MS-C1081 – Abstract Algebra 2022–2023 (Period III) Milo Orlich – Rahinatou Njah Problem set 6

Deadline: Tue 21.2.2023 at 10am

During the exercise sessions you may work on the Warm-up problems, and the TAs will present solutions to those. Submit your solutions to Homework 1,2,3 on MyCourses before the deadline. Remember that the return box accepts a single pdf file.

Definitions. Let *R* be a ring.

- An element $a \in R \setminus \{0\}$ is called a *nilpotent* if there exists $n \in \mathbb{Z}_{>0}$ such that $a^n = 0$.
- If *R* has no nilpotents, *R* is called a *reduced ring*.
- Given an ideal $I \subseteq R$, the set $\sqrt{I} := \{r \in R \mid \exists_{n \in \mathbb{Z}_{>0}} r^n \in I\}$ is called the *radical of I*.
- An ideal $I \subseteq R$ such that $I = \sqrt{I}$ is called a *radical ideal*. (In commutative rings.)

Warm-ups

Read the definitions above before solving the following problem:

Warm-up 1. 1. Give examples of rings that are reduced and rings that are not.

- 2. Check that $I \subseteq \sqrt{I}$ for any ideal *I*.
- 3. In \mathbb{Z} , verify that the ideal (6) is a radical ideal, but (9) is not.
- 4. Let *R* be a commutative ring and let $I \subseteq R$ be an ideal. Show that \sqrt{I} is an ideal of *R*. *Hint:* In order to check that the sum of two elements of \sqrt{I} is still in \sqrt{I} , recall the binomial formula $(a + b)^n = \sum_{i=0}^n {n \choose i} a^i b^{n-i}$.
- **Warm-up 2** (Field extensions). 1. Is $\sqrt{2}+i$ algebraic over \mathbb{Q} ? If yes, what is the minimal polynomial of $\sqrt{2}+i$ over \mathbb{Q} ?
 - 2. We know the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} from the lectures. What is the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over $\mathbb{Q}[\sqrt{2}]$? And over $\mathbb{Q}[\sqrt{3}]$?

Homework

Read the definitions above the warm-ups before solving the following problem:

Homework 1. Let *R* be a commutative ring. Let $I \subseteq R$ be an ideal.

- 1. If *I* is a radical ideal, show that *R*/*I* is a reduced ring. [3 points]
- 2. If *R*/*I* is a reduced ring, show that *I* is a radical ideal. [3 points]

Hint: If you need inspiration, look at Proposition 4.74 of the lecture notes.

Homework 2. Let *R* be a commutative unital ring. Recall that every ring has at least the two *trivial* ideals (except for the zero ring, in which case these two ideals coincide).

Show that if *R* is a field, then *R* has exactly two ideals. [3 points]
Show that if *R* has exactly two ideals, then *R* is a field.

[3 points]

Hint: Use Proposition 4.74.

Homework 3. 1. Let $z \in \mathbb{C}$ be algebraic over \mathbb{Q} . Show that the complex conjugate \overline{z} is algebraic over \mathbb{Q} .

Hint. For any two given complex numbers z_1 and z_2 , recall that $\overline{z_1} + \overline{z_2} = \overline{z_1 + z_2}$ and $\overline{z_1} \overline{z_2} = \overline{(z_1 z_2)}$. [3 points]

2. Let $\gamma = \sqrt{1 + \sqrt{2}}$. Show that γ is algebraic over \mathbb{Q} , and that $\sqrt{2} \in \mathbb{Q}[\gamma]$. [3 points]

Fill-in-the-blanks. No proof this week. If you respond to the feedback survey, you will get three points. Thank you! [3 points]