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Motivation

• Previously we processed the following types of inputs:

• vectors whose elements do not have special order: multi-layer

perceptron

• inputs with 1d or 2d spatial structure: convolutional networks

• sequences with varying lengths: recurrent neural networks,

transformers

• In some applications, the input can be represented as a graph.

• A graph is defined as a 3-tuple G = (u;V ;E):

• u is a global attribute

• V is a set of nodes with attributes xi
• E is a set of edges with attributes ekj

x1

x2

x3 x4

V = {x1, x2, x3, x4}
E = {e12, e23, e24}
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Example of data that can be represented as graphs: Molecules

• The task is to predict chemical properties of molecules

(Duvenaud et al., 2015; Gilmer et al., 2017):

• toxicity

• excitation spectra

• the level of activity of a chemical compound against

cancer cells

• A graph representation of a molecule:

• global attribute u: some known property of a molecule (e.g., number of atoms)

• nodes V : each node corresponds to an atom, a node’s attribute xi is the atom’s identity

• edges E correspond to bond (e.g., edges do not have properties)

• The task is similar to regression but the inputs are graphs: G → Rn.
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Example of data that can be represented as graphs: Documents

• The task is to extract information from documents, for example,

extract line items from scanned receipts.

• OCR software can extract text segments from scanned

documents. Then, we can build a graph representation of a

scanned document:

• nodes: each node corresponds to a text segment;

• edges can have properties such as the distance between the

segments, whether the segments are in the same row/column.

• The task: node classification (two classes: text segment

represents a line item or not).

images from (Liu et al., 2019)
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Ways to represent graphs in software

• We can represent represent the attributes of the nodes using matrix

X
4×F

=


x>1
x>2
x>3
x>4


• We can represent the graph topology using an adjacency matrix:

A =


0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0



1

23 4
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Graph neural networks

• Graph is an explicit representation of a set of entities (objects) and

their relations.

• We need a learning algorithm which models objects and their

interactions and grounds modeling in data.

• There is no “default” deep learning component which operates on an

arbitrary relational structure. We will review several neural

architectures proposed for this task. We will call all such

architectures graph neural networks.

x1

x2

x3 x4

An example of an

undirected graph
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Requirement of permutation invariance or equivariance

• Since nodes in a graph do not have a specific order (typically), we can get different

representations of the same graph by re-labeling the nodes:

1

23 4

X
4×F

=


x>1
x>2
x>3
x>4

 A =


0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0



2

34 1

X
4×F

=


x>4
x>1
x>2
x>3

 A =


0 0 1 0

0 0 1 0

1 1 0 1

0 0 1 0


• The output of a graph neural network should be invariant (or equivariant) to node permutations.
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Permutation invariance and multilayer perceptrons

• Suppose we use an MLP to process fully-connected graphs. Is the output of an MLP invariant to

input (node) permutations?

x1

x2

x3 x4

x1

x2

x3

x4

MLP y

x4

x1

x2 x3

x4

x1

x2

x3

MLP y

• No. Therefore, an MLP trained on a particular input (x1, x2, x3, x4) would not transfer to making a

prediction for the same inputs under a different ordering, e.g., (x4, x1, x2, x3).

• Since there are n! such possible permutations, an MLP would require a large number of

input/output training examples.
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Permutation invariance in previously considered models

• Are some of the previously considered models invariant or equivariant to input permutations?

b1,W1

multi-layer convolutional recurrent neural transformer encoder
perceptron network network

• Transformer encoder: Without positional encoding, the output is equivariant to input

permutations.
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Other requirements for graph neural networks

• The network should be able to process graphs

with a varying number of nodes.

x1

x2x3 x4 x1 x2 x3

• The network should take into account the

topology of the graph.

x1

x2x3 x4

x2

x3x4 x1
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Ability to process inputs with a varying number of elements

• Which of the previously considered neural networks can process inputs with a varying number of

elements?

b1,W1

multi-layer convolutional recurrent neural transformer encoder
perceptron network network

• CNN, RNN and transformer encoder can process sequences of varying lengths.
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Previous models as “graph neural networks”

• RNN can be viewed as a neural network which can

process graphs with the chain topology.
x1 x2 x3 x4 x5

• CNN can be viewed as a network that can process

graphs with the grid topology.

• Transformer encoder can be viewed as a neural net-

work that processes fully connected graphs.

• We want to create a neural network that can process graphs with different topologies.
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Neural fingerprint networks

(Duvenaud et al., 2015)

http://arxiv.org/pdf/1509.09292.pdf


Prediction of chemical properties of molecules (Duvenaud et al., 2015)

• The task is to predict chemical properties of

molecules, e.g.:

• toxicity

• excitation spectra

• the level of activity of a chemical compound against

cancer cells

• Neural fingerprint network: Convert a graph that

represents a molecule into a real-valued vector f

(fingerprint) which can be further processed to

predict some property.

A molecule, in which each atom is represented as a

node and edges correspond to bond.
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Prior art: Circular fingerprints

• Circular fingerprints is an algorithm designed to encode which substructures are present in a

molecule in a way that is invariant to atom-relabeling (permutation invariance).

• The algorithm starts by assigning an initial integer

identifier ra to each atom.

• We encode various atom properties (e.g.,

atomic number, connection count, etc.) into

a single integer value using a pre-defined

hash function. The identifier captures local

information about the corresponding atom.

• Then, the following procedure is repeated R times:

• Combine the identifiers of all the neighbors

and apply a fixed pre-defined hashing

function hash().

• Convert the new identifier ra into index i and

write the value of 1 to the corresponding

location i of the fingerprint vector f.
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Prior art: Circular fingerprints

The structure of the computational graph

(assuming writing to f outside the loop).
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Neural fingerprint networks

• Duvenaud et al. (2015) “neuralized” the circular fingerprint algorithm:
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Neural fingerprint networks

• Duvenaud et al. (2015) “neuralized” the circular fingerprint algorithm:

H

O

H

g

g

g

+

+

+

MLP w. softmax

MLP w. softmax

MLP w. softmax

+ f

Computational graph

Note: HN
L is selected based on the number N of

bonds of atom a (up to 5 in organic molecules).
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Neural fingerprint networks

• Mean predictive accuracy (I guess errors) of neural fingerprints compared to standard circular

fingerprints:
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Interaction networks

(Battaglia et al., 2016)

http://arxiv.org/pdf/1612.00222.pdf


Learning dynamics of physical systems

• The task is to predict the next state of a physical system. Examples:

A n-body system with gravitation. A rigid body system:

Balls moving inside a room.

A mass-spring system:

A rope and a fixed object.

• Modeling assumption: Each pair of objects are in a directed relationship (objects interact with one

another). We can represent such physical systems using graphs:

The bodies are nodes and the

underlying graph is fully connected.

The balls and walls are nodes, and the

underlying graph defines interactions

between the balls and between the balls

and the walls.

The rope is defined by a sequence of

masses which are represented as nodes

in the graph.

20



Interaction networks: Modeling interactions

• The first object (the sender o1) influences the second (the

receiver o2) via their interaction. The effect of this

interaction is predicted by function fR which takes as input

o1, o2, as well as attributes of their relationship r :

e1→2,t+1 = fR(o1,t , o2,t , r12)

r12 can be for example, the spring constant if objects are

attached by a spring.

o1
o2

r12

• The future state o2,t+1 of the receiver is predicted by an object-centric function fO which takes as

input both e1→2,t+1 and the receiver’s current state o2,t :

o2,t+1 = fO(o2,t , e1→2,t+1)
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Interaction networks: The model

• If there are multiple objects interacting with a given

object (e.g, o3), their effects are aggregated:

e1→3,t+1 = fR(o1,t , o3,t , r13)

e2→3,t+1 = fR(o2,t , o3,t , r23)

e4→3,t+1 = fR(o4,t , o3,t , r43)

o3,t+1 = fO

(
o3,t ,

∑
i=1,2,4

ei→3,t+1

)

where summation is done over all objects interacting

with o3.

• The future states of all objects are computed in a

similar way.

o1
o2

o3
o4

o5

o5,t

o1,t

r15

o4,t

r45

fR
e1→5

fR
e4→5

+

fo o5,t+1

•
•

Computational graph
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Interaction networks: Results

Prediction rollouts. Each column contains three panels of three video frames (with motion blur), each spanning 1000 rollout steps. Columns 1-2 are

ground truth and model predictions for n-body systems, 3-4 are bouncing balls, and 5-6 are strings.
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Interaction networks: Results

The model was able to generalize to systems of different sizes and structure. For n-body, the training was on 6 bodies, and generalization was to 3

bodies. For balls, the training was on 6 balls, and generalization was to 3 balls. For strings, thetraining was on 15 masses with 1 end pinned, and

generalization was to 30 masses with 0 end pinned.
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Interaction networks: Results

• Mean-squared prediction errors:

• Baseline: MLP with two 300-length hidden layers, which took as input a flattened vector of all of the

input data

• Dynamics-only IN: a variant of the IN with the interaction effects removed.
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Relational network for

visual scene understanding

(Santoro et al., 2017)

http://arxiv.org/pdf/1706.01427.pdf


CLEVR dataset

• An example from CLEVR dataset of relational reasoning: An image containing four objects is

shown alongside non-relational and relational questions. The relational question requires explicit

reasoning about the relations between the four objects in the image, whereas the non-relational

question requires reasoning about the attributes of a particular object.
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Visual scene understanding with a relational network (Santoro et al., 2017)

• An image is decomposed into patches. Each patch is treated as an object (a node in a fully

connected graph).

• A graph is processed with a relational network (RN) which models relations between each pair of

objects to produce the correct answer to a given question.

• The question (its embedding) is used as a global context for modeling relations.
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Visual scene understanding with a relational network (Santoro et al., 2017)

Questions are processed with an LSTM to produce a question embedding. Images are processed with a CNN to produce a set of objects for the RN.

Objects (three examples illustrated here in yellow, red, and blue) are constructed using feature-map vectors from the convolved image. The RN

considers relations across all pairs of objects, conditioned on the question embedding, and integrates all these relations to answer the question.
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Visual scene understanding with a relational network: Results

• Results on CLEVR from pixels. Accuracy on the test set broken down by question category:
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Graph Convolutional Networks

(Kipf and Welling, 2017)

http://arxiv.org/pdf/1609.02907.pdf


Graph Convolutional Networks (Kipf and Welling, 2017)

• Graph convolutional networks (GCNs) is a popular type of graph neural networks.

• Motivation of GCNs: semi-supervised classification of nodes in a graph.

Example:

• nodes are documents
• edges are citation links
• node attributes xi are bag-of-words

features of documents
• some documents have class labels

• Assumption: when predicting the class of a node, the attributes and connectivity of nearby nodes

provide useful side information or additional context.
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Generalization of convolution to graphs

• Consider an image segmentation problem:

classify each pixel of an image.

• Image segmentation is usually done with

convolutional neural networks (U-net).

• We can view an image as a graph where

each pixel is connected to all its neighbors.

• Kipf and Welling (2017) generalize the concept

of convolution to graphs with arbitrary structure.

• They adopt a spectral view on convolutions:

convolutions in Fourier-domain are simple

pointwise multiplication of the Fourier-transform

of a signal.
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Graph “convolutional” layer

• The input of a layer is a graph with N nodes with C -dimensional attributes X ∈ RN×C .

• The output is a graph with the same structure and a new set of features Z ∈ RN×F .

• The output is computed (in authors’ notation) as:

Z = ÂXW

where W ∈ RC×F is a matrix of filter parameters and

Â = D̃−
1
2 ÃD̃−

1
2 with Ã = A + I and D̃ii =

∑
j Ãij .

• Â describes the structure of the graph: âii 6= 0 and âij 6= 0 if node i is connected to node j .

• For each node i , we combine signals âijW
>xj : coming from all its neighbors j ∈ N (i):

zi : = (Âi :XW)> =
∑

j∈N (i)

âijW
>xj :

34



Results for semi-supervised classification with GCNs

• Nodes are documents and edges are

citation links.

• Node attributes xi are bag-of-words

features of documents.

• Some documents have class labels

(the label rate is 0.036 for Citeseer,

0.052 for Cora, 0.003 for Pubmed

and 0.001 for NELL).

• The task is to classify all the

documents.

Classification accuracy (in percent)
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Recurrent Relational Networks

(Palm et al., 2018)

http://arxiv.org/pdf/1711.08028.pdf


Recurrent Relational Networks (Palm et al., 2018)

• We want to solve tasks that require a chain of interdependent steps of relational inference, like,

for example, solving Sudoku.
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A graph describing the Sudoku puzzle

• The puzzle is represented as a graph in which a cell is represented by a node. The nodes are

connected to all nodes in the same row, in the same column and in the same 3× 3 block.

8 6 3

9

7

2

1

8

8 3

The subgraph that contains only the nodes connected to the pink node

and the corresponding links.
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Recurrent Relational Networks: The algorithm

• Initialize the states of the nodes to h0
j .

• Build a computational graph with T iterations. Each

iteration consists of the following four steps.

1. Compute messages for all edges connecting a pair of

nodes i and j :

mt
ij = f (ht−1

i , ht−1
j )

mt
ji = f (ht−1

j , ht−1
i )

f can be modeled with an MLP. Note that for each

edge we need to compute two messages.

2. In every node, aggregate all incoming messages by

summation:

mt
j =

∑
i∈N (j)

mt
ij

hk hj hi

+ mj

mkj = f (hk , hj ) mij = f (hi , hj )
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Recurrent Relational Networks: The algorithm

3. Update the states of the nodes:

htj = g(ht−1
j , xj ,m

t
j )

Input xj is either the given digit for cell j or a special

token indicating a missing digit. g can be modeled by a

recurrent unit, for example, GRU.

4. For each node, compute outputs ot
j :

ot
j = fo(htj )

and compute the loss. The loss function relates the

outputs with the correct digits in the solved Sudoku

puzzle (we use CrossEntropyLoss). fo can be modeled

with a linear layer.

hk hj

mj
xj

oj

hi
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Recurrent Relational Networks: Solving Sudoku

• Comparison of methods for solving Sudoku puzzles (only differentiable methods):
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Recurrent Relational Networks: Solving Sudoku

Example of how the trained network solves part of a Sudoku. Only the top row of a full 9x9 Sudoku is shown for clarity. From top to bottom steps 0,

1, 8 and 24 are shown. Each cell displays the digits 1-9 with the font size scaled (non-linearly for legibility) to the probability the network assigns to

each digit. Notice how the network eliminates the given digits 6 and 4 from the other cells in the first step.
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General algorithms for

graph neural networks (GNNs)



Similarities between different graph neural networks

• We have considered several algorithms for graph neural networks:

• neural networks for learning molecular fingerprints (Duvenaud et al., 2015)

• interaction networks (Battaglia et al., 2016)

• simple relational network for visual scene understanding (Santoro et al., 2017)

• graph convolutional networks (Kipf and Welling, 2017)

• recurrent relational networks (Palm et al., 2018)

• They all have very similar structure: In every iteration, nodes send messages to their neighbors

and node attributes are updated using the received messages. The differences are mainly in the

parametric form of the messages and the way the messages are aggregated.

• Let us review the computational steps in such graph neural networks (GNNs).
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Computational steps in GNNs

• The input of a GNN is an undirected graph G with node features

xi and edge features eij .

• Each node has state hi which is initialized to ht=0
i .

• There are T iterations which consist of several steps (see next

slide) that update the states of the nodes:

h0
i → h1

i → ...→ hT
i

• Finally, a readout function combines all node states to compute a

single output:

y = o({hT
i | i ∈ G})

ht
1

ht
2

ht
3 ht

4

ht
5 ht

6
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One iteration in a GNN

1. Each node receives messages from all its neighbors

mt+1
j→i = gt(ht

j , ht
i , eji )

2. Each node aggregates messages (for example, by summation):

mt+1
i =

∑
j∈N (i)

mt+1
j→i

ht
1

ht
2

ht
3 ht

4

ht
5 ht

6

ht+1
1

ht+1
2

ht+1
3 ht+1

4

ht+1
5 ht+1

6

mt+1
1→2

mt+1
3→2 mt+1

4→2
mt+1

i

3. The state of each node is updated using the aggregate message:

ht+1
i = f (ht

i ,mt+1
i , xi )

We can use node attributes xi as extra inputs.
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Example: Message passing in graph convolutional networks (GCNs)

1. Each node receives messages from all its neighbors

mt+1
j→i = g(hj) = âijW

>hj

2. Each node aggregates messages (including a message from itself):

mt+1
i =

∑
j∈N (i)

mt+1
j→i

3. The state of each node is updated using aggregate messages:

ht+1
i = f (mt+1

i ) = relu(mt+1
i )

ht
1

ht
2

ht
3 ht

4

ht
5 ht

6

mt+1
1→2

mt+1
3→2 mt+1

4→2

• GCNs use very simple g and f , which limits their representation power.
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Neural Message Passing

• Gilmer et al. (2017) proposed to unify several graph neural network algorithms in more general

message passing neural networks (MPNN).

• Many previously considered graph neural networks can be viewed as an instance of MPNN.

• Later, Battaglia et al. (2018) defined a more general framework that also includes the update of

the edge attributes in the first phase of the forward pass.

• Note: A message-passing algorithm is used for performing inference on probabilistic graphical

models, such as Bayesian networks and Markov random fields (known as belief propagation).
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Learning to simulate complex physics

with graph networks



Learning to simulate complex physics (Sanchez-Gonzalez et al., 2020)

• GNNs can learn to simulate a wide variety of challenging physical domains: fluids, rigid solids,

deformable materials interacting with one another.

• Sanchez-Gonzalez et al., (2020) focus on particle-based simulation:

• States are represented as a set of particles, which encode mass, material, movement, etc. within local

regions of space.

• Dynamics are computed on the basis of particles’ interactions within their local neighborhoods.
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https://arxiv.org/abs/2002.09405
https://arxiv.org/abs/2002.09405


Details on the model

• The encoder constructs the graph structure by assigning a node to each particle and adding edges

between particles within a “connectivity radius” R.

• The processor performs M steps of learned message-passing.

• The decoder extracts dynamics information from the nodes’ features.

• Videos of learned simulations can be found here.
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https://sites.google.com/view/learning-to-simulate/home#h.p_hjnaJ6k8y0wo


MeshGraphNets: Learning mesh-based simulation (Pfaff et al., 2020)

Videos
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https://arxiv.org/abs/2010.03409
https://sites.google.com/view/meshgraphnets


GraphCast: A medium-range global weather forecasting model (Lam et al., 2022)

• GraphCast is an autoregressive

model, based on GNNs and a

high-resolution multi-scale mesh

representation, which is trained

on historical weather data.

• GraphCast outperforms the most

accurate deterministic

operational medium-range

weather forecasting system in the

world.
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https://arxiv.org/abs/2212.12794


Home assignment



Assignment 06 gnn

• You need to implement a graph neural network which

solves Sudoku puzzles, which is inspired by (Palm et al.,

2018).

hk hj hi

mkj = f (hk , hj ) mij = f (hi , hj )
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http://arxiv.org/pdf/1711.08028.pdf
http://arxiv.org/pdf/1711.08028.pdf


Recommended reading

• Battaglia et al., 2018. Relational inductive biases, deep learning, and graph networks.

• Other papers cited in the lecture slides.
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