
CS-E4890: Deep Learning

Denoising-based generative modeling

Alexander Ilin

Representation learning by denoising

• Previously, we considered denoising autoencoders (DAE)

• Corrupt data with noise: x̃ = x+ ✏ with ✏ ⇠ N (0,�2
I)

• train a network d(x̃) to produce clean data x by minimizing L = E
h
kd(x̃)� xk2

i
.

• The task of denoising encourages learning of useful representations (see the assignment).

• This lecture: we want to use the principle of denoising to build a

generative model (which can generate new samples).

• Recall that for Gaussian corruption ✏ ⇠ N (0,�2
I), the optimal

denoising is given by

d(x̃) = x̃+ �2rx̃ log q�(x̃)

where q�(x̃) is the perturbed data distribution. rx log p(x) is often

called a score function.

The optimal denoising function points

towards areas with higher probability

density (Alain and Bengio, 2014)

1

https://arxiv.org/abs/1211.4246

Denoising score matching

Optimal denoising: d(x̃) = x̃+ �2rx̃ log q�(x̃)

• When the noise is small, q�(x) ⇡ p(x) and the clean data can be reconstructed almost perfectly

d(x̃) ⇡ x, which yields

rx log p(x) ⇡ rx log q�(x) =
d(x̃)� x̃

�2
⇡ x� x̃

�2
.

• Thus, the score function can be estimated by training a neural network s✓(x̃,�) to minimize

L� =
1
2
Epdata(x)Ex̃⇠N(x,�2I)

����s✓(x̃,�)�
x� x̃

�2

����
2

.

• Training procedure: corrupt clean sample x with Gaussian noise ✏ to get x̃ = x+ ✏ and train a

neural network to predict the noise ✏ (scaled by 1/�2) from x̃.

• This type of modeling is often called denoising score matching (learning the score function by

denoising).

2

Generative Modeling

via denoising score matching

(Song and Ermon, 2020)

https://arxiv.org/pdf/1907.05600.pdf

Sampling with Langevin dynamics

• If we know the score function rx log p(x), we can sample from the

corresponding distribution using Langevin dynamics, a sampling

procedure which iterates the following:

xt xt�1 + ↵rx log p(xt�1) +
p
2↵zt ,

t = 1, ...,T , zt ⇠ N(0, I)

• x0 is a sample from any prior distribution ⇡(x)
• ↵ > 0 is a step size

• when ↵ is su�ciently small and T is su�ciently large, the

distribution of xT will be close to p(x) under some regularity

conditions.

Image from (Song and Ermon, 2020)

• Question: Why do we need to add noise zt?

• If we have a neural network s✓(x) which has been trained such that s✓(x) ⇡ rx log p(x), we can

generate samples from p(x) using s✓(xt�1) instead of rx log p(xt�1).

4

https://arxiv.org/pdf/1907.05600.pdf

Problem 1 with Langevin dynamics sampling

• Score function may be poorly estimated in regions of low data density (due to lack of data

samples).

Darker color implies higher density. Red rectangles highlight regions where rx log pdata(x) ⇡ s✓(x).

5

Problem 2: Bad mixing of Langevin dynamics

• Consider a mixture distribution

pdata(x) = ⇡p1(x) + (1� ⇡)p2(x)

• p1(x) and p2(x) are normalized distributions with disjoint supports

• ⇡ 2 (0, 1).

• In the support of p1(x), the score does not depend on ⇡:

rx log pdata(x) = rx(log ⇡ + log p1(x)) = rx log p1(x)

• In the support of p2(x), the score does not depend on ⇡ either:

rx log pdata(x) = rx(log(1� ⇡) + log p2(x)) = rx log p2(x)

• Langevin dynamics estimate the relative weights between the two

modes incorrectly.

Exact sampling

Sampling using Langevin

dynamics with exact scores

6

Noise Conditional Score Networks (NCSN)

• Song and Ermon (2020) generate samples using Langevin dynamics with the score function

learned from data.

• The problems of Langevin dynamics are addressed in the following way:

1. Perturb the data using various levels of noise �1 > �2 > . . .�L and estimate scores

rx log q�(x) corresponding to all noise levels by training a single neural network s✓(x,�) to

minimize the loss:

L =
1
L

LX

i=1

�(�i)Li ,

Li =
1
2
Epdata(x)Ex̃⇠N(x,�2

i I)

"����s✓(x̃,�i) +
x̃� x

�2

i

����
2
#

Li is the denoising score matching objective for �i , weights �(�) = � are chosen emperically.

2. Generate samples using annealed Langevin dynamics.

7

https://arxiv.org/pdf/1907.05600.pdf

Sample generation via annealed Langevin dynamics

• Initialize samples from some fixed prior

distribution, e.g., uniform noise.

• Run Langevin dynamics to sample from

q�1
(x) with step size ↵1 =

�1

�L
.

• Run Langevin dynamics to sample from

q�2
(x), starting from the final samples of

the previous simulation and using a reduced

step size ↵2 =
�2

�L
.

• ...

• Finally, run Langevin dynamics to sample

from q�L(x), which is close to pdata(x)

when �L ⇡ 0.

8

Annealed Langevin dynamics: Toy example

• Annealed Langevin dynamics recover the relative weights faithfully.

Exact sampling Sampling using Langevin dynamics

with exact scores

Sampling using annealed Langevin

dynamics with exact scores

9

Generated samples with NCSN (Song and Ermon, 2020)

• When applied to images, the model s✓(x,�) is a U-Net with dilated convolution.

• They use a modified version of conditional instance normalization to provide conditioning on �i .

10

https://arxiv.org/pdf/1907.05600.pdf

Di↵usion probabilistic models

(Sohl-Dickstein et al., 2015)

https://arxiv.org/pdf/1503.03585.pdf

Di↵usion probabilistic models (Sohl-Dickstein et al., 2015)

• Define a forward di↵usion process which converts any complex data distribution into a simple,

tractable, distribution.

• Learn the generative model which is defined by a reversal of this di↵usion process

12

https://arxiv.org/pdf/1503.03585.pdf

Forward di↵usion process

• The most popular forward process: Given a sample from the data distribution x0 ⇠ q(x0), produce

chain x1, ..., xT by progressively adding Gaussian noise:

q(xt | xt�1) = N(xt ;
p

1� �txt�1,�t I), with small �t .

x0 x1 xT

• q(xt | x0) has a closed form and converges to N(0, I) when t !1:

q(xt | x0) = N(xt ;
p
↵̄tx0, (1� ↵̄t)I), ↵t = 1� �t , ↵̄t =

tY

⌧=1

↵⌧

• If we select �t such that 1� ↵̄t is close to 1, q(xT) is well approximated by N(0, I).

13

Reverse (generative) process

x0 x1 xT

• Produce samples x0 ⇠ p✓(x0) by starting with Gaussian noise xT ⇠ N(0, I) and gradually reducing

the noise in a sequence of steps xT�1, xT�2, ..., x0.

• For computational convenience, we define the reverse process as

p(xt�1 | xt) = N(xt�1;µ✓(xt , t),⌃✓(xt , t))

and the task is to learn µ✓(xt , t), ⌃✓(xt , t) to maximize the log-likelihood E [log p✓(x0)].

• The original paper (Sohl-Dickstein et al., 2015) proposes estimation of model parameters ✓ by

minimizing the variational bound on negative log-likelihood:

E [� log p✓(x0)] Eq

� log

p✓(x0:T)
q(x1:T |x0)

�

14

https://arxiv.org/pdf/1503.03585.pdf

Di↵usion probabilistic models: Loss function

• This loss can be re-written (Appendix A, Ho et al. 2020) as

Eq

"
DKL(q(xT | x0) k p(xT)) +

X

t>1

DKL(q(xt�1 | xt , x0) k p✓(xt�1 | xt))� log p✓(x0 | x1)
#

• Intuition: In the reverse process, the distribution p✓(xt�1 | xt) should be close to q(xt�1 | xt , x0)
which is obtained with the knowledge of the uncorrupted sample x0.

x0 xt�1 xt xT

xt�1 xt

q(xt�1 | xt , x0)

p✓(xt�1 | xt)

15

https://arxiv.org/pdf/2006.11239.pdf

Di↵usion probabilistic models: Loss function

• Due to the selected di↵usion process, q(xt�1 | xt , x0) has a closed form:

q(xt�1 | xt , x0) = N(xt�1; µ̃(xt , x0), �̃I)

µ̃t(xt , x0) =

p
↵̄t�1�t

1� ↵̄t
x0 +

p
↵t(1� ↵̄t�1)

1� ↵̄t
xt

�̃t =
1� ↵̄t�1

1� ↵̄t
�t

• The loss contains KL divergences between Gaussian distributions and therefore it can be

computed analytically!

16

Denoising Di↵usion Probabilistic Models (DDPM)

(Ho et al., 2020)

https://arxiv.org/pdf/2006.11239.pdf

Denoising Di↵usion Probabilistic Models (DDPM)

• Denoising Di↵usion Probabilistic Models (Ho et al. 2020) are di↵usion probabilistic models with

the following simplifications.

• We do not train �t used in the forward process, which makes the first term of the loss a constant:

Lt = Eq [DKL(q(xT | x0) k p(xT))] = const

• We use fixed diagonal covariance matrices in the reverse process

p(xt�1 | xt) = N(xt�1;µ✓(xt , t),�
2
t I),

both �2
t = �t and �2

t = �̃t =
1�↵̄t�1

1�↵̄t
�t work well in practice.

• This simplifies the loss such that we can only care about the means of the distributions in the reverse

process:

Lt�1 = DKL(q(xt�1 | xt , x0) k p✓(xt�1 | xt)) = Eq

1

2�2
t

||µ̃t(xt , x0)� µ✓(xt , t)||2
�
+ C

18

https://arxiv.org/pdf/2006.11239.pdf

DDPM: Loss function

• If ✏ is the noise instance that was used to produce xt from x0

xt =
p
↵̄tx0 +

p
1� ↵̄t✏ ,

the target is expressed (see the derivations on the next page) as

µ̃t(xt , x0) =
1p
↵t

✓
xt �

�tp
1� ↵̄t

✏

◆

• It is then convenient to use a parameterization for the denoising model that has a similar form:

µ✓(xt , t) =
1p
↵t

✓
xt �

�tp
1� ↵̄t

✏✓(xt , t)

◆
,

• This parameterization leads to the following loss

Lt�1 = Ex0,✏

�2

t

2�2
t↵t(1� ↵̄t)

||✏� ✏✓(xt , t)||2
�

In practice, the authors drop the weights, which does not compromise the performance.

19

DDPM: derivations

Suppose that ✏ is the noise instance that was used to produce xt from x0:

xt =
p
↵̄tx0 +

p
1 � ↵̄t✏,

then

x0 =
1

p
↵̄t

(xt �
p

1 � ↵̄t✏)

and we get:

µ̃t(xt , x0) =

p
↵̄t�1�t

1 � ↵̄t
x0 +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt

=

p
↵̄t�1�t

1 � ↵̄t

1
p
↵̄t

(xt �
p

1 � ↵̄t✏) +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt

=
�t

1 � ↵̄t

1
p
↵t

(xt �
p

1 � ↵̄t✏) +

p
↵t(1 � ↵̄t�1)

1 � ↵̄t
xt because

p
↵̄t�1p
↵̄t

=
1

p
↵t

=
xt

(1 � ↵̄t)
p
↵t

(�t + ↵t(1 � ↵̄t�1)) �
�t

p
↵t

p
1 � ↵̄t

✏

=
xt

(1 � ↵̄t)
p
↵t

(1 � ↵̄t) �
�t

p
↵t

p
1 � ↵̄t

✏ because �t = 1 � ↵t and ↵t ↵̄t�1 = ↵̄t

=
1

p
↵t

✓
xt �

�tp
1 � ↵̄t

✏

◆

20

DDPM: Training and sampling procedures

• The training procedure of DDPM:

1. Sample a mini-batch of samples x0 ⇠ q(x0)
2. For each x0, sample t ⇠ Uniform({1, ...,T})
3. Generate noise ✏ ⇠ N(0, I) and compute corrupted samples

xt =
p
↵̄tx0 +

p
1� ↵̄t✏, with ↵̄t =

tY

s=1

↵s .

4. Compute the loss L = ||✏� ✏✓(xt , t)||2
5. Compute the gradients and update the model parameters ✓.

• Sampling procedure:

1. Sample xT ⇠ N(0, I)

2. Perform T � 1 steps: xt�1 ⇠ N
⇣

1p
↵t

⇣
xt � �tp

1�↵̄t
✏✓(xt , t)

⌘
,�2

t I

⌘

3. Compute generated sample x0 =
1p
↵1

⇣
x1 � �1p

1�↵̄1

✏✓(x1, 1)
⌘

21

Connection to denoising score matching

• DDPM: Given a corrupted example xt with the noise level determined by t, the task is to find the

noise instance ✏ that led to xt from x0:

Lt�1 = Ex0,✏

�2

t

2�2
t↵t(1� ↵̄t)

||✏� ✏✓(xt , t)||2
�

• Compare this to the loss used to train the Noise Conditional Score Networks (Song and Ermon,

2020) that we considered previously:

Li =
1
2
Epdata(x)Ex̃⇠N(x,�2

i I)

"����s✓(x̃,�i) +
x̃� x

�i

����
2
#

• The two approaches are very similar: the learning task is to denoise samples obtained with

di↵erent levels of noise.

22

https://arxiv.org/pdf/1907.05600.pdf
https://arxiv.org/pdf/1907.05600.pdf

DDPM: Generated samples

23

Di↵usion models beat GANs on image synthesis (Dhariwal and Nichol, 2020)

• Dhariwal and Nichol (2020) fine-tuned the architecture of DDPM and showed that di↵usion

models can outperform GANs.

24

https://arxiv.org/pdf/2105.05233.pdf
https://arxiv.org/pdf/2105.05233.pdf

Denoising di↵usion implicit model (DDIM)

(Song et al., 2021)

https://arxiv.org/pdf/2010.02502.pdf

Di↵usion models: Increasing the sampling speed

• A drawback of di↵usion models is that they require many iterations to produce a high quality

sample. The generative process of DDPM usually contains T = 1000 steps.

x0 x1 xT

• For comparison, GANs only need one pass through the generator network.

• Can we speed the generation process?

26

Another form for the DDPM generation step

• Song et al. (2021) re-write the DDPM generation steps in the following form:

xt�1 =
p

↵̄t�1

xt �

p
1� ↵̄t✏

(t)
✓ (xt)p

↵̄t

!

| {z }
“predicted x0”

+
p

1� ↵̄t�1 � �2
t · ✏

(t)
✓ (xt)| {z }

“direction pointing to xt”

+ �t✏t|{z}
random noise

with �t =
q

1�↵̄t�1

1�↵̄t

q
1� ↵̄t

↵̄t�1
, ↵̄0 = 1 and ✏t ⇠ N(0, I) is standard Gaussian noise.

• The intuition behind is that we first modify the sample towards the direction of the “predicted”

x0, then we move to the direction pointing to xt and finally add some noise.

x0 xt�1 xt

27

https://arxiv.org/pdf/2010.02502.pdf

Denoising di↵usion implicit model (DDIM) (Song et al., 2021)

• The authors show that di↵erent choices of �t can lead to di↵erent well-grounded generative

processes for the same trained model.

• The special case of �t = 0 corresponds to a deterministic sampling procedure. The authors call

this approach a denoising di↵usion implicit model (DDIM).

• To speed up the generation process, one can assume that the forward process (and therefore the

reverse process as well) is defined on a subset of steps 1 ⌧1 < ⌧2, ..., ⌧S T . Now we can

generate samples using fewer steps:

x0

28

https://arxiv.org/pdf/2010.02502.pdf

Denoising di↵usion implicit model (DDIM) (Song et al., 2021)

• The authors show that di↵erent choices of �t can lead to di↵erent well-grounded generative

processes for the same trained model.

• The special case of �t = 0 corresponds to a deterministic sampling procedure. The authors call

this approach a denoising di↵usion implicit model (DDIM).

• To speed up the generation process, one can assume that the forward process (and therefore the

reverse process as well) is defined on a subset of steps 1 ⌧1 < ⌧2, ..., ⌧S T . Now we can

generate samples using fewer steps:

x0

28

https://arxiv.org/pdf/2010.02502.pdf

Denoising di↵usion implicit model (DDIM) (Song et al., 2021)

• The authors show that di↵erent choices of �t can lead to di↵erent well-grounded generative

processes for the same trained model.

• The special case of �t = 0 corresponds to a deterministic sampling procedure. The authors call

this approach a denoising di↵usion implicit model (DDIM).

• To speed up the generation process, one can assume that the forward process (and therefore the

reverse process as well) is defined on a subset of steps 1 ⌧1 < ⌧2, ..., ⌧S T . Now we can

generate samples using fewer steps:

x0

28

https://arxiv.org/pdf/2010.02502.pdf

DDIM can generate high-quality images with fewer steps

• In the experiments, the authors used �⌧i (⌘) = ⌘

r
1�↵̄⌧i�1

1�↵̄⌧i

r
1� ↵̄⌧i

↵̄⌧i�1

and experimented with a

di↵erent number of steps in the sampling procedure.

29

Conditional generation with di↵usion-based models

Classifier guided sampling

• The simplest way of conditioning the generation process on some information c (e.g., class or

text) is to use c as extra inputs of the denoising model: ✏✓(xt , t, c).

• Other ways of conditioning may provide better results.

• Sohl-Dickstein et al. (2015) proposed conditioning on label c by using a classifier log p(c | xt):
1. Sample xT ⇠ N(0, I)

2. For t from T to 2:

µt�1 =
1

p
↵t

✓
xt �

1� ↵tp
1� ↵̄t

✏✓(xt , t)

◆
, ⌃t�1 = �2

t I

xt�1 ⇠ N
�
µt�1 + s ⌃t�1rxt log p(c | xt),⌃t�1

�
, s is a hyperparameter

3. Return x0

The classifier pulls the samples in the direction in which the probability of the desired class

increases.

31

https://arxiv.org/pdf/1503.03585.pdf

Classifier guided DDIM sampling (Dhariwal and Nichol, 2020)

• The above conditional sampling is only valid for the stochastic di↵usion sampling process, and

cannot be applied to deterministic sampling methods like DDIM.

• Dhariwal and Nichol (2020) propose to address this problem in the following way. When we train

a model for unconditional generation, we estimate the noise

✏✓(xt) ⇡
xt � ↵̄tx0p

1� ↵̄t

• ✏✓(xt) can be used to approximate the score function.

• Recall from the beginning of this lecture that rxt log p✓(xt) ⇡ (x� x̃)/�2.

• Assuming small noise (↵̄t ⇡ 1), we get:

rxt log p✓(xt) ⇡
x0 � xt

1� ↵̄t
⇡ �

xt � ↵̄tx0

1� ↵̄t
= �

✏✓(xt)p
1� ↵̄t

or

✏✓(xt) ⇡ �
p
1� ↵̄trxt log p✓(xt) .

32

https://arxiv.org/pdf/2105.05233.pdf
https://arxiv.org/pdf/2105.05233.pdf

Classifier guided DDIM sampling (Dhariwal and Nichol, 2020)

• When we perform conditional generation, we want to sample from the distribution whose score

function is

rxt log p✓(xt) +rxt log p�(c|xt)

• This means that our modified noise estimation should change from

✏✓(xt) ⇡ �
p
1� ↵̄trxt log p✓(xt)

to

✏̂✓(xt) ⇡ �
p
1� ↵̄t [rxt log p✓(xt) +rxt log p�(c|xt)]

= ✏✓(xt)�
p
1� ↵̄trxt log p�(c|xt)

33

https://arxiv.org/pdf/2105.05233.pdf

Classifier guided DDIM sampling (Dhariwal and Nichol, 2020)

• This modifies the DDIM sampling in the following way:

1. Sample xT ⇠ N(0, I)

2. For t from T to 2:

✏̂ = ✏✓(xt , t)�
p
1� ↵̄trxt log p�(c|xt)

xt�1 =
p

↵̄t�1

✓
xt �

p
1� ↵̄t ✏̂

↵̄t

◆
+

p
1� ↵̄t�1✏̂

3. Return x0

34

https://arxiv.org/pdf/2105.05233.pdf

Classifier-free di↵usion guidance (Ho and Salimans, 2022)

• Classifier guidance complicates the training pipeline: it requires an extra classifier trained on noisy

data (not possible to plug in a pre-trained classifier).

• Furthermore, classifier-guided di↵usion sampling can be interpreted as attempting to confuse an

image classifier with a gradient-based adversarial attack.

• Ho and Salimans (2022) propose to use classifier-free guidance.

• The training procedure of the di↵usion model is modified to learn two versions of the noise model:

one with conditioning ✏(xt , c) and one without conditioning ✏(xt) The unconditional model is

implemented by inputing a special null token to the conditional model.

• The generation procedure is modified such that the noise used to generate a new sample becomes

✏̂t = (1 + w)✏✓(xt , c)� w✏✓(xt)

where w is a parameter which determines the amount of guidance.

35

https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598

Image generation conditioned on images

• Di↵usion generative models can easily be

used to generate images conditioned on

other images.

• Palette (Saharia et al., 2022) simply

concatenates the input of the denoising

model with the conditioning image. The

same model is used for di↵erent

image-to-image translation tasks:

colorization, inpainting, uncropping, and

JPEG restoration.

36

https://arxiv.org/pdf/2111.05826.pdf

DALL·E-2
(Ramesh et al., 2021)

https://cdn.openai.com/papers/dall-e-2.pdf

DALL·E-2: Text-conditional image generation (Ramesh et al., 2021)

• Text-to-image generation: generation of image x conditioned on given textual description y.

• Text y is first processed by a text encoder which is pre-trained with a procedure called CLIP.

• The CLIP text embedding is an input of a generative model p(zi | y) of image embeddings zi .

• Finally, the generated image embedding zi is transformed to an image using a di↵usion-based

generative model P(x | zi , y) which uses image embedding zi as conditioning information.

P(zi | y) P(x | zi , y)

38

https://cdn.openai.com/papers/dall-e-2.pdf

Prior P(zi | y): A generative model of CLIP image embeddings

• Option 1. Autoregressive (AR)

• Reduce the dimensionality of the CLIP image embeddings zi from 1024 to 319.

• Order the principal components and quantize each of the 319 dimensions into 1024 discrete buckets.

• Predict the resulting sequence with the Transformer decoder.

• The text caption y and the CLIP text embedding zt are encoded as a prefix to the sequence.

• Option 2. Di↵usion prior

• The continuous vector zi is modelled using a Gaussian di↵usion model conditioned on the caption y.

• Transformer decoder (with causal attention) is applied to a sequence consisting of encoded text, the

CLIP text embedding, an embedding for the di↵usion timestep, the noised CLIP image embedding,

and a final embedding whose output from the Transformer is used to predict the unnoised CLIP

image embedding

• Simple mean-squared error loss is used:

L = Et⇠[1,T],zi (t)⇠qt
||f✓(zi (t), t, y)� zi ||2

39

Decoder P(x | zi , y): A generative model of images x conditioned on CLIP image embeddings

• Images are generated using di↵usion models. Conditioning on CLIP image embeddings zi is done
this way:

• Project and add CLIP embeddings to the timestep embedding

• Project CLIP embeddings into four extra tokens of context that are concatenated to the sequence of

outputs from the text encoder.

• The previous version called GLIDE (Nichol et al., 2021) used conditioning similar to classifier

guidance:

µ̂✓(xt | c) = µ✓(xt | c) + s ·⌃✓(xt | c)rxt (f (xt) · g(c))
where the classifier is replaced with a CLIP model: f (x) and g(c) are the CLIP image and caption

encoders, respectively.

• To generate high resolution images, they train two di↵usion upsampler models: from 64⇥ 64 to

256⇥ 256, and from 256⇥ 256 to 1024⇥ 1024.

• For the upsampling model, the downsampled image 64x64 is passed as extra conditioning input to the

U-Net. This is similar to VQ-VAE-2 when the codes in high-resolution are conditioned on

low-resolution codes.

40

https://arxiv.org/pdf/2112.10741.pdf

DALL·E-2: Selected samples, more examples here

41

https://openai.com/dall-e-2/

DALL·E-2: Variations of one image

Variations of an input image by encoding with CLIP and then decoding with a di↵usion model.

42

DALL·E-2: Variations between two images

Variations between two images by interpolating their CLIP image embedding and then decoding with a di↵usion model.

43

Latent di↵usion di↵usion models

Stable di↵usion (Rombach et al., 2021)

• Training of powerful di↵usion models (e.g., OpenAI’s Dalle·2 or Google’s Imagen) often consumes

hundreds of GPU days. And inference is expensive due to sequential evaluations.

• Latent di↵usion models (LDMs): train a di↵usion model applied to the latent space of a powerful

pre-trained autoencoder.

• The autoencoder is trained by combination of a perceptual loss and a patch-based adversarial

objective.

• The autoencoder reduces the resolution of the original image by factor f . f = 4, 8, 16 give a good

balance between e�ciency and perceptually faithful results.

• Stable di↵usion demo

45

https://arxiv.org/pdf/2112.10752.pdf
https://stablediffusionweb.com/#demo

LDM samples conditioned on language prompts

46

Di↵usion autoencoder (Preechakul et al., 2021)

• Standard di↵usion models do not encode the input a (low-dimensional) representation. There are

extensions which can do that.

47

https://arxiv.org/pdf/2111.15640.pdf

Image manipulation with a di↵usion autoencoder

• The model allows manipulation of an existing image.

48

Home assignment

Assignment 08 diffusion

• Implement and train a di↵usion-based generative model for MNIST.

• Use a trained di↵usion model for in-painting.

50

