
CS-E4890: Deep Learning

Deep autoencoders

Alexander Ilin



Motivation

• Supervised learning problems: datasets consist of input-output pairs

(x(1), y(1)), . . . , (x(n), y(n))

• Deep learning: supervised learning solved.

• Unsupervised learning: Make computers learn from unlabeled data

x(1), . . . , x(n)

• Unsupervised learning seems important for building intelligent systems that can learn quickly. We

humans learn a lot from unlabeled data.

• Unsupervised learning can be useful for:

• representation learning (learning features useful for supervised learning problems)

• detect samples that look different from training population (novelty/anomaly detection)

• visualize data, discover patterns (information visualization)

• generate new samples which look similar to the training data (generative models)

1



Representation learning

• We can use unlabeled data to do representation learning.

• Representation learning: extract features that may be useful for future (downstream) tasks

x
f−→ z

• Extracted features might work better than raw data in supervised learning tasks (especially with

little labeled data):

x
f−→ z→ y

• Problem: we do not know for which downstream tasks we need to prepare.

• Solution: we come up with auxiliary learning problems that would encourage learning useful
representations:

• data compression

• prediction of the next observation

• contrastive learning

2



Unsupervised representation learning

with autoencoders



Dimensionality reduction (data compression)

• In many applications, the input data can be highly multi-dimensional (e.g., high-resolution

images). Data often contain a lot of redundant information and it is often a good idea to reduce

the data dimensionality.

• Working with reduced dimensionalities can save computations.

• Working with low-dimensional data might help improve the accuracy of the model, for example, we

might reduce the risk of overfitting).

• Consider, for example, a reinforcement learning of playing Doom (Ha and Schmidhuber, 2018).

• Learning from raw images (pixels) is likely to require a

huge number of training episodes.

• We can compress the data and then train a policy

using compressed representations z.

4

https://arxiv.org/abs/1803.10122


Principal component analysis (PCA)

• PCA is a classical technique of dimensionality reduction.

• It is traditionally formulated as finding data projection y1 = w>1 x with

the maximum variance.

• For centered data
{
x(i)
}

with covariance matrix C = 1
N

∑N
i=1 x

(i)x(i)>:

w∗1 = arg max
w1

w>1 Cxw1, subject to ‖w1‖ = 1

• The solution is given by the first dominant eigenvector of the covariance

matrix Cx.

• The second principal component is found by maximizing the variance in

the subspace orthogonal to the first eigenvector of Cx (and so on).

5.0 2.5 0.0 2.5 5.0 7.5

6

4

2

0

2

4

6

8

5



Finding a principal subspace with a linear autoencoder

• PCA can be used to find principal subpaces of data.

• A principal subspace of size m is found as a linear projection of

n-dimensional data

z
m×1

= W
m×n

> x
n×1

to minimize the mean-square error

W∗ = arg min
W

1

N

N∑
i=1

∥∥∥x(i) −Wz(i)
∥∥∥2

, s.t. W>W = I

between original data and its reconstruction from z: x̂ = Wz.

x x̂

z
encoder
W>x

decoder
Wz

reconstruction

loss

• Such a model is called autoencoder: data x are both model inputs and targets for model outputs.

• A principal subspace can be found with a linear autoencoder: both the encoder and decoder are

linear functions.

6



PCA as a bootleneck autoencoder

encoder: f(x) = Wf x + bf

decoder: x̂ = g(z) = Wgz + bg

L =
1

N

N∑
i=1

∥∥∥x(i) − f(g(z(i)))
∥∥∥2 x x̂

z

f g

reconstruction

loss

• If we do not restrict f and g, we can learn a trivial identity mapping:

x̂ = g(f(x)) = (WgWf ) x + (Wgbf + bg ) = x, if Wg = W−1
f and bg = −Wgbf

• If the dimensionality of z is smaller than the dimensionality of x, autoencoding is useful: we

compress the data.

• z is often called a bottleneck.

• Thus PCA can be implemented with a bottleneck autoencoder.

• How can we improve compression so that we get a smaller reconstruction error with a bottleneck

layer of the same size?

We can use nonlinear encoder f and decoder g.

7



PCA as a bootleneck autoencoder

encoder: f(x) = Wf x + bf

decoder: x̂ = g(z) = Wgz + bg

L =
1

N

N∑
i=1

∥∥∥x(i) − f(g(z(i)))
∥∥∥2 x x̂

z

f g

reconstruction

loss

• If we do not restrict f and g, we can learn a trivial identity mapping:

x̂ = g(f(x)) = (WgWf ) x + (Wgbf + bg ) = x, if Wg = W−1
f and bg = −Wgbf

• If the dimensionality of z is smaller than the dimensionality of x, autoencoding is useful: we

compress the data.

• z is often called a bottleneck.

• Thus PCA can be implemented with a bottleneck autoencoder.

• How can we improve compression so that we get a smaller reconstruction error with a bottleneck

layer of the same size? We can use nonlinear encoder f and decoder g.

7



Deep autoencoders

• Deep autoencoders (Bourlard and Kamp, 1988; Oja, 1991) is an

extension of this idea to using nonlinear encoders and decoders. Both

are implemented as deep neural networks:

z(i) = f
(
x(i),θf

)
θf ,θg = arg min

θf ,θg

1

N

N∑
i=1

∥∥∥x(i) − g(z(i),θg )
∥∥∥2

• To prevent learning a trivial (identity) function, z has fewer

dimensions than x (a bottleneck layer). Such autoencoders are often

called bottleneck autoencoders.
x

z

f

x̂

g

8



Deep autoencoders can learn complex data manifolds

• In this hypothetical example, the data lie on

one-dimensional manifold.

• Principal component analysis is not be able to learn the

one-dimensional manifold because it is a linear model.

• With a nonlinear autoencoder, we can learn a curved

data manifold.

• In our example, colors represents the values of the latent

code z that may be found by an autoencoder.

A one-dimensional data manifold in the

two-dimensional space.

9



Deep autoencoders can learn complex data manifolds

• In this hypothetical example, the data lie on

one-dimensional manifold.

• Principal component analysis is not be able to learn the

one-dimensional manifold because it is a linear model.

• With a nonlinear autoencoder, we can learn a curved

data manifold.

• In our example, colors represents the values of the latent

code z that may be found by an autoencoder.
A one-dimensional data manifold in the

two-dimensional space.

9



Deep bottleneck autoencoder: MNIST example

• In the home assignment,

you will train a

bottleneck autoencoder

for the MNIST dataset.

• Visualization of the

z-space using t-SNE:

40 20 0 20 40
40

30

20

10

0

10

20

30
0
1
2
3
4
5
6
7
8
9

x

z

f

x̂

g

10



Denoising autoencoders



Vanilla autoencoders fail to extract more complex features

• Vanilla autoencoders cannot extract complex features, for example, features related to

higher-order statistics (e.g., variance).

• Example: a variant of the MNIST dataset in which

pixel intensities have high variance in the locations

of the strokes.

• A vanilla autoencoder fails to extract features that

allow classification of the images.

• The problem of the vanilla autoencoder is the mean-squared error loss which significantly

constraints which the types of features that can be extracted.

12



Denoising autoencoder (Vincent et al., 2008)

• Denoising autoencoders are conceptually similar to vanilla

autoencoders. The difference is that the inputs of the

autoencoder are always corrupted with noise (for example,

Gaussian):

x̃(i) = x(i) + ε(i) ε(i) ∼ N (0, σ2I)

z(i) = f
(
x̃(i),θf

)
θf ,θg = arg min

θf ,θg

1

N

N∑
i=1

∥∥∥x(i) − g(z(i),θg )
∥∥∥2

• One can view adding noise to inputs as a way to regularize

the autoencoder (regularization by noise injection) but there

is more theory behind denoising autoencoders.

x̃

z

f

x̂

g

13



What does denoising autoencoder learn?

• For Gaussian corruption ε(i) ∼ N (0, σ2I), the optimal

denoising can be shown to be

d(x̃) = x̃ + σ2∇x̃ log p(x̃)

(see Alain and Bengio, 2014, Raphan and Simoncelli, 2011)

• d(·) learns to point towards higher probability density.

• Thus, by learning the optimal denoising function d(x), we

implicitly model the data distribution p(x).

Image from (Alain and Bengio, 2014)

14

https://arxiv.org/abs/1211.4246
https://www.cns.nyu.edu/pub/eero/raphan10.pdf
https://arxiv.org/abs/1211.4246


Denoising autoencoder: variance MNIST example

• Since the inputs of the autoencoder are noisy versions of the

targets, the model cannot learn an identity mapping. Therefore:

• A bottleneck layer is not needed in principle, but having a

bottleneck layer often helps.

• There can be skip connections between the encoder and the

decoder (like in the U-net).

x x̂

ŷ

noise

• For the variance-MNIST data, a denoising autoencoder can learn

features that capture the shapes of the digits (see the

visualization of the z-space using t-SNE).
40 20 0 20 40

40

30

20

10

0

10

20

30 0
1
2
3
4
5
6
7
8
9

15



Ladder networks (Rasmus et al., 2015)

• Ladder networks used the principle of denoising to learn useful features in the semi-supervised

settings (learning from both labeled and unlabeled examples).

• The architecture resembles a ladder (or a U-net): it is

a denoising autoencoder with skip connections.

• The primary task is classification (bottleneck layer).

• The auxiliary task is denoising (output of the DAE).

• Intuition: In order to reconstruct the clean image

from a noisy one, one has to learn features which are

commonly present in images, which can help with the

primary classification task.

• Ladder networks inspired modern models for deep

semi-supervised learning.
x x̂

ŷ

x

y

denoising
cost

denoising
cost

denoising
cost

denoising
cost

classification
cost

noise

noise

noise

noise

16

https://arxiv.org/abs/1507.02672


Denoising autoencoder: variance MNIST example

• In the home assignment, we create a synthetic

dataset (which we call variance MNIST).

• A denoising autoencoder can extract meaningful

features. Visualization of the z-space using t-SNE:

40 20 0 20 40

40

30

20

10

0

10

20

30 0
1
2
3
4
5
6
7
8
9

17



Converting autoencoders into

generative models with latent variables



Generative models

• Generative models:

• learn to represent the data distribution p(x)

• can be used to generate new examples from p(x).

• An example: a mixture-of-Gaussians model

p(x | θ) = w1N (x | µ1, σ
2
1) + w2N (x | µ2, σ

2
2)

Parameters θ = {w1, µ1, σ1,w2, µ2, σ2} can be estimated

by maximum likelihood.

• This model is an example of an explicit density model:

p(x | θ) has an explicit parametric form.

19



Converting autoencoders into generative models

• Vanilla autoencoders are not generative models.

• We cannot generate new samples from p(x).

• We cannot compute the probability that a new sample x comes

from the same distribution (e.g., for novelty detection).

• We can build a generative model, for example, in this way:

• Assume that variables z are normally distributed:

z ∼ N (0, I)

• Data samples x are nonlinear transformations of latent variables z:

x = g(z,θ) + ε

with possibly noise added: ε ∼ N (0, σ2I)

• Function g(z,θ) can be modeled as a neural network.

• Now we can draw samples from the model.

z

z

g

x̂

x

x

f

20



Converting autoencoders into generative models

• Vanilla autoencoders are not generative models.

• We cannot generate new samples from p(x).

• We cannot compute the probability that a new sample x comes

from the same distribution (e.g., for novelty detection).

• We can build a generative model, for example, in this way:

• Assume that variables z are normally distributed:

z ∼ N (0, I)

• Data samples x are nonlinear transformations of latent variables z:

x = g(z,θ) + ε

with possibly noise added: ε ∼ N (0, σ2I)

• Function g(z,θ) can be modeled as a neural network.

• Now we can draw samples from the model.

z

z

g

x̂

x

x

f

20



Latent variable model

• Our model contains latent (unobserved) variables z:

z ∼ N (0, I)

x = g(z,θ) + ε

ε ∼ N (0, σ2I)

• A simple example to illustrate the idea: We model

one-dimensional data x as a Gaussian variable z

transformed with nonlinearity g with some noise added.

• We need to learn the latent variable model from training

data {xi}. We should tune parameters θ, σ2 so that the

training examples are likely to be produced by the model.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

x

p(x)

z

p(z)

g(z)

21



Learning the parameters of the latent variable model

• We can tune parameters θ, σ2 by maximizing the probability of the training data (maximum

likelihood estimate):
θML = arg max

θ
log p(x1, ..., xN | θ)

log p(x1, ..., xN | θ) =
N∑
i=1

log p(xi | θ) =
N∑
i=1

log

∫
p(xi | zi ,θ)p(zi )dz

• The probability density functions are defined by our

model:

p(xi | zi ,θ) = N (xi | g(zi ,θ), σ2I)

p(zi ) = N (zi | 0, I)

• Direct optimization of log p(x1, ..., xN | θ) is difficult

because the above integrals are intractable.
3 2 1 0 1 2 3

3

2

1

0

1

2

3

x

p(x)

z

p(z)

g(z)

22



ML estimation with the EM algorithm

• The classical way to estimate parameters θ of a latent

variable model

p(x1, ..., xN , z1, ..., zN | θ) =
N∏
i=1

p(xi | zi ,θ)p(zi )

is the expectation-maximization (EM) algorithm.

• The EM-algorithm iterates between two steps: E-step

and M-step.

• E-step: Compute posterior probabilities p(zi | xi ,θ)

given current values of θ.

• M-step: Update the values of θ using computed

p(zi | xi ,θ).

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

p(x)

z

p(z)

g(z)

Consider our simple example. We initialize θ with

values that give us g of the form shown in the figure.

23



EM algorithm: E-step

z ∼ N (0, I)

x = g(z,θ) + ε

ε ∼ N (0, σ2I)

• The E-step: Compute the posterior probabilities of the

unobserved latent variables zi given the data and the

current estimates of the model parameters θ:

q(z1, ..., zN) = q(z1)...q(zN)

q(zi ) = p(zi | xi ,θ)

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x1

p(z1 | x1, θ)

g(z)

E-step: For each training data point, find the

distribution over the latent variables that could have

produced that data point according to the model.

24



EM algorithm: E-step

z ∼ N (0, I)

x = g(z,θ) + ε

ε ∼ N (0, σ2I)

• The E-step: Compute the posterior probabilities of the

unobserved latent variables zi given the data and the

current estimates of the model parameters θ:

q(z1, ..., zN) = q(z1)...q(zN)

q(zi ) = p(zi | xi ,θ)

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x2

p(z2 | x2, θ)

g(z)

E-step: For each training data point, find the

distribution over the latent variables that could have

produced that data point according to the model.

24



EM algorithm: E-step

z ∼ N (0, I)

x = g(z,θ) + ε

ε ∼ N (0, σ2I)

• The E-step: Compute the posterior probabilities of the

unobserved latent variables zi given the data and the

current estimates of the model parameters θ:

q(z1, ..., zN) = q(z1)...q(zN)

q(zi ) = p(zi | xi ,θ)

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x3

p(z3 | x3, θ)

g(z)

E-step: For each training data point, find the

distribution over the latent variables that could have

produced that data point according to the model.

24



EM algorithm: M-step

• In the M-step, we use the computed distributions q(zi )

to form the following objective function:

F(θ) = 〈log p(x1, ..., xN , z1, ..., zN | θ)〉q(z1,...,zN )

=
N∑
i=1

〈log p(xi , zi | θ)〉q(zi )

=
N∑
i=1

∫
q(zi ) log p(xi , zi | θ)dzi

and maximize it wrt model parameters θ.

• We are guaranteed to improve the likelihood

log p(x1, ..., xN | θ)

for each iteration of the EM-algorithm.

3 2 1 0 1 2 3

6

4

2

0

2

4

6

Iteration 1

25



EM algorithm: M-step

• In the M-step, we use the computed distributions q(zi )

to form the following objective function:

F(θ) = 〈log p(x1, ..., xN , z1, ..., zN | θ)〉q(z1,...,zN )

=
N∑
i=1

〈log p(xi , zi | θ)〉q(zi )

=
N∑
i=1

∫
q(zi ) log p(xi , zi | θ)dzi

and maximize it wrt model parameters θ.

• We are guaranteed to improve the likelihood

log p(x1, ..., xN | θ)

for each iteration of the EM-algorithm.

3 2 1 0 1 2 3
6

4

2

0

2

4

6

Iteration 2

25



EM algorithm: M-step

• In the M-step, we use the computed distributions q(zi )

to form the following objective function:

F(θ) = 〈log p(x1, ..., xN , z1, ..., zN | θ)〉q(z1,...,zN )

=
N∑
i=1

〈log p(xi , zi | θ)〉q(zi )

=
N∑
i=1

∫
q(zi ) log p(xi , zi | θ)dzi

and maximize it wrt model parameters θ.

• We are guaranteed to improve the likelihood

log p(x1, ..., xN | θ)

for each iteration of the EM-algorithm.

3 2 1 0 1 2 3
6

4

2

0

2

4

6

Iteration 3

25



EM algorithm: M-step

• In the M-step, we use the computed distributions q(zi )

to form the following objective function:

F(θ) = 〈log p(x1, ..., xN , z1, ..., zN | θ)〉q(z1,...,zN )

=
N∑
i=1

〈log p(xi , zi | θ)〉q(zi )

=
N∑
i=1

∫
q(zi ) log p(xi , zi | θ)dzi

and maximize it wrt model parameters θ.

• We are guaranteed to improve the likelihood

log p(x1, ..., xN | θ)

for each iteration of the EM-algorithm.

3 2 1 0 1 2 3
6

4

2

0

2

4

6

Iteration 4

25



Learning latent variable models

with variational approximations



Intractability of the true conditional distributions

• There are a few problems with the direct application of

the EM-algorithm in nonlinear latent variable models.

• One problem is the intractability of the true conditional

distributions q(zi ) = p(zi | xi ,θ) that we need to

compute on the E-step.

• The true distributions can be very complex (for example,

a multi-modal distribution in our simple example). 3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x2

p(z2 | x2, θ)

q(z2)

f (z)

Example of multi-modal p(zi | xi , θ)

27



E-step: Variational approximations

• Solution: Instead of using true conditional distributions,

use their approximations q(zi ) ≈ p(zi | xi ,θ).

• q(zi ) is selected to have a simple form, most often a

Gaussian:

q(zi ) = N (µzi , σ
2
zi )

Note: we have two parameters µzi and σ2
zi describing

q(zi ) for each training sample.

• Parameters describing the posterior distributions of the

latent variables θq = {µzi , σ
2
zi }

N
i=1 are called variational

parameters.

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x2

p(z2 | x2, θ)

q(z2)

f (z)

• A popular way to find the approximation is by minimizing the Kullback-Leibler divergence between

q(zi ) and p(zi | xi ,θ).

28



E-step: Variational approximations

• We can minimize the KL divergence between q(zi ) and p(zi | xi ,θ) using the following trick:

• Add to the objective function used in the M-step the entropies of the approximate distributions:

F(θ,θq) =
N∑
i=1

∫
q(zi ) log p(xi , zi | θ)dzi︸ ︷︷ ︸
what we had in the M-step

−
∫

q(zi ) log q(zi )dzi︸ ︷︷ ︸
entropy

=
N∑
i=1

∫
q(zi ) log

p(xi , zi | θ)

q(zi )
dzi =

N∑
i=1

∫
q(zi ) log

p(zi | xi ,θ)p(xi | θ)

q(zi )
dzi

=
N∑
i=1

−DKL(q(zi ) ‖ p(zi | xi ,θ)) + log p(xi | θ)

• One can see that maximizing F(θ,θq) wrt variational parameters θq is equivalent to minimizing

the KL divergence between q(zi ) and p(zi | xi ,θ).

29



EM algorithm with variational approximations

• We can now maximize a single function F wrt θ and θq jointly without the need to alternate

between the E- and M-steps:

F(θ,θq) =
N∑
i=1

∫
q(zi ) log p(xi , zi | θ)dzi −

∫
q(zi ) log q(zi )dzi

=
N∑
i=1

−DKL(q(zi ) ‖ p(zi | xi ,θ)) + log p(xi | θ)

• Maximizing F(θ,θq) wrt θ is equivalent to the M-step.

• Maximizing F(θ,θq) wrt θq is done in the E-step with variational approxiations.

• We can solve this optimization problem using any optimizer of our choice.

30



Evidence lower bound (ELBO)

• The objective function

F(θ,θq) =
N∑
i=1

−DKL(q(zi ) ‖ p(zi | xi ,θ)) + log p(xi | θ)

is the lower bound of the true likelihood that we want to optimize. Since DKL(q ‖ p) ≥ 0:

F (θ,θq) ≤
N∑
i=1

log p(xi | θ) = log p(x1, ..., xN | θ)

• This function is often called evidence lower bound or ELBO.

• The closer our approximation q(zi ) to the true posterior p(zi | xi ,θ), the tighter the bound.

31



ELBO for our deep generative model

• ELBO can be re-written in the following form:

F (θ,θq) =
N∑
i=1

∫
q(zi ) log p(xi | zi ,θ)dzi −

∫
q(zi ) log

q(zi )

p(zi )
dzi (1)

• Recall our deep generative model: p(xi | zi ,θ) = N (xi | g(zi ,θ), σ2I),

• The first term in equation (1) can be written as〈
−D

2
log 2πσ2 − 1

2σ2

D∑
d=1

(xi (d)− gd(zi ,θ))2

〉
q(zi )

where D is the number of dimensions in x, xi (d) is the d-th element of xi and gd

is the d-th element of the output of function g .

• The first term contains the mean-squared error between data sample xi and its

reconstruction gd(zi ,θ) from the latent code zi .

z

x

g

32



ELBO for our deep generative model

F (θ,θq) =
N∑
i=1

∫
q(zi ) log p(xi | zi ,θ)dzi︸ ︷︷ ︸

minus mean-square reconstruction error

−
∫

q(zi ) log
q(zi )

p(zi )
dzi︸ ︷︷ ︸

regularization term

• The second term is minus KL-divergence between q(zi ) and the prior p(zi ) = N (0, I):

−
∫

q(zi ) log
q(zi )

p(zi )
dzi = −DKL(q(zi ) ‖ p(zi ))

• It is a kind of a regularization term: We want the conditional distributions q(zi ) to be close to the

prior p(zi ) = N (0, I).

33



Variational autoencoders



First algorithms for learning this type of models

• The first algorithm for learning latent variable model

z ∼ N (0, I) x = g(z,θ) + ε ε ∼ N (0, σ2I)

using variational approximations was proposed in this university (Lappalainen and Honkela, 2001).

• The objective function was ELBO:

F(θ,θq) =
N∑
i=1

∫
q(zi ) log p(xi | zi ,θ)dzi︸ ︷︷ ︸

needs approximations

−
∫

q(zi ) log
q(zi )

p(zi )
dzi︸ ︷︷ ︸

can be computed analytically

• The posterior approximations were Gaussian q(zi ) = N (µzi , σ
2
zi ). The number of variational

parameters θq = {µzi , σ
2
zi }

N
i=1 was proportional to the number of training samples.

35

https://www.cs.helsinki.fi/u/ahonkela/papers/ch7.pdf


Adding encoder

• We want to get rid of the large number of variational

parameters θq = {µzi , σ
2
zi }

N
i=1.

• For fixed model parameters θ, the optimal q(z) only

depends on x. The inference procedure does the

following mapping:

x→ q(z)

For Gaussian approximation: x→ µz, σ
2
z .

3 2 1 0 1 2 3

6

4

2

0

2

4

6

x

z

x2

p(z2 | x2, θ)

q(z2)

g(z)

• In variational autoencoders (VAE) (Kingma and Welling, 2014), mapping x→ q(z) is done using

a neural network (encoder).

• The encoder performs so called amortized inference: When doing inference for a particular sample

xi , we leverage the knowledge of the inference results for other samples. If two samples xi and xj
are close to each other, the corresponding q(zi ), q(zj) should be close as well.

36

https://arxiv.org/abs/1312.6114


Variational autoencoder (VAE): Encoder and decoder

• Our generative model is defined by the decoder.

z ∼ N (0, I) x = g(z,θ) + ε ε ∼ N (0, σ2I)

• Encoder is a neural network that is trained to perform variational inference:

x→ q(z)

• For Gaussian approximation q(z), the neural network needs to produce:

x→ µz, σ
2
z

• In practice, this is done using one neural network with two heads.

• The encoder is similar to the encoder in a bottleneck autoencoder but

produces the mean and variance of the code z.

• The encoder and decoder are two components of the variational autoencoder.

x

µz σ2
z z

x̂

Encoder Decoder

37



Monte Carlo estimates of the objective function

• The first term of the objective function cannot computed analytically

F(θ,θq) =
N∑
i=1

∫
q(zi ) log p(xi | zi ,θ)dzi︸ ︷︷ ︸

needs approximations

−
∫

q(zi ) log
q(zi )

p(zi )
dzi︸ ︷︷ ︸

can be computed analytically

• Kingma and Welling (2014) proposed to use Monte Carlo estimates:∫
q(zi ) logN (xi | g(zi ,θ), σ2I)dzi ≈

1

L

L∑
l=1

logN (xi | g(z(l)
i ,θ), σ2I)

where z(l)
i are drawn from q(zi ). Using L = 1 works well in practice. x

µz σz z(l)

x̂

sample

38

https://arxiv.org/abs/1312.6114


Computation of the objective function

F (θ,θq) =
N∑
i=1

logN (xi | g(z(l)
i ,θ), σ2I)︸ ︷︷ ︸

Monte Carlo estimate

−
∫

q(zi ) log
q(zi )

p(zi )
dzi︸ ︷︷ ︸

can be computed analytically

• For each training example xi :

• compute means µzi and σzi using the encoder

• compute the second term analytically

• draw L = 1 samples z
(l)
i from q(zi ) = N (µzi , σ

2
zi

)

• propagate z
(l)
i through the decoder and compute the first term

• Problem: We can use backpropagation to compute the derivatives

wrt the parameters of the decoder but we need an extra trick to

propagate derivatives through the encoder.
x

µz σz z(l)

x̂

sample

39



Reparameterization trick

• We need a computational block that would

• take as inputs µz and σz
• produce a sample from distribution z ∼ N (µz, σz)

• would be differentiable wrt µz and σz

• We can obtain this with the reparameterization trick:

• Sample ε ∼ N (0, I)

• Compute z = µz + σzε

• Now we can also backpropagate through the sampling block and then

further through the encoder.

x

µz, σz

x̂

sample

z = µz + σzε

z

40



Reparameterization trick

• We need a computational block that would

• take as inputs µz and σz
• produce a sample from distribution z ∼ N (µz, σz)

• would be differentiable wrt µz and σz

• We can obtain this with the reparameterization trick:

• Sample ε ∼ N (0, I)

• Compute z = µz + σzε

• Now we can also backpropagate through the sampling block and then

further through the encoder.
x

µz, σz

x̂

sample

z = µz + σzε

z

40



VAE training algorithm

• VAE training algorithm:

• Take a mini-batch {xi} of training samples.

• Use the encoder to compute means µzi and standard deviations σzi
for each sample xi in the mini-batch.

• Draw εi ∼ N (0, I) and compute samples zi = µzi + σzi εi
• Propagate samples zi through the decoder to compute reconstructions

x̂i .

• Compute the loss which is the negative of

F (θ,θq) =
1

n

n∑
i=1

logN (xi | g(z
(l)
i ,θ), σ2I)︸ ︷︷ ︸

Monte Carlo estimate

−
∫

q(zi ) log
q(zi )

p(zi )
dzi︸ ︷︷ ︸

can be computed analytically

• Perform backpropagation and update the parameters of the encoder

and the decoder.
x

µz, σz z = µz + σzε

x̂

41



Variational autoencoder: variance MNIST example

• In the home assignment, we train a variational

autoencoder on a synthetic (variance MNIST)

dataset.

• In order to extract meaningful features for this dataset,

we need to use a generator (decoder) that models the

variances of pixel intensities:

z ∼ N (0, I) x ∼ N (µ(z), diag(σ(z)))

µ(z) = gµ(z,θ) σ(z) = exp(gσ(z,θ))
40 20 0 20 40

30

20

10

0

10

20

30

40
0
1
2
3
4
5
6
7
8
9

42



Why should I use a VAE?

• VAE is more complex than a simple bottleneck autoencoder. Do we need these complications?

• As we will see in the home assignment, VAEs are more powerful. In some problems when vanilla

autoencoders fail, VAEs can develop useful representations.

• The problem of the vanilla autoencoder is the mean-squared error loss, which makes too simplistic

assumptions about the data distribution.

• One advantage of VAE is in greater flexibility in defining the generative model.

• Note that denoising autoencoders are more powerful than standard autoencoders even though

they also use the mean-squared error loss.

43



VAEs as generative models

• The main benefit of VAEs is that we can encode data into a lower-dimensional representation.

• But VAEs are generative models and we can draw samples using VAEs.

• Traditionally, the quality of the VAE-generated samples have not been very impressive: samples

and reconstructions usually look blurry.

Reconstructions Generated samples

Images from (Tolstikhin et al., 2017)

44

https://arxiv.org/abs/1711.01558


Nouveau VAE (NVAE; Vahdat and Kautz, 2020)

• Vahdat and Kautz (2020) presented a VAE model that is able to generate high-quality images.

• It is a hierarchical latent variable model, that is there are multiple levels of latent variables.

Reconstructions

Generated samples

45

https://arxiv.org/abs/2007.03898
https://arxiv.org/abs/2007.03898


Home assignment



Assignment 07 ae

• In the home assignment, you will have to implement three types of autoencoders:

1. Vanilla bottleneck autoencoder

2. Denoising autoencoder

3. Variational autoencoder

47



Recommended reading

• Chapter 14 of the Deep Learning book

• Papers cited in the lecture slides

48


