
CS-E4890: Deep Learning

Attention-based models

Alexander Ilin



Simple sequence-to-sequence model

• Previously we considered a sequence-to-sequence model for statistical machine translation:

z0 z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

This is my cat .

h1 h2 h3 h4

y1 y2 y3 y4

context

• The problem with this model: It is difficult to encode the whole sentence in a single vector z5 of

fixed size.

1



Encoding to representation of a varying-length

• Intuition: The longer the input sentence, the longer our representation should be. Let the length

of our representation be equal to the length of the input sequence.

x1 x2 x3 x4 x5

z1 z2 z3 z4 z5

Encoder

h1 h2 h3 h4 h5

• We can use intermediate states of the RNN as representations but this does not work well:

representation z1 at the first position does not depend on subsequent words.

2



Encoding to representation of a varying-length

• Intuition: The longer the input sentence, the longer our representation should be. Let the length

of our representation be equal to the length of the input sequence.

x1 x2 x3 x4 x5

z1 z2 z3 z4 z5

Encoder

h1 h2 h3 h4 h5

• We can use intermediate states of the RNN as representations but this does not work well:

representation z1 at the first position does not depend on subsequent words.

2



Encoding with bi-directional RNN

• In the classical model (Bahdanau et al., 2014), the varying-length representation was build using a

bi-directional RNN.

x1 x2 x3 x4 x5

−→z1z0
−→z2

−→z3
−→z4

−→z5

←−z1
←−z2

←−z3
←−z4

←−z5 z0

z1 z2 z3 z4 z5

• The bi-direction RNN does two passes through the input sequence: forward and backward.

• The output at position j is a concatenation zj = [−→zj ;←−zj ] of the states (or outputs) in the forward

and backward passes.

3

https://arxiv.org/pdf/1409.0473.pdf


Sequence-to-sequence model: context in decoding

• In the simple seq2seq model (see the first

slide), we used the last state of the

encoder RNN as the context for decoding

in each step.

• What should we do if we want to use an

encoded representation of a varying

length?
z0 z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

h1 h2 h3 h4

y1 y2 y3 y4

4



Attention: Using context of varying length

• We can select one of the vectors zj as

our context when decoding at step i .

• Which one to select? We let the neural

network decide it by itself using the

attention mechanism.

• You can think of attention as a switch

that selects one of the inputs zj .

x1 x2 x3 x4 x5

Encoder

z1 z2 z3 z4 z5

h1 h2 h3 h4

y1 y2 y3 y4

Attention

5



Attention mechanism from (Bahdanau et al., 2014)

• Select one of the inputs as the output:

c =
n∑

j=1

αjzj

0 < αj < 1,
n∑

j=1

αj = 1

• Weights αj are computed using softmax:

αj =
exp(ej)∑n

j′=1 exp(ej′)

Attention

z1 z2 z3 z4 z5

h1 h2 h3 h4

y1 y2 y3 y4

c

h2

• Scores ej are computed using the current decoder state hi−1 and representation zj :

ej = f (hi−1, zj)

where f can be modeled by a multilayer perceptron (MLP).

6

https://arxiv.org/pdf/1409.0473.pdf


Full architecture from (Bahdanau et al., 2014)

x1 x2 x3 x4 x5

−→z1
−→z2

−→z3
−→z4

−→z5

←−z1
←−z2

←−z3
←−z4

←−z5

Attention

z1 z2 z3 z4 z5

h1 h2 h3 h4

y1 y2 y3 y4

c3

h2

7

https://arxiv.org/pdf/1409.0473.pdf


Attention-based models have much better performance

• Using attention significantly improves the quality of translation.

The translation performances on an English-to-French translation task (WMT’14)

Model BLEU

Simple Enc-Dec 17.82

Attention-based Enc-Dec 28.45

Attention-based Enc-Dec (LV) 34.11

Attention-based Enc-Dec (LV, ensemble) 37.19

LV - large vocabulary

source: (Jean et al., 2014)

8

https://arxiv.org/pdf/1412.2007.pdf


Attention coefficients

• Weights αij can be visualized. The x-axis and y-axis of each plot correspond to the words in the

source sentence and the generated translation, respectively.

9



Neural image captioning (Xu et al., 2016)

• Models with attention have been used in many domains.

• “Show, Attend and Tell” paper solves the task of image captionining similarly to a translation

task: images are “translated” to sentences.

10

https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf


Neural image captioning (Xu et al., 2016)

• The image is preprocessed into 14× 14 feature maps with a convolutional network pre-trained on

ImageNet.

• The 14× 14 feature maps are split into L annotation vectors zj .

• The annotation vectors are used as context in the decoding RNN.

z1 z2

zL Attention

z1 z2 z3 ... zL

h1 h2 h3 h4

y1 y2 y3 y4

c3

h2

11

https://arxiv.org/pdf/1502.03044.pdf


Convolutional sequence-to-sequence models

(Gehring et al., 2017)

https://arxiv.org/pdf/1705.03122.pdf


Problems with RNN encoders

• Problem with RNN encoding:

• The number of steps is equal to the number of

words in the input sentence. This can make

training slow.

• We need to take multiple steps to model relations

between distant words. Modeling long-term

dependencies can be difficult with RNNs.

• Since we know how to deal with encodings of

varying lengths (using attention), we do not really

need to use an RNN. The encoder can be any

network that converts input sequence (x1, ..., xn)

into representations (z1, ..., zn).

x1 x2 x3 x4 x5

−→z1
−→z2

−→z3
−→z4

−→z5

←−z1
←−z2

←−z3
←−z4

←−z5

z1 z2 z3 z4 z5

13



Convolutional encoder

• Gehring et al. (2017) proposed to use a

convolutional network (CNN) to encode input

sequences.

• Since convolutional layers have shared weights,

they can process sequences of varying lengths.
x1 x2 x3 x4 x5

x1 + p1 x2 + p2 x3 + p3 x4 + p4 x5 + p5

CNN

z1 z2 z3 z4 z5

• Advantage: CNN can compute representations in all positions in parallel. We use both preceding

and subsequent positions (unlike a bi-directional RNN).

• Disadvantage: CNN does not take into account whether the position is at the beginning of a

sequence or at the end.

• Gehring et al. (2017) fix this problem by adding position embedding pj to word embeddings xj .

14

https://arxiv.org/pdf/1705.03122.pdf


Convolutional encoder

• Gehring et al. (2017) proposed to use a

convolutional network (CNN) to encode input

sequences.

• Since convolutional layers have shared weights,

they can process sequences of varying lengths.

x1 x2 x3 x4 x5

x1 + p1 x2 + p2 x3 + p3 x4 + p4 x5 + p5

CNN

z1 z2 z3 z4 z5

• Advantage: CNN can compute representations in all positions in parallel. We use both preceding

and subsequent positions (unlike a bi-directional RNN).

• Disadvantage: CNN does not take into account whether the position is at the beginning of a

sequence or at the end.

• Gehring et al. (2017) fix this problem by adding position embedding pj to word embeddings xj .

14

https://arxiv.org/pdf/1705.03122.pdf


Decoding with convolutional layers

• Can we also avoid using RNNs in the decoder?

• The decoder is an autoregressive model with the

context provided by the encoder

yi = f (yi−1, ..., y1, z1, ..., zn
context

)
SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• This function can be modeled by a (convolutional) network:

• Since we process sequences (inputs with one-dimensional structure), we use 1d convolutions.

• Inputs and outputs are same sequences but 1) the output is shifted by one position, 2) the input

sequence starts with a special SOS token.

• The receptive field of yi should not contain subsequent elements yi′ , i
′ ≥ i (this can be achieved by

using shifted convolutions).

15



Decoding with convolutional layers

• Can we also avoid using RNNs in the decoder?

• The decoder is an autoregressive model with the

context provided by the encoder

yi = f (yi−1, ..., y1, z1, ..., zn
context

)
SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• This function can be modeled by a (convolutional) network:

• Since we process sequences (inputs with one-dimensional structure), we use 1d convolutions.

• Inputs and outputs are same sequences but 1) the output is shifted by one position, 2) the input

sequence starts with a special SOS token.

• The receptive field of yi should not contain subsequent elements yi′ , i
′ ≥ i (this can be achieved by

using shifted convolutions).

15



Decoding with convolutional layers

• Can we also avoid using RNNs in the decoder?

• The decoder is an autoregressive model with the

context provided by the encoder

yi = f (yi−1, ..., y1, z1, ..., zn
context

)
SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• This function can be modeled by a (convolutional) network:

• Since we process sequences (inputs with one-dimensional structure), we use 1d convolutions.

• Inputs and outputs are same sequences but 1) the output is shifted by one position, 2) the input

sequence starts with a special SOS token.

• The receptive field of yi should not contain subsequent elements yi′ , i
′ ≥ i (this can be achieved by

using shifted convolutions).

15



Decoding with convolutional layers

• Can we also avoid using RNNs in the decoder?

• The decoder is an autoregressive model with the

context provided by the encoder

yi = f (yi−1, ..., y1, z1, ..., zn
context

)
SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• This function can be modeled by a (convolutional) network:

• Since we process sequences (inputs with one-dimensional structure), we use 1d convolutions.

• Inputs and outputs are same sequences but 1) the output is shifted by one position, 2) the input

sequence starts with a special SOS token.

• The receptive field of yi should not contain subsequent elements yi′ , i
′ ≥ i (this can be achieved by

using shifted convolutions).

15



Decoding with convolutional layers

• Advantage of a convolutional decoder: During

training, we can compute output elements for all

positions in parallel. Recall that in the RNN

decoder, we had to produce the output sequence

one element at a time.
SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• At test time (generation mode), we still have to

produce the output sequence one element at a time

(since it is an autoregressive model).

SOS

y1

y1

y2

y2

y3

y3

y4

Decoder
context

16



Decoding with convolutional layers

• Advantage of a convolutional decoder: During

training, we can compute output elements for all

positions in parallel. Recall that in the RNN

decoder, we had to produce the output sequence

one element at a time.
SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• At test time (generation mode), we still have to

produce the output sequence one element at a time

(since it is an autoregressive model).

SOS

y1

y1

y2

y2

y3

y3

y4

Decoder
context

16



Decoding with convolutional layers

• Advantage of a convolutional decoder: During

training, we can compute output elements for all

positions in parallel. Recall that in the RNN

decoder, we had to produce the output sequence

one element at a time.
SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• At test time (generation mode), we still have to

produce the output sequence one element at a time

(since it is an autoregressive model).

SOS

y1

y1

y2

y2

y3

y3

y4

Decoder
context

16



Decoding with convolutional layers

• Advantage of a convolutional decoder: During

training, we can compute output elements for all

positions in parallel. Recall that in the RNN

decoder, we had to produce the output sequence

one element at a time.
SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• At test time (generation mode), we still have to

produce the output sequence one element at a time

(since it is an autoregressive model).

SOS

y1

y1

y2

y2

y3

y3

y4

Decoder
context

16



Decoding with convolutional layers

• Advantage of a convolutional decoder: During

training, we can compute output elements for all

positions in parallel. Recall that in the RNN

decoder, we had to produce the output sequence

one element at a time.
SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• At test time (generation mode), we still have to

produce the output sequence one element at a time

(since it is an autoregressive model).

SOS

y1

y1

y2

y2

y3

y3

y4

Decoder
context

16



An autoregressive model with 1d convolutional layer

• We can make sure that the receptive field of yi does not contain subsequent elements yi′ , i
′ ≥ i

by using shifted convolutions.

standard convolution SOS y1 y2 y3 y4

y1 y2 y3 y4 y5

shifted convolution

• If we stack multiple convolutional layers built in the same way, the desired property is preserved.

17



Attention in a convolutional decoder

• How can we use the context provided by the

encoder in such a decoder?

• Attention used in (Gehring et al., 2017):

oi =
∑
j=1

αij(zj + xj + pj)

where xj are word embeddings and pj are position

embeddings for the input sequence.

• The attention weights are

αij =
exp(h>i zj)∑n

j′=1 exp(h>i zj′)
SOS y1 y2 y3

shifted 1d convolution

Attention

z1

z2

· · ·
zn

o1 o2 o3 o4

h1 h2 h3 h4

• Attention compares hi to representations zj using dot product and passes value zj + xj + pj

corresponding to the best match.

18

https://arxiv.org/pdf/1705.03122.pdf


Full architecture from (Gehring et al., 2017)

• They used multiple decoder blocks

stacked on top of each other.

• Each decoder block attends to the

outputs of the encoder zj .

• There are skip connections (skipping

the attention block).

SOS y1 y2 y3

shifted 1d convolution

Attention

C
N

N
en

co
d

er

x1

x2

· · ·
xn

... ... ... ...
y1 y2 y3 y4

h1 h2 h3 h4

zn

· · ·
z2

z1

19

https://arxiv.org/pdf/1705.03122.pdf


Full architecture (Gehring et al., 2017)

• They used multiple decoder blocks stacked

on top of each other.

• Each decoder block attends to the outputs of

the encoder zj .

• There are skip connections (skipping the

attention block).

20

https://arxiv.org/pdf/1705.03122.pdf


Translation performance

The translation performances on an English-to-French translation task (WMT’14)

Model BLEU

Simple Enc-Dec 17.82

Attention-based Enc-Dec 28.45

Attention-based Enc-Dec (LV) 34.11

Attention-based Enc-Dec (LV, ensemble) 37.19

ConvS2S (BPE 40K) 40.51

21



Transformers

(Vaswani et al., 2017)

https://arxiv.org/pdf/1706.03762.pdf


Transformer architecture

• The general architecture is similar to

ConvS2S:

• The encoder converts input sequence

(x1, ..., xn) into continuous

representations (z1, ..., zn).

• The decoder processes all positions in

parallel using shifted output sequence

(y1, ..., ym) as input and output. The

autoregressive structure is preserved by

masking.

• The decoder attends to representations

(z1, ..., zn).

SOS y1 y2 y3

decoder layer

Attention

en
co

d
er

x1

x2

· · ·
xn

... ... ... ...
y1 y2 y3 y4

h1 h2 h3 h4

zn

· · ·
z2

z1

23



Transformer architecture

• The general architecture is similar to

ConvS2S:

• The encoder converts input sequence

(x1, ..., xn) into continuous

representations (z1, ..., zn).

• The decoder processes all positions in

parallel using shifted output sequence

(y1, ..., ym) as input and output. The

autoregressive structure is preserved by

masking.

• The decoder attends to representations

(z1, ..., zn).

encoder

(x1, ..., xn)

(z1, ..., zn)

(SOS, y1, ..., ym−1)

(y1, ..., ym)

decoder

attention

24



Transformer: Attention mechanism

• Intuition from ConvS2S: The attention mechanism compares intermediate representations hi

developed in the decoder with encoded inputs zj and outputs zj that is closest to hi .

• Basic attention mechanism in transformers:

oi =
n∑

j=1

αijzj

αij =
exp(z>j hi/

√
dk)∑n

j′=1 exp(z>j′ hi/
√
dk)

dk is the dimensionality of the zj and hi .

• The authors called this scaled dot-product attention.
h1 h2 h3 h4

Attention

z1

z2

· · ·
zn

o1 o2 o3 o4

25



Transformer: Scaled dot-product attention

• We can think of the scaled dot-product attention as finding

values vj = zj with keys kj = zj that are closest to query

qi = hi .

• Re-writing the scaled dot-product attention using keys, values

and query:

oi =
n∑

j=1

αijzj

αij =
exp(z>j hi/

√
dk)∑n

j′=1 exp(z>j′ hi/
√
dk)

oi =
n∑

j=1

αijvj

αij =
exp(k>j qi/

√
dk)∑n

j′=1 exp(k>j′ qi/
√
dk)

encoder decoder

(x1, ..., xn)

(z1, ..., zn)

(SOS, y1, ..., ym−1)

(y1, ..., ym)

attention
V K Q

26



Scaled dot-product attention

• Scaled dot-product attention:

oi =
n∑

j=1

αijvj

αij =
exp(k>j qi/

√
dk)∑n

j′=1 exp(k>j′ qi/
√
dk)

in the matrix form:

attention(Q,K,V) = softmax

(
QK>√

dk

)
V

with V ∈ Rm×dv , Q ∈ Rn×dk , K ∈ Rm×dk .
scaled dot-product attention

27



Multi-head attention

• Instead of doing a single scaled dot-product attention, the authors

found it beneficial to project keys, queries and values into

lower-dimensional spaces, perform scaled dot-product attention

there and concatenate the outputs:

headi = attention(QW Q
i ,KW

K
i ,VW

V
i )

MultiHead(Q,K ,V ) = Concat(head1, ..., headh)W O

V ∈ Rm×dv , Q ∈ Rn×dk , K ∈ Rm×dk ,

headi ∈ Rn×di , output ∈ Rn×dk .

multi-head attention

28



Encoder-decoder attention

• Multi-head attention is used to attend to the encoder

outputs by the decoder.

encoder decoder

(x1, ..., xn)

(z1, ..., zn)

(SOS, y1, ..., ym−1)

(y1, ..., ym)

attention
V K Q

29



Transformer encoder: Self-attention

• How to implement the encoder? Previously we used:

1) bi-directional RNN, 2) convolutional network.

• Attention is all you need: Use the same multi-head atten-

tion mechanism to convert inputs (x1, ..., xn) into repre-

sentations (z1, ..., zn). x1 x2 x3 x4

Encoder

z1 z2 z3 z4

• For simplicity, assume that we use scaled dot-product attention:

zi =
n∑

j=1

αijxj αij =
exp(x>j xi/

√
dk)∑n

j′=1 exp(x>j′ xi/
√
dk)

• Thus, we use vectors xi as keys, values and queries. This is called self-attention.

• Advantage: The first position affects the representation in the last position (and vice versa)

already after one layer! (think how many layers are needed for that in RNN or convolutional

encoders).

30



Transformer encoder

• After self-attention, the representation in each position is

processed with a mini-MLP (Feed Forward block in the

figure).

• The encoder is a stack of multiple such blocks (each

block contains an attention module and a mini-MLP).

• Each block contains standard deep learning tricks:

• skip connections

• layer normalization

decoder

(x1, ..., xn)

(z1, ..., zn)

(SOS, y1, ..., ym−1)

(y1, ..., ym)

attention

31



Transformer decoder

• Similarly to ConvS2S, the decoder implements an

autoregressive model with the context provided by

the encoder

yi = f (yi−1, ..., y1, z1, ..., zn) SOS y1 y2 y3

Decoder

y1 y2 y3 y4

z1

· · ·
zn

• When predicting word yi we can use the preceding words y1, ..., yi−1 but not subsequent words

yi , ..., ym.

32



Transformer decoder

• Similarly to ConvS2S, the decoder implements an

autoregressive model with the context provided by

the encoder

yi = f (yi−1, ..., y1, z1, ..., zn) SOS y1 y2 y3

Decoder

y1 y2 y3 y4

z1

· · ·
zn

• When predicting word yi we can use the preceding words y1, ..., yi−1 but not subsequent words

yi , ..., ym.

32



Transformer decoder

• Similarly to ConvS2S, the decoder implements an

autoregressive model with the context provided by

the encoder

yi = f (yi−1, ..., y1, z1, ..., zn) SOS y1 y2 y3

Decoder

y1 y2 y3 y4

z1

· · ·
zn

• When predicting word yi we can use the preceding words y1, ..., yi−1 but not subsequent words

yi , ..., ym.

32



Transformer decoder

• Similarly to ConvS2S, the decoder implements an

autoregressive model with the context provided by

the encoder

yi = f (yi−1, ..., y1, z1, ..., zn) SOS y1 y2 y3

Decoder

y1 y2 y3 y4

z1

· · ·
zn

• When predicting word yi we can use the preceding words y1, ..., yi−1 but not subsequent words

yi , ..., ym.

32



Transformer decoder

• The cross-attention block is the multi-head

attention module described earlier.

• Again, attention-is-all-you-need idea: Use

self-attention as a building block of the decoder.

• We need to make sure that we do not use

subsequent inputs yi , ..., ym when producing output

oi at position i . This is done using masked

self-attention (see next slide).

SOS y1 y2 y3

masked self-attention

cross-attention

k1 = v1 = z1

k2 = v2 = z2

· · ·
kn = vn = zn

o1 o2 o3 o4

q: h1 h2 h3 h4

33



Transformer decoder: Masked self-attention

• Let us denote the inputs of the self-attention layer as vj

and outputs as hj .

• For simplicity, assume that we use scaled dot-product at-

tention:

hi =
m∑
j=1

αijvj αij =
exp(v>j vi/

√
dk + mij)∑m

j′=1 exp(v>j′ vi/
√
dk + mij′) v1 v2 v3 v4

masked self-attention

h1 h2 h3 h4

• We want not to use subsequent positions vi+1, ..., vm when computing output hi . We can do that

using attention masks mij :

mij = 0 , if j ≤ i

mij = −∞ and therefore αij = 0, if j > i

34



Decoder

• After self-attention and cross-attention, the

representation in each position is processed with a

mini-MLP (Feed Forward block in the figure).

• The decoder is a stack of multiple such blocks (each

block contains two attention modules and a mini-MLP).

• Each block contains standard deep learning tricks:

• skip connections

• layer normalization

encoder

(x1, ..., xn)

(z1, ..., zn)

(SOS, y1, ..., ym−1)

(y1, ..., ym)

35



Transformer’s positional encoding

• For simplicity, assume that we use scaled dot-product at-

tention:

zi =
n∑

j=1

αijxj αij =
exp(x>j xi/

√
dk)∑n

j′=1 exp(x>j′ xi/
√
dk)

What will happen to the outputs, if we shuffle the inputs

(change their order)?
x2 x4 x1 x3

self-attention

z2 z4 z1 z3

• The outputs will be shuffled in the same way. Thus, the computed representations will not depend

on the order of the elements in the input sequence.

• This is not desired: the order of the words is important for understanding the meaning of a

sentence.

36



Transformer’s positional encoding

• For simplicity, assume that we use scaled dot-product at-

tention:

zi =
n∑

j=1

αijxj αij =
exp(x>j xi/

√
dk)∑n

j′=1 exp(x>j′ xi/
√
dk)

What will happen to the outputs, if we shuffle the inputs

(change their order)?
x2 x4 x1 x3

self-attention

z2 z4 z1 z3

• The outputs will be shuffled in the same way. Thus, the computed representations will not depend

on the order of the elements in the input sequence.

• This is not desired: the order of the words is important for understanding the meaning of a

sentence.

36



Transformer’s positional encoding

• Recall: ConvS2S used position embedding (embedding positions just like words) and added them

to word embeddings.

• Transformers use hard-coded (not learned) positional

encoding:

PE(p, 2i) = sin(p/100002i/d)

PE(p, 2i + 1) = cos(p/100002i/d)

where p is position, i is the element of the encoding.

• This encoding has the same dimensionality d as in-

put/output embeddings.
source: Annotated Transformer

• Motivation: It is easy for the model to learn to attend by relative positions, since for any fixed

offset k, PEp+k can be represented as a linear function of PEp.

37

http://nlp.seas.harvard.edu/2018/04/03/attention.html


Transformer: Full model

• Training of the transformer model needs a ramp-up of the

learning rate:

source: Annotated transformer

• If you have trouble understanding the model, check out

the Annotated Transformer blog post.

38

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://nlp.seas.harvard.edu/2018/04/03/attention.html


Translation performance

The translation performances on an English-to-French

translation task (WMT’14) according to (Vaswani et al., 2017)

Model BLEU

ConvS2S 40.46

ConvS2S (ensemble) 41.29

Transformer (base model) 38.1

Transformer (big) 41.8

39

https://arxiv.org/pdf/1706.03762.pdf


Vision Transformers (Dosovitskiy et al., 2020)

• Although introduced for natural language processing tasks, transformers have now been used in

many other domains and they show great performance.

• One example is the Vision Transformer

(ViT) which is a transformer-based

architecture for image processing tasks:

• split an image into fixed-size patches

• linearly embed each of them

• add position embeddings

• feed the resulting sequence of vectors to a

standard Transformer encoder.

• In order to perform classification, add an

extra learnable “classification token” to

the sequence.

• ViT is typically pre-trained on large datasets and then fine-tuned to (smaller) downstream tasks.

40

https://arxiv.org/pdf/2010.11929.pdf


BERT: Transformer-based language model

(Devlin et al., 2018)

https://arxiv.org/pdf/1810.04805.pdf


Transfer learning in natural language processing

• Common natural language understanding tasks (see, e.g., GLUE benchmark):

• Sentiment analysis: e.g., classification of sentences extracted from movie reviews

• Question answering: e.g., detect pairs (question, sentence) which contain the correct answer

• Determine if two sentences are semantically equivalent (binary classification)

• Labeled datasets for such tasks are often limited (labels are expensive to collect).

• Transfer learning:

• Pre-train language models on large text corpora (unlabeled data, thus unsupervised learning)

• Fine-tune a pre-trained model to a specific task

42

https://gluebenchmark.com


BERT: Pre-trained language model (Devlin et al., 2018)

• The model is essentially a transformer encoder

(Vaswani et al., 2017).

• The model can represent either a single

sentence or a pair of sentences (we need to

process pairs in some downstream tasks, such

as question answering).

• Pre-trained on a large corpus, e.g., English

Wikipedia (2,500M words).

CLS Tok 1 Tok 2 Tok 3 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

C T1 T2 T3 ... TN TSEP T ′1 ... T ′M

Sentence A Sentence B

43

https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1706.03762.pdf


BERT: Pre-training task 1

• Pre-training task 1: Predict a masked input

token (denoising task).

• Use special MASK token to “corrupt” the

input sequence.

• The task is to reconstruct the masked token.
CLS Tok 1 MASK Tok 3 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

Tok 2

Sentence A Sentence B

44



BERT: Pre-training task 2

• Pre-training task 2: Predict whether sentence

B follows sentence A.

• 50% of the time sentence B follows sentence

A in the corpus.

• 50% of the time sentence B is randomly

chosen.

• Binary classification task. CLS Tok 1 Tok 2 Tok 3 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

True/False

Sentence A Sentence B

45



Fine-tuning BERT on a sentence classification task

Sentence: Although the value added services being provided are great but the prices are high. Class: mixed review

Sentence: Great work done #XYZ Problem resolved by customer care in just one day. Class: positive review

• BERT is fine-tuned on task-specific training data:

task-specific inputs and outputs

• Example: sentence classification task:

• Sentence A: input sentence

• Sentence B: ∅
• Output: target class (taken from the first position)

• New layer is introduced to convert the output at the first

position into class probabilities.

• All parameters of the model are fine-tuned!

CLS Tok 1 Tok 2 Tok 3 ... Tok N

BERT
(transformer encoder)

Class

Input sentence

46



Fine-tuning BERT on a question answering task

Paragraph: Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer, songwriter, record producer, dancer and actress. Born

and raised in Houston, Texas, Beyoncé performed in various singing and dancing competitions as a child. She rose to fame in the late 1990s as the

lead singer of Destiny’s Child, one of the best-selling girl groups of all time.

Question: When did Beyonce start becoming popular?

Correct answer: in the late 1990s

• Fine-tuning BERT on a question answering task:

• Sentence A: question

• Sentence B: paragraph (passage)

• Output sequence: Probabilities of each word in

the passage being the start and the end

• All parameters of the model are updated on the

task-specific data! CLS Tok 1 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

IsStart IsStart
IsEnd IsEnd

Question Paragraph

47



BERT: GLUE Test results

GLUE Test results

The number below each task denotes the number of training examples.

F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B,

and accuracy scores are reported for the other tasks.

48



Recap



Recap

• Attention allows the encoder of a sequence-to-sequence model to produce representations of a

varying length, which dramatically increases the quality of the neural machine translation model.

• A sequence-to-sequence model can be implemented by CNNs: convolutional layers can process

sequential data and an autoregressive decoder can be implemented by shifted (causal) 1d

convolutions.

• Transformers are neural networks that use attention (self-attention, cross-attention) as the main

computational block.

• Multi-head attention allows paying attention to different parts of the attended sequence.

• Transformers have been used in multiple domains (e.g., vision, protein modeling).

• BERT is a popular transformer-based language model which can be tuned to custom NLU tasks.

50



Home assignment



Assignment 05 transformer

• You need to implement and train a transformer model for

the task of statistical machine translation task (the same

task as in the previous assignment).

52



Recommended reading

• Papers cited in the lecture slides.

• The Annotated Transformer blog post.

53

http://nlp.seas.harvard.edu/2018/04/03/attention.html

