
CS-E4890: Deep Learning

Introduction

Alexander Ilin

Teaching assistants

Taha Daolang Chen Bernard Trung Anni Linh
Heidari Huang Xu Spiegl Trinh Niskanen Hankio

Kalle Maxim Lukas Severi Sanna Nicola
Kujanpää Smirnov Prediger Rissanen Lun Dainese

1

Contact information

If you have question regarding the course, please send an email to

cs-e4890@aalto.fi

2

Pre-requisites

• Good knowledge of Python and numpy.

• Linear algebra: vectors, matrices, eigenvalues and eigenvectors.

• Basics of probability and statistics: sum rule, product rule, Bayes’ rule, expectation, mean,

variance, maximum likelihood, Kullback-Leibler divergence.

• Basics of machine learning (recommended): supervised and unsupervised learning, overfitting.

3

Course schedule

• Please study carefully the course schedule in MyCourses.

• 13 lectures: 12 + 1 guest lecture by Miika Aittala (NVIDIA)

• 11 assignments (the points are computed from 8 best)

• Exercise sessions for assignments 1–8 (no exercise sessions for assignments 9–11).

• No exam (there is a placeholder for the exam in SISU but no exam this year).

4

Communication channels

• Slack is the main communication channel: deeplearn23-aalto.slack.com

• Please ask questions about assignments in the dedicated channels.

• The teaching assistants (TAs) will look at slack regularly.

• Please read about the slack etiquette in file 0 rules.ipynb in the first assignment.

• By taking this course, you accept the following rules:

• You give permission for proctoring your submissions.

• Solution sharing is strictly not allowed before, during and after the course. That means that you are

not allowed to share your solutions (or any parts) via private channels and/or public repositories.

5

Course grading

• 5 credit points, 1-5 scale

• Grading is based on the number of points collected in eight best assignments. The grading rules

are explained in MyCourses.

• The course workload (5 credits) assumes solving eight assignments, the extra assignments give

you the possibility to improve your grade.

6

Assignments

• The assignments are released already.

• Please read very carefully the instructions in MyCourses.

• You can find the deadlines on the course schedule page in MyCourses.

• Strict deadlines, zero points for late submissions, no exceptions.

• The feedback is returned on the same week after the deadline.

• If you plan to be away, submit your solutions early, no need to wait until the deadline.

7

Exercise sessions

• The exercise sessions are organized to help you solve the assignments, you do not have to attend

them.

• There will be one Q&A session and three online exercise sessions for assignments 1–8, typically:

• Fridays 10:15-11:45 Q&A session (in person)

• Fridays 12:15-13:45 Exercise session 1 (zoom)

• Mondays 10:15-11:45 Exercise session 2 (zoom)

• Mondays 12:15-13:45 Exercise session 3 (zoom)

Note exceptions because of Easter.

• No exercise sessions for assignments 9–11!

• Please read carefully the protocol for the exercise sessions in MyCourses.

8

Course material

• We do not have special sessions on PyTorch, you should learn it by following PyTorch tutorials.

• If you know numpy (pre-requisite), PyTorch should be easy to learn.

• Deep learning frameworks develop very quickly, you need to learn new frameworks/features all the

time.

• If you need help with PyTorch please ask for assistance in the exercise sessions.

• The lectures will be recorded and will be available in MyCourses. Lecture notes are available at in

MyCourses.

• Lecture slides will be put to MyCourses before each lecture. Credit to people whose material I

used in the slides: Tapani Raiko, Kyunghyun Cho, Jyri Kivinen, Jorma Laaksonen, Antti

Keurulainen, Sebastian Björkqvist.

• Deep Learning book by Goodfellow, Bengio and Courville (2016).

9

http://www.deeplearningbook.org/

What is deep learning

Feature engineering

• Many machine learning tasks can be solved by designing the right set of features to extract for

that task:

Data → Feature engineering → Machine learning (e.g. classification)

• Examples:

• Spam detection: Useful features are counts of certain words.

• Line item extraction from invoices: Useful features to classify a number as a line item or not are

position on the invoice, words that appear in the proximity.

• Benefit of feature engineering: One can use domain knowledge to design features that are robust

(for example, invariant to certain distortions).

• What are the problems with feature engineering?

11

Feature engineering: Problem 1

• For many tasks, it is difficult to know what features should be

extracted.

• Example: We want to detect certain buildings in images

(two-dimensional maps of RGB values). What are useful

features?

• Manually designing features for a complex task requires a
great deal of human time and effort; it can take decades for
an entire community of researchers to design good features.

• Example: SIFT features in image classification.

12

Feature engineering: Problem 2

• Handcrafted features are not perfect. There are always examples that are not processed correctly,

which motivates engineering of new features.

Features

Classifier
Misclassified

examples

• Features can get very complex and difficult to maintain.

13

Representation learning

Data → Features (representation) → Classifier

• These problems can be overcome with representation learning: We use machine learning to

discover not only the mapping from representation to output but also the representation itself.

• A representation learning algorithm can discover a good set of features much faster (in days

instead of decades of efforts of an entire research community).

• Learned representations often result in much better performance compared to hand-designed

representations.

• With learned representations, AI systems can rapidly adapt to new tasks, with minimal human

intervention.

14

Deep learning = Learning hierarchical representations

• Deep learning does representation learning by introducing representations that are expressed in

terms of other, simpler representations.

Y LeCun
Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Feature visualization of convolutional net trained on ImageNet from (Zeiler and Fergus, 2013).

15

Deep learning = artificial neural networks

• Many ideas in deep learning models have been inspired by neuroscience:

• The basic idea of having many computational units that become intelligent only via their interactions

with each other is inspired by the brain.

• The neocognitron (Fukushima, 1980) introduced a powerful model architecture for processing images

that was inspired by the structure of the mammalian visual system and later became the basis for the

modern convolutional networks.

• The name “deep learning” was invented to

re-brand artificial neural networks which

became unpopular in 2000s.

• Modern deep learning: A more general

principle of learning multiple levels of

composition, which can be applied in machine

learning frameworks that are not necessarily

neurally inspired.
1940 1950 1960 1970 1980 1990 2000 2010 2020

McCulloch & Pitts
neuron (1943)

Perceptron
(Rosenblatt, 1958)

Backpropagation
(Rumelhart et al., 1986)

Deep belief networks
(Hinton et al., 2006)

AlexNet
(Krizhevsky et al., 2012)

Frequency of phrases ”cybernetics”, ”neural networks” and ”deep learning”

according to Google books.

16

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
https://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.2006.18.7.1527
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Imagenet: The beginning of the deep learning era

• Imagenet: Yearly competition in image classification with a thousand classes using a training set:

with millions of images.

• Krizhevsky, Sutskever and Hinton (2012) won the Imagenet competition by a large margin using a

deep convolutional neural network.

2011 2012 2013 2014 2015 2016 2017

2

4

8

16

32

AlexNet

VGG

ResNet

Human

17

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Deep learning improved results almost in every domain

1995 2000 2005 2010 2015
4

8

16

32

64

Human

Speech recognition (word error rate)

(Graves and Jaitly, 2014)

Neural machine translation

(Cho et al., 2014)

18

Linear classifiers

Logistic regression

• Consider a binary classification problem: Our training data

consist of examples (x(1), y (1)), ..., (x(n), y (n)) with x(i) ∈ Rm

y (i) ∈ {0, 1}.

• We use the training data to build a linear classifier

f (x) = σ

(
m∑
j=1

wjxj + b

)
= σ

(
w>x + b

)
where m is the number of features in x.

• Logistic regression model: σ(x) = 1
1+e−x is a logistic

function.

• Using the logistic function guarantees that the output is

between 0 and 1 and it can be seen as the probability that

x belongs to one of the classes: p(y = 1 | x) = f (x).

3 2 1 0 1 2 3

3

2

1

0

1

2

3

Training examples

Logistic function

20

Likelihood function for logistic regression model

• We can tune the model assuming the Bernoulli distribution for the label y :

p(y | x,w, b) = f (x)y (1− f (x))1−y where f (x) = σ
(

w>x + b
)

• For n training examples, the likelihood function is

p(data | w, b) =
n∏

i=1

p(y (i) | x(i),w, b)

where p(y (i) | x(i)) is a function of the model parameters w and b.

• This gives the following log-likelihood function:

F(w, b) = log p(data | w, b) =
n∑

i=1

y (i) log f (x(i)) + (1− y (i)) log(1− f (x(i)))

• We can either maximize the log-likelihood function F(w, b) or minimize the negative of that:

L(w, b) = −
n∑

i=1

y (i) log f (x(i)) + (1− y (i)) log(1− f (x(i)))

This loss function if often called binary cross entropy.

21

Toy binary classification problem

• Consider a toy binary classification problem with two parameters w1 and w2 (no bias term):

f (x) = σ (w1x1 + w2x2) σ(x) =
1

1 + e−x

The loss function in this toy example can be visualized using a contour plot.

3 2 1 0 1 2 3

3

2

1

0

1

2

3

Training examples

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
w1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

w
2

L(w1,w2) = −
n∑

i=1

y (i) log f (x(i)) + (1− y (i)) log(1− f (x(i)))

22

Gradient

• Gradient is a vector of partial derivatives:

g(w) =


∂L
∂w1

...
∂L
∂wM


• Gradient points in the direction of the greatest

rate of increase of L, its magnitude is the slope

of the graph of L in that direction.

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
w1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

w
2

23

Gradient descent

• Gradient descent: update the parameters in the

direction opposite to the gradient:

w← w − ηg(w)

with some step size η (also called learning rate).

• We reduce the error but do not end up at the

minimum, so we need to iterate

wt+1 = wt − ηtg(wt)

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
w1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

w
2

24

A historical note: First models of neurons

• First linear classifiers were proposed as a model of brain function by McCulloch and Pitts (1943).

McCulloch-Pitts neuron is a linear binary classifier for binary inputs xj ∈ {0, 1}

y = φ

(
m∑
j=1

wjxj + b

)
where φ(·) is a step function.

step function

• There was no training: Parameters wj , b were set by a human operator to produce correct outputs.

• Perceptron (Rosenblatt, 1958) was the first binary classifier which was trained using examples

(x(i), y (i)) x(i) ∈ Rm, y (i) ∈ {−1,+1}

• φ was the sign function.

• The training procedure was inspired by neuroscience (Donald Hebb’s rule).

If x(i) is misclassified, then the weights are updated:

w← w + y (i)x(i)

the weights between neurons whose activities are positively correlated are increased.

25

Linear classifiers cannot solve complex classification problems

• The problem with perceptrons: Since they are linear classifiers, they can solve a very limited set of

classification problems.

• They cannot separate linearly inseparable classes, for example, solve the XOR problem:

0 1

0

1

0

1

1

1

OR

0 1

0

1

0

0

0

1

AND

0 1

0

1 1

10

0

XOR

• This problem was emphasized in the influential book “Perceptrons” by Minsky and Papert (1969).

They argued that more complex (nonlinear) problems have to be solved with multiple layers of

perceptrons (what we now call multilayer neural nets).

26

Multilayer perceptrons

Solving the XOR problem

• The XOR problem can be solved with multiple

layers of perceptrons (neurons).

• One neuron can linearly separate the input

space as shown on the figure.

• We can add another neuron h2 which can do

another kind of separation of the input space.

• Now we mapped original two-dimensional data

into a new two-dimensional space where linear

separation is possible.

• Adding another neuron y on top of neurons h1

and h2 solves the classification problem.

x1

x2

h1

0

1

1

0

h2

0

1

1

0

0

1

1

0 0

0

1

y

28

Solving the XOR problem

• The XOR problem can be solved with multiple

layers of perceptrons (neurons).

• One neuron can linearly separate the input

space as shown on the figure.

• We can add another neuron h2 which can do

another kind of separation of the input space.

• Now we mapped original two-dimensional data

into a new two-dimensional space where linear

separation is possible.

• Adding another neuron y on top of neurons h1

and h2 solves the classification problem.

x1

x2

h1

0

1

1

0

h2

0

1

1

0

0

1

1

0 0

0

1

y

28

Solving the XOR problem

• The XOR problem can be solved with multiple

layers of perceptrons (neurons).

• One neuron can linearly separate the input

space as shown on the figure.

• We can add another neuron h2 which can do

another kind of separation of the input space.

• Now we mapped original two-dimensional data

into a new two-dimensional space where linear

separation is possible.

• Adding another neuron y on top of neurons h1

and h2 solves the classification problem.

x1

x2

h1

0

1

1

0

h2

0

1

1

0

0

1

1

0 0

0

1

y

28

Solving the XOR problem

• The XOR problem can be solved with multiple

layers of perceptrons (neurons).

• One neuron can linearly separate the input

space as shown on the figure.

• We can add another neuron h2 which can do

another kind of separation of the input space.

• Now we mapped original two-dimensional data

into a new two-dimensional space where linear

separation is possible.

• Adding another neuron y on top of neurons h1

and h2 solves the classification problem.

x1

x2

h1

0

1

1

0

h2

0

1

1

0

0

1

1

0 0

0

1

y

28

Multilayer perceptrons

• Now we have a network with two layers of neurons:

hidden layer h1, h2 and output layer y .

• A neural network with this architecture is called a

multilayer perceptron (MLP).

x1

x2

h1

h2

y

input layer hidden layer output layer

29

Multilayer perceptrons

• An MLP can of course have more layers

and many more neurons.

• Each neuron implements a function

y = φ

(
m∑
j=1

wjxj + b

)
= φ

(
w>x + b

)
which resembles a simple linear classifier

that we considered before.

• The layers in an MLP are called

fully-connected because each neuron is

connected to each neuron in the previous

layer.

x1

x2

x3

input layer

hidden layer 1

hidden layer 2

y

output layer

30

Multilayer perceptrons

• A more compact style: A node in the graph corresponds to an entire layer.

x1 x2 x3 input layer

hidden layer 1

hidden layer 2

y output layer

input x

h1 = φ(W1x + b1)

h2 = φ(W2h1 + b2)

y = ψ(W3h2 + b3)

31

Activation functions

tanh(x) σ(x) = 1/(1 + e−x) relu(x) = max(0, x)

• Nonlinearities used after an affine transformation of inputs are often called activation functions.

• Nonlinearities used before 2010: tanh(x) and σ(x) = 1/(1 + e−x).

• Since 2010, relu(z) = max(0, z) is very popular.

32

What if one does not use any nonlinearity?

• What if one does not use any nonlinearity?

• The identity activation function would lead to:

h2 = W2h1 + b2 = W2(W1x + b1) + b2

= (W2W1)x + (W2b1 + b2) = W′x + b′

Thus, we get a linear model.

input x

h1 = φ(W1x + b1)

h2 = φ(W2h1 + b2)

33

What if one does not use any nonlinearity?

• What if one does not use any nonlinearity?

• The identity activation function would lead to:

h2 = W2h1 + b2 = W2(W1x + b1) + b2

= (W2W1)x + (W2b1 + b2) = W′x + b′

Thus, we get a linear model. input x

h1 = φ(W1x + b1)

h2 = φ(W2h1 + b2)

33

Training of multilayer perceptrons

• Our neural network represents a function which is composed

of several functions:

f (x) = f3(f2(f1(x,θ1),θ2),θ3)

• If we solve a binary classification problem, we can use the

same loss function that we used before:

L(θ) = −
n∑

i=1

y (i) log f (x(i)) + (1− y (i)) log(1− f (x(i))) input x

h1 = φ(W1x + b1) f1(·,θ1)

h2 = φ(W2h1 + b2) f2(·,θ2)

ψ(W3h2 + b3) f3(·,θ3)

• Again, we can tune the parameters θk of the classifier by maximizing the log-likelihood, for

example, using gradient descent:

θk ← θk − η
∂L
∂θk

.

34

A historical note on multilayer perceptrons

• The idea of using multilayer perceptrons for solving nonlinear classification problems existed

already in the 1960s (Minsky and Papert, 1969). However, no one knew how to train multilayer

perceptrons. Rosenblatt’s learning algorithm did not work for multiple layers.

• How to train MLP networks was well understood only in the mid 80s after an influential paper by

Rumelhart, Hinton and Williams (1986). Specifically, they showed how to compute the gradients
∂L
∂θ

wrt network parameters efficiently using the backpropagation algorithm.

• Backpropagation is basically the application of the chain rule of differentiation to models with

multiple layers. It was proposed by several researchers even earlier (Linnainmaa, 1970; Werbos, 1982)

but became popular after the 1986 paper.

35

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf

The backpropagation algorithm

Gradient descent for training deep neural networks

• Our multilayer neural network represents a function which is

composed of several functions:

f (x) = f3(f2(f1(x,θ1),θ2),θ3)

• We want to use gradient-descent optimization method to

minimize loss function L(θ):

θt+1 = θt − ηtg(θt)

• In order to do that, we need to compute the gradient g(θ) of

the loss function.

• Parameters θ include W1, b1, W2, b2, W3, b3.

input x

h1 = φ(W1x + b1) f1(·,θ1)

h2 = φ(W2h1 + b2) f2(·,θ2)

y = ψ(W3h2 + b3) f3(·,θ3)

L(y)

• Backpropagation: An algorithm to compute the gradient of a loss for a multilayer model.

37

Chain rule

• The chain rule is a formula to compute the derivative of a composite function:

F (x) = f (g(x))

F ′(x) = f ′(g(x))g ′(x)

38

Backpropagation: An example with scalars

• Consider a multi-layer model that operates only with scalars:

L = L(y), y = f2(h, θ), h = f1(x ,w)

• We can compute the derivatives wrt the model parameters θ and w using the chain rule.

∂L
∂θ

=
∂L
∂y

∂y

∂θ

∂L
∂w

=
∂L
∂y

∂y

∂h︸ ︷︷ ︸
∂L
∂h

∂h

∂w
x f1 f2 L

w θ

h y

∂L
∂y

∂L
∂h

∂L
∂θ

∂L
∂w

• We can compute the derivatives efficiently by storing intermediate results.

39

Backpropagation: An example with scalars

• Consider a multi-layer model that operates only with scalars:

L = L(y), y = f2(h, θ), h = f1(x ,w)

• We can compute the derivatives wrt the model parameters θ and w using the chain rule.

∂L
∂θ

=
∂L
∂y

∂y

∂θ

∂L
∂w

=
∂L
∂y

∂y

∂h︸ ︷︷ ︸
∂L
∂h

∂h

∂w
x f1 f2 L

w θ

h y

∂L
∂y

∂L
∂h

∂L
∂θ

∂L
∂w

• We can compute the derivatives efficiently by storing intermediate results.

39

Backpropagation: An example with scalars

• Consider a multi-layer model that operates only with scalars:

L = L(y), y = f2(h, θ), h = f1(x ,w)

• We can compute the derivatives wrt the model parameters θ and w using the chain rule.

∂L
∂θ

=
∂L
∂y

∂y

∂θ

∂L
∂w

=
∂L
∂y

∂y

∂h︸ ︷︷ ︸
∂L
∂h

∂h

∂w
x f1 f2 L

w θ

h y

∂L
∂y

∂L
∂h

∂L
∂θ

∂L
∂w

• We can compute the derivatives efficiently by storing intermediate results.

39

Backpropagation: An example with scalars

• Consider a multi-layer model that operates only with scalars:

L = L(y), y = f2(h, θ), h = f1(x ,w)

• We can compute the derivatives wrt the model parameters θ and w using the chain rule.

∂L
∂θ

=
∂L
∂y

∂y

∂θ

∂L
∂w

=
∂L
∂y

∂y

∂h︸ ︷︷ ︸
∂L
∂h

∂h

∂w
x f1 f2 L

w θ

h y

∂L
∂y

∂L
∂h

∂L
∂θ

∂L
∂w

• We can compute the derivatives efficiently by storing intermediate results.

39

Chain rule for multi-variable functions

• For multi-variable functions, the chain rule can be written in terms of Jacobian matrices.

y = f (u), u = g(x) y ∈ RM , u ∈ RK , x ∈ RN

Jacobian matrix: Jf ◦g =


∂y1
∂x1

· · · ∂y1
∂xN

...
. . .

...
∂yM
∂x1

· · · ∂yM
∂xN


• The chain rule is:

Jf ◦g (x) = Jf (u)Jg (x)

or each element of the Jacobian is:

∂yj
∂xi

=
K∑

k=1

∂yj
∂uk

∂uk
∂xi

40

Backpropagation for multi-variable functions

• Consider a multi-layer model:

L = L(y), y = f2(h,θ), h = f1(x,w) y ∈ RK , h ∈ RL, x ∈ RN

• We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

∂L
∂θj

=
K∑

k=1

∂L
∂yk

∂yk
∂θj

∂L
∂hl

=
K∑

k=1

∂L
∂yk

∂yk
∂hl

∂L
∂wi

=
L∑

l=1

∂L
∂hl

∂hl
∂wi

x f1 f2 L

w θ

h y

∂L
∂yk

∂L
∂hl

∂L
∂θj

∂L
∂wi

• We can compute the derivatives sequentially going from the outputs of the network towards the

inputs (thus the name of the algorithm backpropagation).

41

Backpropagation for multi-variable functions

• Consider a multi-layer model:

L = L(y), y = f2(h,θ), h = f1(x,w) y ∈ RK , h ∈ RL, x ∈ RN

• We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

∂L
∂θj

=
K∑

k=1

∂L
∂yk

∂yk
∂θj

∂L
∂hl

=
K∑

k=1

∂L
∂yk

∂yk
∂hl

∂L
∂wi

=
L∑

l=1

∂L
∂hl

∂hl
∂wi

x f1 f2 L

w θ

h y

∂L
∂yk

∂L
∂hl

∂L
∂θj

∂L
∂wi

• We can compute the derivatives sequentially going from the outputs of the network towards the

inputs (thus the name of the algorithm backpropagation).

41

Backpropagation for multi-variable functions

• Consider a multi-layer model:

L = L(y), y = f2(h,θ), h = f1(x,w) y ∈ RK , h ∈ RL, x ∈ RN

• We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

∂L
∂θj

=
K∑

k=1

∂L
∂yk

∂yk
∂θj

∂L
∂hl

=
K∑

k=1

∂L
∂yk

∂yk
∂hl

∂L
∂wi

=
L∑

l=1

∂L
∂hl

∂hl
∂wi

x f1 f2 L

w θ

h y

∂L
∂yk

∂L
∂hl

∂L
∂θj

∂L
∂wi

• We can compute the derivatives sequentially going from the outputs of the network towards the

inputs (thus the name of the algorithm backpropagation).

41

Backpropagation for multi-variable functions

• Consider a multi-layer model:

L = L(y), y = f2(h,θ), h = f1(x,w) y ∈ RK , h ∈ RL, x ∈ RN

• We apply the chain rule to compute the derivatives wrt the model parameters (and re-use

intermediate derivatives):

∂L
∂θj

=
K∑

k=1

∂L
∂yk

∂yk
∂θj

∂L
∂hl

=
K∑

k=1

∂L
∂yk

∂yk
∂hl

∂L
∂wi

=
L∑

l=1

∂L
∂hl

∂hl
∂wi

x f1 f2 L

w θ

h y

∂L
∂yk

∂L
∂hl

∂L
∂θj

∂L
∂wi

• We can compute the derivatives sequentially going from the outputs of the network towards the

inputs (thus the name of the algorithm backpropagation).

41

Implementing backpropagation in software

• For each block of a neural network, we need to implement the following computations:

• forward computations y = f (x,θ)

• backward computations that transform the derivatives wrt the block’s outputs ∂L
∂yk

into the

derivatives wrt all its inputs: ∂L
∂xl

, ∂L
∂θj

∂L
∂θj

=
K∑

k=1

∂L
∂yk

∂yk
∂θj

∂L
∂xl

=
K∑

k=1

∂L
∂yk

∂yk
∂xl f

θ

x y

∂L
∂yk

∂L
∂xl

∂L
∂θj

• We will practice implementing forward and backward computations in the first assignment.

42

PyTorch

• PyTorch is a programming framework which allows you to create complex multilayer models

without the need to implement the optimization procedure. Backpropagation is already

implemented in the framework.

import torch

mlp = nn.Sequential(

nn.Linear(3, 10),

nn.ReLU(),

nn.Linear(10, 1),

)

optimizer = torch.optim.SGD(mlp.parameters(), lr=0.01)

for i in range(100):

optimizer.zero_grad()

Compute loss

y = mlp(x)

loss = loss_fn(y, targets)

Compute gradient by backpropagation

loss.backward()

Update model parameters

optimizer.step()

x L
y

43

Deep vs shallow networks

Deep vs shallow networks

• Modern neural networks have many layers. For example, convolutional neural network for

computer vision tasks can have more than 100 layers.

• During the second wave, the neural networks

were not very deep, only with two-three

hidden layers.

• Deeper networks did not provide better

performance.

• There were no theoretical results that deep

networks have better representational

power.
1940 1950 1960 1970 1980 1990 2000 2010 2020

Perceptron
(Rosenblatt, 1958)

convolutional neural networks
(LeCun et al., 1989)

Backpropagation
(Rumelhart et al., 1986)

Deep belief networks
(Hinton et al., 2006)

Frequency of phrases ”cybernetics”, ”neural networks” and ”deep learning”

according to Google books.

• Universal approximation theorem (Cybenko, 1989): a feed-forward network with a single hidden

layer containing a finite number of neurons can approximate any well-behaved function with any

given accuracy.

45

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
https://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.2006.18.7.1527
https://en.wikipedia.org/wiki/Universal_approximation_theorem

Deep networks have greater representational power

• A multilayer perceptron with relu nonlinearity implements a

piece-wise linear function.

• Suppose that we have an MLP with n inputs and relu

nonlinearities.

• If the network contains a single layer model with Lm hidden

units, then the number of regions behaves as O(Lnmn)

(Pascanu et al., 2013).

• If the network contains L hidden layers of width m ≥ n, the

model can compute functions that have Ω((m/n)(L−1)nmn)

linear regions (Montúfar et al., 2014).

6 4 2 0 2 4 6
7

6

5

4

3

2

• This result suggests that the number of linear regions grows much faster in a deep neural network

compared to a shallow one.

46

https://arxiv.org/abs/1312.6098
https://papers.nips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

Deep networks have greater representational power

• Theory (see, e.g., Poggio et al., 2019): Both shallow and

deep networks can approximate arbitrarily well any

continuous function Rn → R on a compact domain with the

expense of an exponential (wrt n) number of parameters.

• However, if the approximated function f is a hierarchical

composition of local functions, then deep networks of the

convolutional type can have a linear dependence on n unlike

shallow networks which have exponential dependence.
assumed compositional structure of f

47

https://arxiv.org/abs/1908.09375

Deeper models seem to perform better

• Practice: increasing the number of parameters in layers without increasing their depth is not

nearly as effective at increasing test set performance:

• Example: Multi-digit number recognition from Street View imagery using deep convolutional

neural networks (Goodfellow et al., 2014)

• Shallow models overfit at around 20 million

parameters while deep ones can benefit from

having over 60 million parameters.

• Deep models have an inductive bias that a modeled function should consist of many simpler

functions composed together. This assumption turns out to work very well.

48

Finland has been strong in

neural networks research

Finland has been strong in neural networks research

• Kohonen (1981): Self-organizing maps

• Oja (1982): Neural principal component

analysis

• Oja (1991): Bottleneck autoencoder

• Hyvärinen and Oja (1997): Fast algorithms

for independent component analysis

(FastICA)

Teuvo Kohonen Erkki Oja

• Valpola and Honkela (2000): Predecessor model of variational autoencoders

• Kyunghyun Cho (GRU, NMT) was a Macadamia student, did his PhD in deep learning in Aalto.

50

Self-organizing map (SOM) (Kohonen, 1981)

• Unsupervised learning method that can be used, for example, for

data visualization.

• Data samples x(i) are mapped to a grid of neurons wk arranged in

a 2D square or hexagonal grid.

w1 w2

wK

SOM square grid• Training procedure:

• Take a training sample x(i) and select the neuron whose weight vector wk has the shortest Euclidean

distance to x(i).

• The weight vectors of the winning neuron and the neurons in its neighborhood are updated:

wj ← wj + η(j , k)
(

x(i) − wj

)
where η(j , k) is the neighborhood function which depends on the distance on the grid.

51

Self-organizing map (SOM)

• SOM can be used as a data visualization tool.

• Data: x(i) is a collection of votes by one member of Congress, each vote is yes/no/abstain.

52

Home assignments

Assignment 01 mlp (deadline 09.03 Wed 23:00)

x1 x2 x3 input layer

hidden layer 1

hidden layer 2

y output layer

input x

h1 = φ(W1x + b1)

h2 = φ(W2h1 + b2)

y = ψ(W3h2 + b3)

1. Implement the backpropagation algorithm and train a multilayer perceptron (MLP) in numpy.

2. Implement and train a multilayer perceptron in PyTorch.

54

Next lecture

• Next lecture: this Thursday (02.03) at 14:15 in A-sali (Aalto-sali) - Y202a in the Undergraduate

centre.

55

Recommended reading

• Sections 1, 6.1–6.4 of the deep learning book.

• A. Kurenkov. A ’Brief’ History of Neural Nets and Deep Learning.

56

http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/

