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What did deep learning start only in 2010-2012?

• Many components of deep learning have been invented long time ago. Why did deep learning

start only in 2010-2012?

• Geoff Hinton gave four reasons for that:

• Our labeled datasets were thousands

of times too small.

• Our computers were millions of times too slow.

• We initialized the weights in a stupid way.

• We used the wrong type of non-linearity. 1940 1950 1960 1970 1980 1990 2000 2010 2020

Perceptron
(Rosenblatt, 1958)

convolutional neural networks
(LeCun et al., 1989)

Backpropagation
(Rumelhart et al., 1986)

Frequency of phrases ”cybernetics”, ”neural networks” and ”deep learning”

according to Google books.

• Training of deep neural network is a non-trivial optimization problem which requires multiple

tricks: input normalization, weight initialization, mini-batch training (stochastic gradient descent),

improved optimizers, batch normalization.
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Loss functions



Supervised learning problems

• In this lecture, we will study how to train a neural network to

produce desired output y for a given input x.

• The network is trained using a set of training examples:

{(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))}

We change the values of the network parameters to fit to the

training data.

• Two most common tasks of supervised learning:

• classification: the output is discrete (class label)

• regression: the output a vector of real numbers

input x

h1 = φ(W1x + b1)

h2 = φ(W2h1 + b2)

y = ψ(W3h2 + b3)
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Classification problems: One-hot encoding of targets

• Classification tasks: a target can be represented as a one-hot vector y.

yj ∈ {0, 1}
K∑
j=1

yj = 1

• For example, for K = 3 classes:

class 1: y =

1

0

0

 class 2: y =

0

1

0

 class 3: y =

0

0

1


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Classification problems: Model outputs

• We want our neural network network to produce as output vector f whose j-th element fj is the

probability that input x belongs to class j .

• For example, for K = 3 classes, the output of our model is

f(x) =

f1f2
f3

 f1 is the probability that x belongs to class 1

f2 is the probability that x belongs to class 2

f3 is the probability that x belongs to class 3

• Thus, we need to make sure that:

0 ≤ fj ≤ 1
K∑
j=1

fj = 1

• Suppose that h is the output of the last linear layer, for example, for K = 3:

h =

h1

h2

h3


and vector h does not satisfy the desired conditions.
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Classification problems: softmax nonlinearity

• We can transform h using the following function:

fj =
exp hj∑K

j′=1 exp hj′

which guarantees that fj can be treated as probabilities because

0 ≤ fj ≤ 1
K∑
j=1

fj = 1

• This nonlinearity is called softmax.

• If one of the elements hj is much larger than the rest of the elements:

hj � hi , i 6= j

then f ≈ [0, ..., 0, 1, 0, ..., 0], which is a one-hot representation of j , the index of the maximum

element of h.

6



Classification problems: Cross-entropy loss

• For one-hot encoded targets y, it is common to tune the parameters of classifier f(x,θ) by minimizing the

following loss function:

L(θ) = −
1

N

N∑
n=1

K∑
j=1

y
(n)
j log fj (x(n),θ)

thus we maximize the probability of the correct class (there is one non-negative y
(n)
j for each example x(n)).

• This loss L is usually called cross-entropy loss in popular frameworks such as PyTorch. The loss can be

seen as the cross-entropy between the distribution defined by targets y(n) and the distribution f(x(n),θ)

defined by the output of the network.

• The loss is the negative log-likelihood for a probabilistic model with a categorical (also called multinoulli)

distribution for y whose parameters are given by f(x,θ).
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Regression problems: Mean-squared error loss

• Regression tasks: targets are y(n) ∈ RK .

• We can tune the parameters of the network by minimizing the mean-squared error (MSE):

L(θ) =
1

Nny

N∑
n=1

ny∑
j=1

(
y

(n)
j − fj(x(n),θ)

)2

,

where y
(n)
j is the j-th element of y(n), fj is the j-th element of the network output f(x,θ),

ny is the number of elements in y(n),

N is the number of training samples.

• In the probabilistic view, the minimized function is the negative log-likelihood of the following

probability distribution:

p(y | x,θ) = N (y | f(x,θ), σ2I) .
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Analysis of convergence

of gradient descent



Toy example

• Consider a linear regression problem with two inputs (no bias term for simplicity):

f (x,w) = w>x = w1x1 + w2x2

• We have a data set with two examples:

x(1) = (2, 2), y (1) = 2 x(2) = (2, 0), y (2) = 0

• We use the mean-squared error (MSE) loss:

L(w) =
1

2

2∑
n=1

(
y (n) − f (x(n),w)

)2

which is a quadratic function, written in the matrix form:

L(w) =
1

2
w>Aw − b>w
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Toy example: optimization landscape

• Quadratic loss for our toy problem:

L(w) =
1

2
w>Aw − b>w

• The contour plot of our loss function contains ellipses

concentrated around the global minimum w∗.

• The axes of the ellipses are determined by the eigenvectors of

matrix A.

• The eigenvalues λm of A determine the curvature of the

objective function: Larger λm correspond to higher curvatures

in the corresponding direction.
2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5

w1

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

w
2

w∗

11



Effect of learning rate

• Suppose that we use gradient descent to find the minimum of the loss:

θt+1 = θt − ηg(θt)

• The learning rate η has a major effect on the convergence of the gradient descent.
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Analysis of convergence of gradient descent

• Because our loss is a quadratic function

L(w) =
1

2
w>Aw − b>w

we can analyze (Goh, 2017):

- how to select the learning rate optimally

- how quickly the gradient descent converges with the optimal

learning rate.
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Analysis of convergence of gradient descent

loss: L(w) =
1

2
w>Aw − b>w

gradient: g(w) = Awt − b

gradient descent iterations: wt+1 = wt − η(Awt − b)

• Let us change the coordinate system such that the new basis is aligned

with the eigenvectors of A.

• We compute the eigenvalue decomposition of A:

A = Q diag(λ1, . . . , λM)Q>

where Q is an orthogonal matrix and λm are ordered eigenvalues

λ1 ≤ λ2 ≤ ... ≤ λM .

• Then we use Q to rotate the coordinate system:

z = Q>(w − w∗)

w = w∗ + Qz
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Analysis of convergence of gradient descent

• Change of basis: z = Q>(w − w∗) and w = w∗ + Qz

• Gradient descent in the new coordinates:

zt+1 = Q>(wt+1 − w∗) = Q>(wt − η(Awt − b)− w∗)

= Q>(Qzt − η(A(w∗ + Qzt)− b))

= Q>(Qzt − η(b + AQzt − b))

= zt − ηQ>AQzt = zt − η diag(λ1, . . . , λM)zt

• In the new coordinate system, we can write the update equation

separately for each element of z:

(zm)t+1 = (zm)t − ηλm(zm)t = (1− ηλm)(zm)t
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Analysis of convergence of gradient descent

• Gradient descent for the m-th element of z:

(zm)t+1 = (1− ηλm)(zm)t

• Since the optimum z∗ = 0, the rate of convergence of zm (see, e.g, here) is defined by

rate(η) =
|(zm)t+1|
|(zm)t |

= |1− ηλm|

• for convergence: |1− ηλm| < 1

• ideally: |1− ηλm| = 0

This suggests that in order to achieve the best convergence in coordinate zm, we need to set the

learning rate to η = 1
λm

. The problem is that the optimal values of the learning rate is different for the

different coordinates of z and therefore a value of η that leads to good convergence in one coordinate

can cause slow convergence in another coordinate.
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Analysis of convergence of gradient descent

• The overall convergence rate is determined by the slowest component (either λ1 or λM):

rate(η) = max
m
|1− ηλm|

= max {|1− ηλ1|, |1− ηλM |}

λ

|1− ηλ|

1

λ1
λ1+λM

2
λM

• This overall rate is minimized when the rates for λ1 and λM are the same, which is true for the

learning rate

η∗ =

(
λ1 + λM

2

)−1
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Analysis of convergence of gradient descent

• The rate of convergence for the optimal learning rate is

rate(η∗) =

∣∣∣∣∣1−
(
λ1 + λM

2

)−1

λ1

∣∣∣∣∣ =

∣∣∣∣λ1 + λM − 2λ1

λ1 + λM

∣∣∣∣
=
λM − λ1

λM + λ1
=
λM/λ1 − 1

λM/λ1 + 1

=
κ(A)− 1

κ(A) + 1

where κ(A) = λM
λ1

is the condition number of matrix A.

• κ(A) is a measure of how close to singular matrix A is.

• For our optimization problem: κ(A) is a measure of how poorly

gradient descent will perform.
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Convergence of gradient descent

For quadratic loss: L(w) =
1

2
w>Aw − b>w

• The optimal learning rate depends on the curvature of the loss.

• The loss has different curvatures in different directions. We need

to choose a single value of the learning rate to balance the

convergence speeds in different directions.

• If we select the learning rate optimally, the rate of convergence of

the gradient descent is determined by the condition number of

matrix A:

rate(η∗) =
κ(A)− 1

κ(A) + 1

rate(η∗) = 0: convergence in one step

rate(η∗) = 1: no convergence.
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Quadratic approximation

• For non-quadratic functions, the error surface locally is well approximated by a quadratic function:

L(w) ≈ L(wt) + g>(w − wt) +
1

2
(w − wt)

>H(w − wt)

• H is the matrix of second-order derivatives (called Hessian):

H =


∂2L

∂w1∂w1
· · · ∂2L

∂w1∂wM

...
. . .

...
∂2L

∂wM∂w1
· · · ∂2L

∂wM∂wM


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• What is the Hessian matrix for the quadratic loss L(w) = 1
2
w>Aw − b>w?

• H = A: the convergence of the gradient descent is affected by the properties of the Hessian.
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On Hessian matrix

• The eigenvalues of H determine the curvature of the objective

function: Larger λ correspond to higher curvatures in the

corresponding direction.

• We can check whether a critical point w∗ (a point with zero

gradient) is a saddle point, a maximum or a minimum:

• if all eigenvalues of H are positive: w∗ is local minimum

• if all eigenvalues of H are negative: w∗ is local maximum

• if H has both positive and negative eigenvalues: w∗ is a saddle
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Input normalization



Simple example: Linear regression

• Consider solving a linear regression problem (no bias term) with gradient descent

L(w) =
1

2N

N∑
n=1

(
yn − w>xn

)2

• We know that the convergence of the gradient descent is determined by the properties of the

Hessian matrix. Let us compute the Hessian matrix:

∇wL =
2

2N

N∑
n=1

(
yn − w>xn

)
(−xn) =

1

N

N∑
n=1

xnx>n w − 1

N

N∑
n=1

ynxn

H =
1

N

N∑
n=1

xnx>n = Cx

• We can see that the Hessian is equal to the second order moment of the data (which is equal to

the covariance matrix of the inputs if inputs have zero mean).

23



Input normalization

• Liner regression: For fastest convergence, the covariance matrix of the inputs should be the

identity matrix H = Cx = I.

• We can achieve this by decorrelating the input components (whitening) using principal component

analysis (PCA):

xPCA = D−1/2E>(x− µ)

where EDE> is the eigenvalue decomposition of the covariance matrix of x.

• Multilayer neural networks are nonlinear models but normalizing the inputs usually improves
convergence as well.

• Simple: Centering+scaling to unit variance of all inputs (so that each component xi has zero mean

and unit variance).

• More advanced: ZCA (when we want the whitened signals to be close to the original ones)

xZCA = ED−1/2E>(x− µ)
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Weight initialization



Initialization of weights in a linear layer

• Let us consider a linear layer

x1

...

xNx

yi =
∑Nx

j=1 wijxj

y1

...

yNy

• It makes sense to initialize weights with random values. For example, we can draw the initial

values of the weights from some distribution p(w) with zero mean 〈w〉 = 0.
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Variance of signals in the forward computations

x1

...

xNx

yi =
∑Nx

j=1 wijxj

y1

...

yNy

〈var xj〉 = 1 〈var yi 〉 = Nx varw

• Suppose that the inputs xj are normalized to have zero mean and unit variance and they are also

uncorrelated. Then, the variance of the output signals is

var yi =

Nx∑
j=1

w 2
ij var xj =

Nx∑
j=1

w 2
ij

• Its expectation under the weight (initial) distribution is

〈var yi 〉 =

Nx∑
j=1

〈
w 2

ij

〉
= Nx varw

where varw is the variance of the initial weight values.
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Variance of signals in the forward computations

x1

...

xNx

wij ∼ p(w)

〈w〉 = 0

y1

...

yNy

〈var xj〉 = 1 〈var yi 〉 = Nx varw

• The variance of yi can grow (become larger than the variance of the inputs) or decrease

depending on Nx and the values of the weights (determined by varw).

• When we stack multiple layers on top of each other: The variance can grow/decay quickly if the

weights are too large/small.

• It is a good idea to keep the variance at a constant level: 〈var yi 〉 = 〈var xj〉 = 1, which means

that we should select the distribution p(w) such that the variance varw of the weights is equal to

vf =
1

Nx
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Variance of signals in the backward computations

• How about the variance of signals in the backpropagation phase?

• Let us assume that the inputs of the block ∂L
∂yi

in the backward phase are also uncorrrelated and

have unit variance:
∂L
∂x1

...

∂L
∂xNx

wij ∼ p(w)

〈w〉 = 0

∂L
∂y1

...

∂L
∂yNy

〈
var ∂L

∂xj

〉
= Ny varw var ∂L

∂yi
= 1

• With similar arguments, the expected variance of the outputs is〈
var

∂L
∂xj

〉
= Ny varw

which means that the gradients can vanish if the initial values of the weights are too small.

• If we want to keep the variance at a constant level, p(w) should be such that the variance varw

of the initial weight values is equal to

vb =
1

Ny
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Xavier’s initialization

• To keep the balance between the forward and backward variances, Glorot and Bengio (2010)

proposed to use weight distribution p(w) such that varw is the harmonic mean of vf and vb:

varw =

(
1/vf + 1/vb

2

)−1

=
2

Nx + Ny

• If p(w) is a uniform distribution wij ∼ U [−∆,∆], the variance of the weights is

varw =
〈
w 2

ij

〉
=

∫ ∆

−∆

w 2
ij p(wij)dwij =

∫ ∆

−∆

w 2
ij

1

2∆
dwij = 2

∆3

3

1

2∆
=

∆2

3

• The proposed scheme is then

wij ∼ U

[
−

√
6√

Nx + Ny

,

√
6√

Nx + Ny

]

which is perhaps the most popular intialization scheme (called Xavier’s initialization).
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Mini-batch training

(stochastic gradient descent)



Mini-batch training

• The cost function contains N terms corresponding to the training samples, for example:

L(θ) =
1

N

N∑
n=1

∥∥∥y(n) − f(x(n),θ)
∥∥∥2

.

• Large data sets are redundant: gradient computed on two different parts of data are likely to be

similar. Why to waste computations?

• We can compute gradient using only part of training data (a mini-batch Bj):

∂L
∂θ
≈ 1

|Bj |
∑
n∈Bj

∂

∂θ

∥∥∥y(n) − f(x(n),θ)
∥∥∥2

• By using mini-batches, we introduce “noise” to the gradient computations, thus the method is

called stochastic gradient descent.
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Practical considerations for mini-batch training

• Epoch: going through all of the training examples once (usually using mini-batch training).

• It is good to shuffle the data between epochs when producing mini-batches (otherwise gradient

estimates are biased towards a particular mini-batch split).

• Mini-batches need to be balanced for classes.

• The recent trend is to use as large batches as possible (depends on the GPU memory size).

• Using larger batch sizes reduces the amount of noise in the gradient estimates.

• Computing the gradient for multiple samples at the same time is computationally efficient (requires

matrix-matrix multiplications which are efficient, especially on GPUs).
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Model fine-tuning during mini-batch training

• In mini-batch training, we always use noisy estimates

of the gradient. Therefore, the magnitude of the

gradient can be non-zero even when we are close to

the optimum.

• One way to reduce this effect is to anneal the learning

rate ηt towards the end of training.

• The simplest schedule is to decrease the learning rate

after every n updates.

• Another popular way to fine-tune a model is to use

exponential moving average of the model parameters:

θ′t = γθ′t−1 + (1− γ)θt
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Batch normalization



Does depth cause problems for optimization?

• Suppose that we have a deep neural network with d = 32 inputs. For simplicity, let us assume

that the network does not have nonlinearities (it is a stack of linear layers).

• We do everything properly:

• we whiten the inputs

• we initialize the weights with Xavier’s initialization (we

initialize bias terms with zeros).

• Let us look at the eigenvalues of the covariance matrices

of the signals after the first five layers.

• Even though the inputs of the network are whitened, the

covariance matrix of the intermediate signals quickly

becomes ill-conditioned.
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• That means that if we fix the first layers of the network and optimize the last layers with gradient

descent, the convergence will be extremely slow.
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Rank collapse

• In fact, the problem is even more severe. Let us plot the

ranks of the matrices (as implemented in

torch.matrix rank()) containing intermediate signals as a

function of the layer:

• The rank decays quickly which means that we lose

information on the way: some projections of the original data

do not influence the output signal at all.

• The rank collapse indicates that the direction of the output

vector has become independent of the actual input

(Daneshmand et al., 2020).

• Bjorck et al. (2018) report that a standard neural network

initialized normally consistently predicts one specific class

(very right column), irrespective of the input.
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Output gradients in the final classification

layer (Bjorck et al., 2018)
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Why does the rank collapse happen?

• The intuition is that the dominant eigenvectors of the weight matrices make the signals rotate

more in the same direction. Recall the power iteration method:

v← Wv

‖Wv‖

vector v converges to the dominant eigenvector of W. In our deep (linear) network

y = Wn...W3W2W1x

one layer W1x can be viewed as one iteration of the power method without the normalization step.

• Thus, even after the first layer h1 = W1x, the intermediate signals h1 become (slightly) correlated

even if the inputs x are whitened.

• When multiple layers are stacked together, the effect becomes very prominent: outputs y are more

determined by the spectral structure of Wi rather then inputs x. Some data projections simply

become invisible in the outputs.

• Applying intermediate nonlinearities does not change the situation.
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Rank collapse has negative effect on training

• The rank collapse problem has a severe negative effect on the training procedure:

• Example (Daneshmand et al., 2020): training an MLP network with ReLU nonlinearities and 128

hidden units in each hidden layer.

Rank in last hidden layer after random initialization Training accuracy after 75 epochs.

• An MLP network with a small rank in the last hidden layer (depth larger than 12) simply does not

train!

• Bjorck et al. (2018) report that a deep network with standard initialization can have very large

gradient magnitudes, which can cause divergence of the training procedure.
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Batch normalization (Ioffe and Szegedy, 2015)

• The rank collapse problem is diminished by the trick called batch normalization.

• Idea: Since input normalization has positive effect on training, can we also normalize the

intermediate signals? The problem is that these signals change during training and we cannot

perform normalization before the training.

• The solution is to normalize intermediate signals to zero mean and unit variance in each training

mini-batch:

1. Compute the means and variances of the in-

termediate signals x from the current mini-batch

{x(1), . . . , x(N)}.
µ =

1

N

N∑
i=1

x(i) σ2 =
1

N

N∑
i=1

(x(i) − µ)2

2. Normalize signals to zero mean and unit

variance.
x̃ =

x− µ√
σ2 + ε

3. Scale and shift the signals with trainable

parameters γ and β. y = γ � x̃ + β
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Batch normalization partially fix the rank collapse problem

• Daneshmand et al. (2020) show that batch normalization has a positive effect on the rank of the
intermediate representations:

• For a linear model, the rank quickly drops with and without BN.

Without BN, the rank goes to one but with BN the rank stabilizes at a larger value.

• For an MLP with ReLU activations, the rank almost does not drop at all!

The rank of the last hidden layer’s activation as a function of the total number of layers.
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Batch normalization has positive effect on training

• Bjorck et al. (2018): A heat map of the output gradients in the final classification layer after

initialization (the columns correspond to classes and the rows to samples in the mini-batch):

• The unnormalized network (left) consistently predicts one specific class (very right column),

irrespective of the input (a consequence of the rank collapse). As a result, the gradients are highly

correlated.

• For a batch normalized network (right), the dependence upon the input is much larger.
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Batch normalization has positive effect on training

• Bjorck et al. (2018): Histograms over the gradients at initialization for a midpoint layer:

• For the unnormalized network, the gradients are distributed with heavy tails.
• Large gradient magnitudes can cause divergence of the training procedure.

• The learning rate has to be small to avoid divergence.

• For the normalized networks the gradients are concentrated around the mean.
• BN enables training with larger learning rates, which is the cause for faster convergence and better

generalization.
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Batch normalization: Training and evaluation modes

• The mean and standard deviation are computed for each mini-batch. What to do at test time

when we use a trained network for a test example?

• Batch normalization layer keeps track of the batch statistics (mean and standard deviation) during

training:

µ← (1− α)µ + α
1

N

N∑
i=1

x(i)

σ2 ← (1− α)σ2 + α
1

N

N∑
i=1

(x(i) − µ)2

where α is the momentum parameter (note a confusing name).

• It is the running statistics µ and σ2 that are used at test time.
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Batch normalization: Training and evaluation modes

• Pytorch: If you have a batch normalization layer, the

behavior of the network in the training and evaluation

modes will be different:

• Training: Use statistics from a mini-batch, update

running statistics µ and σ2.

• Evaluation: Use running statistics µ and σ2, keep µ

and σ2 fixed.

• Important to remember: BN introduces dependencies

between samples in a mini-batch in the computational

graph.

model = nn.Sequential(

nn.Linear(1, 100),

nn.BatchNorm1d(100),

nn.ReLU(),

nn.Linear(100, 1),

)

# Switch to training mode

model.train()

# train the model

...

# Switch to evaluation mode

model.eval()

# test the model
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Improved optimization algorithms



Problems with gradient descent

• When the curvature of the objective function

substantially varies in different directions, the

optimization trajectory of the gradient descent

can be zigzaging.
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Newton’s method

• In principle, we could use the Hessian matrix in the

optimization procedure.

• This is done in the Newton’s method: On each

iteration we find the minimum of the quadratic

approximation:

θt+1 = θt −H−1
t gt

• Can be efficient but not practical for large neural

networks: The computational complexity is

#params3.
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Momentum method (Polyak, 1964)

• Idea:

• We would like to move faster in directions with

small but consistent gradients.

• We would like to move slower in directions with

big but inconsistent gradients.

• Implementation: Aggregate negative gradients in

momentum mt :

mt+1 = αmt − ηtgt

θt+1 = θt + mt+1
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The intuition behind the momentum method

Slide credit: (Hinton, 2012)

• A ball moving on the error surface: The location

of the ball represents the value of the

parameters (w1, w2).

• At t = 0, the ball follows the gradient. Once it

has velocity, it no longer does steepest descent:

Its momentum makes it keep going in the

previous direction.

• It damps oscillations in directions of high

curvature (by combining gradients with opposite

signs) and it builds up speed in directions with a

gentle but consistent gradient.
2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5

w1

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

w
2

• See (Goh, 2017) for the analysis the convergence of the momentum method.
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Rprop (Reidmiller and Brau, 1992)

Slide credit: (Hinton, 2012)

• The magnitude of the gradient can be very different for different weights and can change during

learning. This makes it hard to choose a single global learning rate.

• Rprop (full batch training): Use the sign of the gradient

θt ← θt−1 − ηt �
gt√

g2
t + ε

where g2 = g � g and a
b is elementwise division.

• Adapt the learning rates ηt individually for each parameter:

• Increase the step size for a weight multiplicatively (e.g. times 1.2)

if the signs of its last two gradients agree

• Otherwise decrease the step size multiplicatively (e.g. times 0.5)

• Limit the step sizes

• This escapes from plateaus with tiny gradients quickly.
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RMSProp (Hinton, 2012)

• Rprop does not work well for mini-batch training:

• Consider a weight that gets a gradient of +0.1 on nine mini-batches and a gradient of -0.9 on the

tenth mini-batch: We want this weight to stay roughly where it is.

• Rprop would increment the weight nine times and decrement it once by about the same amount

(assuming any adaptation of the step sizes is small on this time-scale).

• So the weight would grow a lot.

• RMSprop: Divide the gradient by a number similar for adjacent mini-batches:

θt ← θt−1 − ηt
gt√

vt + ε

vt = βvt−1 + (1− β)g2
t

where we use the exponential moving average of g2
t .
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Adam (Kingma and Ba, 2014)

• RMSProp plus the exponential moving average of the gradient:

θt ← θt−1 − ηt
m̂t√
v̂t + ε

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

• Correct the bias related to starting the estimates from zero:

m̂t = mt/(1− βt
1)

v̂t = vt/(1− βt
2)

βt
1 is β1 to the power of t.

• The update rule is again unit-less. Thus, the optimization procedure is not affected by the scale of

the objective function.
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Why Adam works well

θt ← θt−1 − η
m̂t√
v̂t + ε

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

• In Adam, the effective step size |∆t | is bounded. In the most common case:

|∆t | =

∣∣∣∣η m̂t√
v̂t

∣∣∣∣ ≈
∣∣∣∣∣η E [g ]√

E [g 2]

∣∣∣∣∣ ≤ η because E [g 2] = E [g ]2 + E [(g − E [g ])2]

Thus, we never take too big steps (which can be the case for standard gradient descent).

• We go with the maximum speed (step size η) only if g is the same between updates

(mini-batches), that is when the gradients are consistent.

• At convergence, when we start fluctuating around the optimum: E [g ] ≈ 0 and E [g 2] > 0. The

effective step size gets smaller. Thus, Adam has a mechanism for automatic annealing of the

learning rate.

54



Recap



Recap

• Loss functions:

• Classification: softmax in the output layer and the cross-entropy loss

• Regression: mean-squared error (MSE) loss

• The learning rate has a major effect on the convergence of the gradient descent.

• The optimization landscape is determined by the structure of the Hessian matrix.

• Convergence of the gradient descent can be slow in complex landscapes.

• Input normalization (centering+scaling to unit variance) typically has positive effect on the

optimization landscape.
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Recap

• Xavier’s weight initialization balances the magnitudes in the forward and backward passes.

• Stochastic gradient descent speeds up training by computing gradients on small portions of data

(mini-batches).

• Batch normalization diminishes the problem of rank collapse and large gradient magnitudes in

deep networks.

• Better alternatives to stochastic gradient descent (SGD):

• SGD with momentum

• Adam (the most popular optimizer)

• Adam works well because the step size is bounded and it has a mechanism for automatic

annealing of the learning rate.
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Home assignment



Assignment 01 mlp

1. Implement and train a multilayer perceptron (MLP) network in PyTorch.

2. Implement backpropagation for a multilayer perceptron network in numpy. For each block of a

neural network, you need to implement the following computations:

• forward computations y = f (x,θ)

• backward computations that transform the derivatives wrt the block’s outputs ∂L
∂y

into the derivatives

wrt all its inputs: ∂L
∂x

, ∂L
∂θ

f

θ

x y

∂L
∂y

∂L
∂h

∂L
∂θ
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Recommended reading

• Chapter 8 of the Deep Learning book.

• G. Hinton, 2012. Overview of mini-batch gradient descent.

• G. Goh, 2017. Why momentum really works.
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