_{x},\phi_{y})}\rangle = e^{i\phi_{y}}|\Psi_{(\phi_{x},\phi_{y})}\rangle$$

$$\vec{\phi} = (\phi_x, \phi_y) \in \phi_y \begin{bmatrix} 2\pi \\ \phi_y \\ 0 \end{bmatrix}_{\phi_x = 2\pi}$$

Reciprocal space

The symmetry eigenvalues live in the "reciprocal space"

$$T_{x}|\Psi_{(\phi_{x},\phi_{y})}\rangle = e^{i\phi_{x}}|\Psi_{(\phi_{x},\phi_{y})}\rangle$$
$$T_{y}|\Psi_{(\phi_{x},\phi_{y})}\rangle = e^{i\phi_{y}}|\Psi_{(\phi_{x},\phi_{y})}\rangle$$

Effectively, the 2D reciprocal space is a torus (periodic boundary conditions)

Exercise: two-dimensional band-structure

What is the band-structure of a single orbital in a square lattice?

Exercise: two-dimensional band-structure

What is the band-structure of a single orbital in a square lattice?

$$H = \sum_{\langle ij \rangle} c_i^{\dagger} c_j$$

$$\epsilon(k) = 2\cos k_x + 2\cos k_y$$

Exercise: three-dimensional band-structure

What is the band-structure of a single orbital in a cubic lattice?

Exercise: three-dimensional band-structure

What is the band-structure of a single orbital in a cubic lattice?

 $\epsilon(k) = 2\cos k_x + 2\cos k_y + 2\cos k_z$

Macroscopic properties

Properties of the electronic dispersion

From now on, lets work with a specific electronic dispersion $\,\epsilon_{\vec{k}}\,$

Density of states
$$D(\omega) \sim \int \delta(\omega - \epsilon_{\vec{k}}) d^N \vec{k}$$

Group velocity

 $v_F = \frac{\partial \epsilon_{\vec{k}}}{\partial k_c}$

Effective mass

 $\frac{1}{m_{\alpha\beta}} = \frac{\partial^2 \epsilon_{\vec{k}}}{\partial k_{\alpha} \partial k_{\beta}}$

Fermi surface

$$\{\vec{k}\}$$
 with $\epsilon_{\vec{k}} = \epsilon_F$

Three important electronic dispersions

Effective free-electrons

Topology & relativistic physics

Quantum Hall Topology & correlations

Parabolic dispersion

 $\epsilon(k) \sim k^2$

Small k expansion

$$\epsilon(k) = 2t\cos ka \approx 2t \left[1 - \frac{k^2 a^2}{2} \right]$$

Conventional parabolic dispersion

Parabolic dispersion

Solving tight binding models

pyqula

from pyqula import geometry
g = geometry.honeycomb_lattice()
h = g.get_hamiltonian()
h.add_rashba(0.2) # Rashba spin-orbit coupling
h.add_zeeman([0.,0.,0.6]) # Zeeman field
from pyqula import topology
(kx,ky,omega) = h.get_berry_curvature() # compute Berry curvature
c = h.get_chern() # compute the Chern number

- Python library
- Ideal for complex models/calculations
- For writing in Python

https://github.com/joselado/pyqula

Quantum-lattice

- User-friendly interface for tight binding models
- Ideal for simple models and quick checks
- Fully interface-based, no scripting

https://github.com/joselado/quantum-lattice

Dirac dispersion

Honeycomb lattice

Dirac dispersion

Low energy Hamiltonian at K-points

$$H(k) = \begin{pmatrix} 0 & k_x + ik_y \\ k_x - ik_y & 0 \end{pmatrix}$$

Two-dimensional Dirac equation

 $\epsilon(k) = \pm \sqrt{k_x^2 + k_y^2}$

Dirac points

Flat bands

from pyqula import geometry
g = geometry.lieb_lattice() # create the lattice
h = g.get_hamiltonian() # get the tight binding Hamiltonian
(k,e) = h.get_bands() # get the band structure

Flat bands

Kagome lattice

from pyqula import geometry
g = geometry.kagome_lattice() # create the lattice
h = g.get_hamiltonian() # get the tight binding Hamiltonian
(k,e) = h.get_bands() # get the band structure

Measuring band structures

Angle-resolved photoemission spectroscopy

Angle-resolved photoemission spectroscopy (ARPES)

Angle-resolved photoemission spectroscopy

Measuring band-structures with ARPES

Measuring Fermi surfaces with ARPES

Take home

- The spectra of periodic system can be computed with bandstructure theory
- The electronic dispersion determines the electronic properties of a compound
- For the next session
 - Submit the exercise of this session by Friday 23:59