A

Aalto University

CS-E4890: Deep Learning
Denoising-based generative modeling

Alexander llin

Representation learning by denoising

e Previously, we considered denoising autoencoders (DAE)
e Corrupt data with noise: X =x+ € with €~ N(0,02l)

e train a network d(X) to produce clean data x by minimizing £ = E [||d()"() = x||2].

e The task of denoising encourages learning of useful representations (see the assignment).

e This lecture: we want to use the principle of denoising to build a
generative model (which can generate new samples).

e Recall that for Gaussian corruption € ~ N(0, 5°), the optimal
denoising is given by

d(%) = %+ 0° Vs log ¢, (%)

where g, (X) is the perturbed data distribution. Vi log p(x) is often The optimal denoising function points
towards areas with higher probability

called a score function. density (Alain and Bengio, 2014)

https://arxiv.org/abs/1211.4246

Denoising score matching

Optimal denoising: d(X) = % 4 0° Vi log g0 (X)

e When the noise is small, g-(x) =~ p(x) and the clean data can be reconstructed almost perfectly
d(X) = x, which yields

d(x) —%x x—Xx

Vi log p(x) ~ Vxlog q-(x) = % N5

e Thus, the score function can be estimated by training a neural network syp(X, o) to minimize

~ 12
X —X

Se()N(7 O') —

1
Lo = 5 Epiati Exuneo?n) p

e Training procedure: corrupt clean sample x with Gaussian noise € to get X = x 4+ € and train a
neural network to predict the noise € (scaled by 1/5°) from %.

e This type of modeling is often called denoising score matching (learning the score function by
denoising).

Generative Modeling

via denoising score matching
(Song and Ermon, 2020)

https://arxiv.org/pdf/1907.05600.pdf

Sampling with Langevin dynamics

e If we know the score function Vi log p(x), we can sample from the
R —

corresponding distribution using Langevin dynamics, a sampling NSm—m=sssss s
procedure which iterates the following:

(
e

Xt +Xt—1 + aViylog p(x:—1) + V2azt,
t=1,..,T, z~ NI

e anaAK

t e,

EPNReT:
I SR

e X¢ is a sample from any prior distribution 7(x)

e o > 0 is a step size

e when « is sufficiently small and T is sufficiently large, the
distribution of x1 will be close to p(x) under some regularity
conditions.

P A N

Image from (Song and Ermon, 2020)

e Question: Why do we need to add noise z;?

e If we have a neural network sg(x) which has been trained such that sy(x) &~ V, log p(x), we can
generate samples from p(x) using s¢(x:—1) instead of Vy log p(x¢—1).

https://arxiv.org/pdf/1907.05600.pdf

Problem 1 with Langevin dynamics sampling

e Score function may be poorly estimated in regions of low data density (due to lack of data

samples).
Data scores Estimated scores
NS SS S S M A A A A K ATV oy T \\\\\\\\\\:AF \TagEnasge=,)
NEICUCIICIISRPUAPUP N . NN
NS RN i
yyN=====---] N e]
N AR
EERER DR« 1 NN NN xa e e 1
NN 4 NDNTRNIRRPRERS - .)
\\i.'.,>rrrvk4_4¢_»s_bj \\\“‘\\.>vvkld._p._>j
“""'47111444lhbb\ \“““ v e 4 4 4 AN
N EEEER R w f A 4 4 4 4 AN R ERERR R Y
N L I S S R G § ot RS S S Y
Sautiny s s 4 AEERRAN cersbbAAY
— -~ 4 —— .- Sy e b
o s A R R SO\
L% 2 22 v RN 15 1. 2 <<~>xXXNXN
3 B A ARARA IR S L 2 <~~~ % XXX\ \\
[IDORBEEGIEEERN T 000 112 2 2N NN
1 o mee——=x A1) T - SEEEENEE SO
[,.A..-‘v“‘\‘\-_\\\\ A R L A R Y
RAE— L—‘J\\\\\\\\\\\\ IO TR G X N\ QN

L3

Darker color implies higher density. Red rectangles highlight regions where Vy log pdata(X) & sg(x).

Problem 2: Bad mixing of Langevin dynamics

Exact sampling

8
e Consider a mixture distribution j
2
pdata(x) = 7|'P1(X) + (1 - 7T)p2(X) 0
e pi(x) and p2(x) are normalized distributions with disjoint supports ’j
o m€(0,1). :e
e In the support of pi(x), the score does not depend on 7: - . .
Sampling using Langevin
Vxlog paata(x) = Vx(log + log p1(x)) = Vxlog p1(x) dynamics with exact scores
. o)
e In the support of p,(x), the score does not depend on 7 either: 6
4
Vx10g pata(x) = Vx(log(1 —) + log p2(x)) = Vi log p2(x) 2
0
e Langevin dynamics estimate the relative weights between the two 2
modes incorrectly. :
8

-5 0 5

Noise Conditional Score Networks (NCSN)

e Song and Ermon (2020) generate samples using Langevin dynamics with the score function

learned from data.
e The problems of Langevin dynamics are addressed in the following way:

1. Perturb the data using various levels of noise o1 > 02 > ...o. and estimate scores
Vi log g-(x) corresponding to all noise levels by training a single neural network sp(x, o) to

2}
L is the denoising score matching objective for o;, weights A\(c) = o are chosen emperically.
2. Generate samples using annealed Langevin dynamics.

minimize the loss: .
1
L= ; o)L,

- X — X
Sg(X, 0',') =+ e

i

1
Li= §Epdata(x) EiNN(x,a,.ZI) {

https://arxiv.org/pdf/1907.05600.pdf

generation via annealed Langevin dynamics

Initialize samples from some fixed prior
distribution, e.g., uniform noise.

Run Langevin dynamics to sample from

Go, (X) with step size a1 = =

Run Langevin dynamics to sample from

go,(x), starting from the final samples of

the previous simulation and using a reduced
2

step size ap = Z—L

Finally, run Langevin dynamics to sample
from ¢,, (x), which is close to pgata(x)
when o ~ 0.

Algorithm 1 Annealed Langevin dynamics.

Require: {o;},,¢ T.
1: Initialize Xg
2: fori < 1to L do
3 a; < €-02/o?
4 fort < 1toT do
5: Draw z; ~ N(0,1)
6
7
8
9

. . ;.
Xy« Xy—1 + ése(xt—hai) + /05 2t

end for
:)~(0 “— X7
: end for
return X

> o is the step size.

Annealed Langevin dynamics: Toy example

e Annealed Langevin dynamics recover the relative weights faithfully.

8 - 8 = = - 8
6 6 6
4 4 4
2 2 2
0 0 0
-2 -2 2
-4 4 4
-6 6 6
8 8 8
-5 0 5 -5 0 5 -5 0 5
Exact sampling Sampling using Langevin dynamics Sampling using annealed Langevin

with exact scores dynamics with exact scores

Generated samples with NCSN (Song and Ermon, 2020)

e When applied to images, the model sg(x,) is a U-Net with dilated convolution.
e They use a modified version of conditional instance normalization to provide conditioning on o;.

10

https://arxiv.org/pdf/1907.05600.pdf

Diffusion probabilistic models
(Sohl-Dickstein et al., 2015)

https://arxiv.org/pdf/1503.03585.pdf

Diffusion probabilistic models (Sohl-Dickstein et al., 2015)

e Define a forward diffusion process which converts any complex data distribution into a simple,

tractable, distribution.

2

ol 7 e S

:,”"F &
¢ il
% 0 2 =) 0 2 = 0 2
e Learn the generative model which is defined by a reversal of this diffusion process
2 2 2
0 -« 0 y & <« 0 5
s
- - -
2 -2 0 2 -2 0 2
12

https://arxiv.org/pdf/1503.03585.pdf

Forward diffusion process

e The most popular forward process: Given a sample from the data distribution xo ~ g(xo), produce
chain xi, ..., x7 by progressively adding Gaussian noise:

q(x¢ | xe—1) = N(x¢; /1 — Bexe—1, Bel), with small ;.
. G el 1l) T
(D— () O

(AN AN
=

e g(x: | xo) has a closed form and converges to N(0,1) when t — co:
t
qg(x: | x0) = N(x¢; Vauxo, (L —ae)l), ar=1-=03:, ar= Ha,
T=1

e If we select B¢ such that 1 — & is close to 1, g(x7) is well approximated by N(0,1).

13

() —O—O—O—)
3 =

e Produce samples xo ~ pg(xo) by starting with Gaussian noise xt ~ N(0,1) and gradually reducing
the noise in a sequence of steps x7_1,X7_2, ..., Xo.

e For computational convenience, we define the reverse process as
P(xe—1 | xe) = N(xe—1; po(xe, t), Zo(xe, t))

and the task is to learn py(x¢, t), Lo(x:, t) to maximize the log-likelihood E[log ps(xo)].

e The original paper (Sohl-Dickstein et al., 2015) proposes estimation of model parameters 6 by
minimizing the variational bound on negative log-likelihood:

E[—log po(x0)] < Eq [_ log %}

14

https://arxiv.org/pdf/1503.03585.pdf

Diffusion probabilistic models: Loss function

e This loss can be re-written (Appendix A, Ho et al. 2020) as

Eq

t>1

D (q(x7 | %0) || p(x7)) + D D (q(xe-1 | xe,%0) || Po(xe-1 | X)) — log po(xo | Xl)]

e Intuition: In the reverse process, the distribution pg(x¢—1 | x¢) should be close to g(x:—1 | X¢, X0)
which is obtained with the knowledge of the uncorrupted sample xo.

O—O—0——0—O
O—O—O——0—0

15

https://arxiv.org/pdf/2006.11239.pdf

Diffusion probabilistic models: Loss function

e Due to the selected diffusion process, g(x:—1 | X¢,%o) has a closed form:

(xe-1 | xe,%0) = N(xe-1; fi(xz, %0), 1)
\/C_Mt—h@'rx " Va, (1 — 54t71)xt

froxi,x0) = S 1—a:
I
Be=—"1p,

1—at

e The loss contains KL divergences between Gaussian distributions and therefore it can be
computed analytically!

16

Denoising Diffusion Probabilistic Models (DDPM)
(Ho et al., 2020)

https://arxiv.org/pdf/2006.11239.pdf

Denoising Diffusion Probabilistic Models (DDPM)

e Denoising Diffusion Probabilistic Models (Ho et al. 2020) are diffusion probabilistic models with
the following simplifications.

e We do not train B: used in the forward process, which makes the first term of the loss a constant:
Lt = Eq [DkL(g(x7 | x0) || p(xT))] = const
e We use fixed diagonal covariance matrices in the reverse process
p(xt—1 | xt) = N(xe—1; po(xe, t), 071),

5 l-a . .
both 02 = B; and 02 = 3t = 1,ét1ﬁt work well in practice.

e This simplifies the loss such that we can only care about the means of the distributions in the reverse
process:

10
Le—1 = Dru(a(xe—1 [xe;x0) || po(xe—1 | xt)) = Eq | 55 |l (xe, %0) — po(xe, t)|[2| + C
t

18

https://arxiv.org/pdf/2006.11239.pdf

DDPM: Loss function

e If € is the noise instance that was used to produce x: from xg
Xt = \/&tX()Jr \/170_“6,
the target is expressed (see the derivations on the next page) as

(e x0) = — (Xt _ Le)
R NG Vi—a:

e It is then convenient to use a parameterization for the denoising model that has a similar form:

Ho(xe, t) = \/% <xt - \/lﬁi_tidtee(xt, t)))

e This parameterization leads to the following loss

6?
L1 =Eq.e — >
t—1 0, [2 % t(l t)” (xt)H

In practice, the authors drop the weights, which does not compromise the performance.

19

DDPM: derivations

Suppose that € is the noise instance that was used to produce x; from xo:

Xt = Varxo + /1 — are,

then

Xo = \/%(xt — /1 — are)

and we get:

Xt

\/0—tt—15 Xo \/>t(1 — Qi 1)

i, (Xe, X
ll‘r(ty 0) 1—a 1— &y

Oy 1 1—a—
_ VA L A e 4 Yo G
1—ar Va 1— a;

1 1-— Qp— 1
B (xt — V1 — ace) + M because ¢ !_ L
1—a; Va iy

T 1-a va,
Xt Bt
+ ai(l — 1)) — ————¢€
= Ty Gt -an)) - ——
Xt o B € because B = 1 — a; and arae—1 = @y

S0 agve: T maa
- (o)
Vo T-a

20

DDPM: Training and sampling procedures

e The training procedure of DDPM:

1. Sample a mini-batch of samples xg ~ q(xq)
2. For each xg, sample t ~ Uniform({1,..., T})
3. Generate noise € ~ N(0, /) and compute corrupted samples

t
xr = Vaixo + V1 — are, with & = Has.
s=1

4. Compute the loss £ = ||e — €g(xt, t)]|?
5. Compute the gradients and update the model parameters 6.

e Sampling procedure:

1. Sample x7 ~ N(0, /)

2. Perform T — 1 steps: x¢—1 ~ N (1 (xt — \/fiiatee(xt, t)) ,a?l)

3. Compute generated sample xg = = (xl — %eg(xl, 1))

21

Connection to denoising score matching

e DDPM: Given a corrupted example x; with the noise level determined by t, the task is to find the

noise instance € that led to x; from xo:
Bt 2
Li1=E —————|le —€a(xs, t
1 = Bae | gy —agle — €0t 0l
e Compare this to the loss used to train the Noise Conditional Score Networks (Song and Ermon,
2]

e The two approaches are very similar: the learning task is to denoise samples obtained with

2020) that we considered previously:

1 X — X

Li= EEPdata(X)EﬁNN(X,UI.Zl) [so(%,07) +

g

different levels of noise.

22

https://arxiv.org/pdf/1907.05600.pdf
https://arxiv.org/pdf/1907.05600.pdf

DDPM: Generated samples

23

Diffusion models beat GANs on image synthesis (Dhariwal and Nichol, 2020)

e Dhariwal and Nichol (2020) fine-tuned the architecture of DDPM and showed that diffusion
models can outperform GANs.

Model FID sFID Prec Rec
ImageNet 128 x 128

BigGAN-deep [5] 6.02 7.18 0.86 035
LOGANT [68] 336

ADM 591 5.09 070 0.65
ADM-G (25 steps) 598 7.04 078 051
ADM-G 297 5.09 0.78 0.59
ImageNet 256 <256

DCTransformer! [42] 36.51 824 036 0.67
VQ-VAE-2'* [51] 3111 17.38 036 057

IDDPM? [43] 1226 542 070 0.62
SR3'# [53] 11.30

BigGAN-deep [3] 695 736 087 028
ADM 1094 6.02 0.69 0.63
ADM-G (25steps) 544 532 081 049
ADM-G 459 525 082 052

24

https://arxiv.org/pdf/2105.05233.pdf
https://arxiv.org/pdf/2105.05233.pdf

Denoising diffusion implicit model (DDIM)
(Song et al., 2021)

https://arxiv.org/pdf/2010.02502.pdf

Diffusion models: Increasing the sampling speed

e A drawback of diffusion models is that they require many iterations to produce a high quality
sample. The generative process of DDPM usually contains T = 1000 steps.

D——O0—O0—0O—
=

e For comparison, GANs only need one pass through the generator network.

e Can we speed the generation process?

26

Another form for the DDPM generation step

e Song et al. (2021) re-write the DDPM generation steps in the following form:

—V1i-a e (x
Xt—1 = _t—l (\/OTt o (t)) —+ 1-— C_Yt_l — U? . 6(9t)(Xt)+ Ot€t
t

“predicted xq"

“direction pointing to x;" random noise

. 1—G_ = _ . . .
with o; = -1 /1 — % a9 =1and e ~ N(0,1) is standard Gaussian noise.
1-ay Qp—1 ’

e The intuition behind is that we first modify the sample towards the direction of the “predicted”
Xo, then we move to the direction pointing to x; and finally add some noise.

xo Y e ye—(x)—()
200 P T Y

27

https://arxiv.org/pdf/2010.02502.pdf

Denoising diffusion implicit model (DDIM) (Song et al., 2021)

e The authors show that different choices of o; can lead to different well-grounded generative
processes for the same trained model.

e The special case of o+ = 0 corresponds to a deterministic sampling procedure. The authors call
this approach a denoising diffusion implicit model (DDIM).

e To speed up the generation process, one can assume that the forward process (and therefore the
reverse process as well) is defined on a subset of steps 1 < 71 < 72,...,7s < T. Now we can
generate samples using fewer steps:

28

https://arxiv.org/pdf/2010.02502.pdf

Denoising diffusion implicit model (DDIM) (Song et al., 2021)

e The authors show that different choices of o; can lead to different well-grounded generative
processes for the same trained model.

e The special case of o+ = 0 corresponds to a deterministic sampling procedure. The authors call
this approach a denoising diffusion implicit model (DDIM).

e To speed up the generation process, one can assume that the forward process (and therefore the
reverse process as well) is defined on a subset of steps 1 < 71 < 72,...,7s < T. Now we can
generate samples using fewer steps:

28

https://arxiv.org/pdf/2010.02502.pdf

Denoising diffusion implicit model (DDIM) (Song et al., 2021)

e The authors show that different choices of o; can lead to different well-grounded generative
processes for the same trained model.

e The special case of o+ = 0 corresponds to a deterministic sampling procedure. The authors call
this approach a denoising diffusion implicit model (DDIM).

e To speed up the generation process, one can assume that the forward process (and therefore the
reverse process as well) is defined on a subset of steps 1 < 71 < 72,...,7s < T. Now we can
generate samples using fewer steps:

28

https://arxiv.org/pdf/2010.02502.pdf

DDIM can generate high-quality images with fewer steps

. [1-ar, / iy . .
e In the experiments, the authors used o-,(n) =n 1:15:71 1-— ; i~ and experimented with a
Ti Ti—1

different number of steps in the sampling procedure.

Table 1: CIFAR10 and CelebA image generation measured in FID. = 1.0 and & are cases of
DDPM (although Ho et al. (2020) only considered 7' = 1000 steps, and S < T can be seen as
simulating DDPMs trained with S steps), and 7 = 0.0 indicates

CIFAR10 (32 x 32) CelebA (64 x 64)
S 10 20 50 100 1000 10 20 50 100 1000

0.0 | 13.36 6.84 4.67 4.16 4.04 1733 1373 917 6.53 3.51
02| 1404 7.11 4.77 4.25 4.09 17.66 1411 9.51 6.79 3.64
T 05| 1666 835 5.25 4.46 4.29 19.86 16.06 11.01 8.09 4.28
1.0 | 41.07 1836 8.01 5.78 4.73 33.12 2603 1848 1393 598

& | 367.43 13337 3272 9.99 317 | 29971 183.83 71.71 4520 3.26

29

Conditional generation with diffusion-based models

Classifier guided sampling

e The simplest way of conditioning the generation process on some information c (e.g., class or
text) is to use c as extra inputs of the denoising model: €g(xt, t, c).

e Other ways of conditioning may provide better results.

e Sohl-Dickstein et al. (2015) proposed conditioning on label ¢ by using a classifier log p(c | x¢):
1. Sample x7 ~ N(0,/)
2. For t from T to 2:

1 17&1' 2
= —— | Xt — ———€p(xs, t , Xy = |
T N (¢ Tz o(x¢)) t—1=0s

Xi—1~ N (uFl + 55X 1Vyx, log p(c | xt), Z:_1) R s is a hyperparameter

3. Return xp
The classifier pulls the samples in the direction in which the probability of the desired class
increases.

31

https://arxiv.org/pdf/1503.03585.pdf

Classifier guided DDIM sampling (Dhariwal and Nichol, 2020)

e The above conditional sampling is only valid for the stochastic diffusion sampling process, and
cannot be applied to deterministic sampling methods like DDIM.

e Dhariwal and Nichol (2020) propose to address this problem in the following way. When we train
a model for unconditional generation, we estimate the noise

Xt — &txo
o)~ A==

e €9(x¢) can be used to approximate the score function.

e Recall from the beginning of this lecture that V, log ps(x¢) = (x — %)/02.
e Assuming small noise (a: =~ 1), we get:
X0 —Xt Xt —QrXo €g(xt)

Vx, lo Xt) ~ ~ =
Xt gp@(t) 1— ar 1—ar m

or

€g(xt) = —V1 — @:Vy, log pg(xt) .

32

https://arxiv.org/pdf/2105.05233.pdf
https://arxiv.org/pdf/2105.05233.pdf

Classifier guided DDIM sampling (Dhariwal and Nichol, 2020)

e When we perform conditional generation, we want to sample from the distribution whose score
function is

Vi, log po(xt) + Vx, log py(c|x:)
e This means that our modified noise estimation should change from
€g(xt) % —V1 — @ Vy, log pa(x¢)
to

€o(x:) = —V1 — @t [V, log po(xe) + Vi, log ps(c|x:)]
= €o(xt) — V1 — Gt Vy, log py(c|x:)

33

https://arxiv.org/pdf/2105.05233.pdf

Classifier guided DDIM sampling (Dhariwal and Nichol, 2020)

e This modifies the DDIM sampling in the following way:
1. Sample x7 ~ N(0,/)
2. For t from T to 2:
& =eg(xe, t) — VI — @ Vy, log py(c|xt)
o1 = /B (’“—7 Vl—&fé) n —

1—a_1€

Qg

3. Return xg

34

https://arxiv.org/pdf/2105.05233.pdf

Classifier-free diffusion guidance (Ho and Salimans, 2022)

e Classifier guidance complicates the training pipeline: it requires an extra classifier trained on noisy

data (not possible to plug in a pre-trained classifier).

e Furthermore, classifier-guided diffusion sampling can be interpreted as attempting to confuse an
image classifier with a gradient-based adversarial attack.

e Ho and Salimans (2022) propose to use classifier-free guidance.

e The training procedure of the diffusion model is modified to learn two versions of the noise model:
one with conditioning €(x¢, c) and one without conditioning €(x:) The unconditional model is
implemented by inputing a special null token to the conditional model.

e The generation procedure is modified such that the noise used to generate a new sample becomes

& = (1+ w)ea(xe,€) — wea(x¢)

where w is a parameter which determines the amount of guidance.

35

https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598

Image generation conditioned on images

.é“

e Diffusion generative models can easily be g,
used to generate images conditioned on =
other images.

e Palette (Saharia et al., 2022) simply g
concatenates the input of the denoising §
model with the conditioning image. The Lg“
same model is used for different ©
image-to-image translation tasks:
colorization, inpainting, uncropping, and w0
JPEG restoration. 2{

36

https://arxiv.org/pdf/2111.05826.pdf

DALL-E-2
(Ramesh et al., 2021)

https://cdn.openai.com/papers/dall-e-2.pdf

DALL-E-2: Text-conditional image generation (Ramesh et al., 2021)

e Text-to-image generation: generation of image x conditioned on given textual description y.
Text y is first processed by a text encoder which is pre-trained with a procedure called CLIP.
The CLIP text embedding is an input of a generative model p(z; | y) of image embeddings z;.
e Finally, the generated image embedding z; is transformed to an image using a diffusion-based

generative model P(x | z;,y) which uses image embedding z; as conditioning information.

img
encoder

CLIP objective

—_

“a corgi
playing a
flame _|
throwing 0
" — £ ¥ 0o O
trumpet 00000 06 0
o O+O~
L O O 00 O
""""""""""""""""""""""" — O+~ i O O
O O
prior decoder
P(zj | y) P(x | zi,y)

38

https://cdn.openai.com/papers/dall-e-2.pdf

Prior P(z; | y): A generative model of CLIP image embeddings

e Option 1. Autoregressive (AR)

Reduce the dimensionality of the CLIP image embeddings z; from 1024 to 319.

Order the principal components and quantize each of the 319 dimensions into 1024 discrete buckets.
Predict the resulting sequence with the Transformer decoder.

The text caption y and the CLIP text embedding z; are encoded as a prefix to the sequence.

e Option 2. Diffusion prior

e The continuous vector z; is modelled using a Gaussian diffusion model conditioned on the caption y.
e Transformer decoder (with causal attention) is applied to a sequence consisting of encoded text, the
CLIP text embedding, an embedding for the diffusion timestep, the noised CLIP image embedding,

and a final embedding whose output from the Transformer is used to predict the unnoised CLIP
image embedding
e Simple mean-squared error loss is used:

L= Ey o 1))~ 1o (2i(2), £, y) — 2l

39

Decoder P(x | z;,y): A generative model of images x conditioned on CLIP image embeddings

e Images are generated using diffusion models. Conditioning on CLIP image embeddings z; is done
this way:
e Project and add CLIP embeddings to the timestep embedding
o Project CLIP embeddings into four extra tokens of context that are concatenated to the sequence of

outputs from the text encoder.
e The previous version called GLIDE (Nichol et al., 2021) used conditioning similar to classifier

guidance:
frg(xe | €) = pg(xe | €) +5- Xo(xt |)V, (Ff(xt) - 8(c))

where the classifier is replaced with a CLIP model: f(x) and g(c) are the CLIP image and caption
encoders, respectively.
e To generate high resolution images, they train two diffusion upsampler models: from 64 x 64 to
256 x 256, and from 256 x 256 to 1024 x 1024.

e For the upsampling model, the downsampled image 64x64 is passed as extra conditioning input to the
U-Net. This is similar to VQ-VAE-2 when the codes in high-resolution are conditioned on
low-resolution codes.

40

https://arxiv.org/pdf/2112.10741.pdf

DALL-E-2: Selected samples, more examples here

an espresso machine that makes coffec from human souls, artstation

a propaganda poster depicting a cat dressed as french emperor

a dolphin in an astronaut suit on saturn, artstation ;
napoleon holding a piece of cheese 41

a teddybear on a skateboard in times square

https://openai.com/dall-e-2/

DALL-E-2: Variations of one image

Variations of an input image by encoding with CLIP and then decoding with a diffusion model.
Y3

ons between two images

Variations between two images by interpolating their CLIP image embedding and then decoding with a diffusion model.

43

Latent diffusion diffusion models

Stable diffusion (Rombach et al., 2021)

e Training of powerful diffusion models (e.g., OpenAl’s Dalle-2 or Google's Imagen) often consumes
hundreds of GPU days. And inference is expensive due to sequential evaluations.

e Latent diffusion models (LDMs): train a diffusion model applied to the latent space of a powerful
pre-trained autoencoder.

e The autoencoder is trained by combination of a perceptual loss and a patch-based adversarial
objective.

e The autoencoder reduces the resolution of the original image by factor f. f = 4,8,16 give a good
balance between efficiency and perceptually faithful results.

e Stable diffusion demo

45

https://arxiv.org/pdf/2112.10752.pdf
https://stablediffusionweb.com/#demo

LDM samples conditioned on language prompts

’A street sign that reads ’A zombie in the ’An image of an animal ’An illustration of a slightly
“Latent Diffusion” ’ style of Picasso’ half mouse half octopus’ conscious neural network’

46

Diffusion autoencoder (Preechakul et al., 2021)

e Standard diffusion models do not encode the input a (low-dimensional) representation. There are
extensions which can do that.

(6ptional) ‘

Semantic| Zsem
encoder o < Latent DDIM

i For unconditional sampling

v (x0) ‘

— Conditional DDIM
Stochastic encoder + Decoder

X o o Image

Encoder path (semantic) Image —p Zgem
Encoder path (stochastic) : Image X7
Decoder path * (Zsem, XT) = Image (reconstructed)

47

https://arxiv.org/pdf/2111.15640.pdf

Image manipulation with a diffusion autoencoder

Home assignment

=]
o
-
(0]
=]
4
4
-
9
(00}
o
)
(=
(]
=
c
.20
n
0
<

e Implement and train a diffusion-based generative model for MNIST.

e Use a trained diffusion model for in-painting.

T P PO RTY SN
Y XD NP N Y
WP TFTNINEN
TraDdryFrrned)
S B S N
YT NRNTO-N P
VNN I L NN)
NP/ Y
Ry ey
T TR FTNY
NP NI WITW
O S NN N

50

