
CS-E4890: Deep Learning

Autoregressive generative models

Alexander Ilin

Unsupervised learning with explicit generative models

• In this lecture, we continue looking at unsupervised learning, that is learning from unlabeled data:

x(1), . . . , x(n)

• In this lecture, we consider explicit generative models:

• The density model pθ(x) = p(x | θ) has an explicit parametric form.

• The trained model can be used to generate new examples from pθ(x).

• We consider autoregressive models which use the following parameterization of pθ(x):

p(x) =
n∏

i=1

p(xi |x1, ..., xi−1)

1

Autoregression in sequence-to-sequence models

• We have seen autoregressive models before. Recall the decoders in sequence-to-sequence models

for neural machine translation.

• Our decoders were autoregressive models with the

context provided by the encoder

p(yi | yi−1, ..., y1, z1, ..., zn)

• We have considered three types of decoders: RNN,

CNN, transformer. SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• For unsupervised learning, we can use models which are similar to autoregressive decoders. The

difference is that we not need to use the context:

p(y1, y2, ..., ym) = p(y1)
m∏
i=2

p(yi | yi−1, ..., y1)

2

I. Convolutional autoregressive models

Autoregressive modeling of sequential data

• First we consider modeling of data with one-dimensional structure such as text or audio.

• We can build an autoregressive model

p(x1, x2, ..., xm) = p(x1)
m∏
i=2

p(xi | xi−1, ..., x1)

by modeling conditional probabilities p(xi | xi−1, ..., x1) with a

convolutional neural network. x1 x2 x3 x4

CNN

x2 x3 x4 x5

• We use 1d causal (shifted) convolutional layers to guarantee the autoregressive structure.

• Inputs and targets are shifted versions of the same sequence.

4

Recap of causal 1d convolutions

• By shifting the outputs, we make sure that the receptive field of xi does not contain subsequent

elements xj , j ≥ i .

standard convolution
x1 x2 x3 x4 x5

x2 x3 x4 x5 x6

shifted convolution

• If we stack multiple convolutional layers built in the same way, the desired property is preserved.

5

WaveNet (van den Oord et al., 2016)

• WaveNet is an autoregressive model of speech.

• For fast growth of the receptive field, WaveNet uses a stack of dilated causal convolutional layers.

6

https://arxiv.org/abs/1609.03499

PixelCNN

(van den Oord et al., 2016a)

(van den Oord et al., 2016b)

https://arxiv.org/pdf/1601.06759.pdf
https://arxiv.org/pdf/1606.05328.pdf

Autoregressive models of images

• We can treat n × n images as one-dimensional sequences x1, ..., xn2

where pixels are taken from the image row by row.

• We can build an autoregressive model similarly to text:

p(x) =
n2∏
i=1

p(xi |x1, ..., xi−1)

p(xi |x1, ..., xi−1) is the probability distribution over pixel intensities

xi for pixel i given the intensities x1, ..., xi−1 of the previous pixels.

• This is an old idea (Larochelle and Murray, 2011, Germain et al., 2015).

• We will look at the model called PixelCNN (van den Oord et al., 2016a and van den Oord et al.,

2016b).

8

http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf
https://arxiv.org/pdf/1502.03509.pdf
https://arxiv.org/pdf/1601.06759.pdf
https://arxiv.org/pdf/1606.05328.pdf
https://arxiv.org/pdf/1606.05328.pdf

Autoregressive models of images

• We need a model that computes the probability

distribution over pixel intensities given the previous

pixels:

p(x) =
n2∏
i=1

p(xi |x1, ..., xi−1)

• We want to compute those probabilities for all

pixels in parallel, just like we did for sequences

(inputs with one-dimensional structure).

x1 x2 x3 x4

CNN

x2 x3 x4 x5

9

PixelCNN (van den Oord et al., 2016a; van den Oord et al., 2016b)

• PixelCNN (van den Oord et al., 2016a) use a stack of masked 2d convolutional layers

• We compute the conditional probabilities in parallel.

• We preserve the autoregressive structure.

• If we convolve an image with such a kernel, the value of the central pixel is affected only by the

previous pixels, which is what we need.

kernel mask

0 2 4 6 8 10

0

2

4

6

8

10

10

https://arxiv.org/pdf/1601.06759.pdf
https://arxiv.org/pdf/1606.05328.pdf
https://arxiv.org/pdf/1601.06759.pdf

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution

0 2 4 6 8 10

0

2

4

6

8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.

11

PixelCNN: A stack of masked 2d convolutional layers

• If we stack more masked 2d convolutional layers, the desired

autoregressive structure is preserved.

• A simple PixelCNN model:

• Use the same kernel size and (almost) the same mask in each layer

(weights are not shared).

• Use padding to keep the output of the same shape.

• This is the model you need to implement in the home assignment. masked convolution

masked convolution

masked convolution

masked convolution

stack of masked 2d

convolutions in PixelCNN

12

PixelCNN: Loss function

• Every conditional distribution p(xi |x1, ..., xi−1) is modeled as a

multinomial distribution over 256 possible values (8-bit

representation of a pixel value).

• Each pixel is classified to one of the 256 classes. The output layer has

softmax nonlinearity and the loss is the “cross entropy” loss.

• The discrete representation of the targets is simple and has the advantage of being arbitrarily

multimodal without using any assumption on the shape of the output distribution.

• For modeling images with three (red, green and blue) channels, each of the colors is conditioned

on the other channels as well as on all the previously generated pixels.

13

PixelCNN: Generated samples

Tiger

EntleBucher

Class-Conditional samples from the Conditional Pixel CNN

14

VQ-VAE

(van den Oord et al., 2018)

(Razavi et al., 2019)

https://arxiv.org/pdf/1711.00937.pdf
https://arxiv.org/pdf/1906.00446.pdf

Combining autoencoders and autoregressive models

• Autoregressive models do not encode data samples into a code, which can be useful in some

applications.

• Can we somehow combine the idea of autoregressive modeling with autoencoders?

• The simplest way to do this is to use an autoregressive (e.g.,

PixelCNN) decoder in a VAE.

• Unfortunately, this does not work in practice because of the

“posterior collapse” problem:

• The decoder model is so powerful that it can model the data

without using the latent code produced by the encoder.

• This issue motivated the model called VQ-VAE (van den Oord

et al., 2018).

µ,σ

Encoder

x

z

PixelCNN

x̂

sample

Variational autoencoder

16

https://arxiv.org/pdf/1711.00937.pdf
https://arxiv.org/pdf/1711.00937.pdf

Vector Quantized Variational AutoEncoder (VQ-VAE) (van den Oord et al., 2018)

• VQ-VAE is an autoencoder with a discretized latent space and

an autoregressive model for the discrete codes in the latent

space.

• Training consists of two stages:

1. Training an autoencoder with discrete latent codes.

2. Training a PixelCNN model on the discrete latent codes.

CNN
encoder

x

z

CNN
decoder

x̂

zk

PixelCNN

Stage 2: PixelCNN

quantize

Stage 1: Autoencoder

17

https://arxiv.org/pdf/1711.00937.pdf

Vector Quantized Variational AutoEncoder (VQ-VAE) (van den Oord et al., 2018)

• VQ-VAE is an autoencoder with a discretized latent space and

an autoregressive model for the discrete codes in the latent

space.

• Training consists of two stages:

1. Training an autoencoder with discrete latent codes.

2. Training a PixelCNN model on the discrete latent codes.

CNN
encoder

x

z

CNN
decoder

x̂

zk

PixelCNN

Stage 2: PixelCNN

quantize

Stage 1: Autoencoder

17

https://arxiv.org/pdf/1711.00937.pdf

Vector Quantized Variational AutoEncoder (VQ-VAE) (van den Oord et al., 2018)

• VQ-VAE is an autoencoder with a discretized latent space and

an autoregressive model for the discrete codes in the latent

space.

• Training consists of two stages:

1. Training an autoencoder with discrete latent codes.

2. Training a PixelCNN model on the discrete latent codes.

CNN
encoder

x

z

CNN
decoder

x̂

zk

PixelCNN

Stage 2: PixelCNN

quantize

Stage 1: Autoencoder

17

https://arxiv.org/pdf/1711.00937.pdf

Stage 1: Autoencoder with discrete latent codes

• There is a finite set of possible latent codes zk that can be

used to encode the input. Vectors zk form a codebook.

• The output of the encoder f (x) is quantized to prototype

vectors zk :

quantize(f (x)) = zk where k = arg min
j
‖f (x)− zj‖

• The decoder tries to reconstruct the original input x from the

quantized representation zk by minimizing the loss

L(g) = ‖x− g(zk)‖2
2

CNN
encoder

x

z

f CNN
decoder

x̂

zk

g

quantize

Stage 1: Autoencoder

18

Stage 1: Learning the encoder

• The loss optimized by the encoder is

L(f) = ‖x− g(zk)‖2
2 + β ‖f (x)− sg[zk]‖2

• the last term makes sure the encoder commits to embeddings

zk and its output does not grow

• sg is the stop-gradient operation.

• The encoder parameters affect the first term but the

quantization operation is not differentiable.

• Solution: to copy gradients from decoder input to encoder

output (straight-through gradient estimation): ∂L
∂z = ∂L

∂zk
.

CNN
encoder

x

z

f CNN
decoder

x̂

zk

g

quantize

Stage 1: Autoencoder

19

Stage 1: Learning the codebook vectors

• The codebook vectors zk are updated to minimize the loss

Nk∑
i

‖sg[f (xi)]− zk‖2

where k = arg minj ‖f (xi)− zj‖.

• In practice, the codes are updated using exponential moving

average:

Nk ← γNk + (1− γ)nk

mk ← γmk + (1− γ)

nk∑
i

f (xi)

zk ←
mk

Nk

CNN
encoder

x

z

f CNN
decoder

x̂

zk

g

quantize

Phase 1: Autoencoder

20

VQ-VAE-2 (Razavi et al., 2019)

• VQ-VAE-2: A second version of the model

with two levels of hierarchy.

• Motivation: to model local information, such

as texture, separately from global information

such as shape and geometry of objects.

21

https://arxiv.org/pdf/1906.00446.pdf

VQ-VAE-2 (Razavi et al., 2019)

• In the second phase of training, we build a

generative model for the latent codes:

• a PixelCNN model for the top-level codes

• a conditional PixelCNN model for the bottom-level

codes

• Generation process:

• generate top-level codes with PixelCNN

• bottom-level codes with conditional PixelCNN

• convert the latent codes to a sample using the

decoder trained in the first stage

22

https://arxiv.org/pdf/1906.00446.pdf

VQ-VAE-2: Generated samples

Class-Conditional samples from VQ-VAE-2

23

II. Transformer-based large language models (LLMs)

Generative Pre-trained Transformer (GPT) models by OpenAI

• GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020) are autoregressive models of text:

p(xi | xi−1, ..., x1)

• The GPT family of models process text using tokens, which are common sequences of characters

found in text. You can use this tool to understand how a piece of text would be tokenized by GPT

models.

• The models are essentially a transformer decoder with only

masked self-attention (we need to preserve the

autoregressive structure and there is no context).

• The models are trained on a large collection of texts.

x1 x2 x3 x4

Transformer decoder

x2 x3 x4 x5

25

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165
https://platform.openai.com/tokenizer

Prompting GPT-2

Prompt:

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more

surprising to the researchers was the fact that the unicorns spoke perfect English.

Continuation generated by GPT-2:

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white unicorns were previously unknown to

science. Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved. Dr. Jorge Pérez, an evolutionary

biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other

animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with some crystals

on top,” said Pérez. Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to

move too much to see them – they were so close they could touch their horns. While examining these bizarre creatures the scientists discovered that

the creatures also spoke some fairly regular English. Pérez stated, “We can see, for example, that they have a common ’language,’ something like a

dialect or dialectic.” Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a

lost race of people who lived there before the arrival of humans in those parts of South America. While their origins are still unclear, some believe

that perhaps the creatures were created when a human and a unicorn met each other in a time before human civilization. According to Pérez, “In

South America, such incidents seem to be quite common.” However, Pérez also pointed out that it is likely that the only way of knowing for sure if

unicorns are indeed the descendants of a lost alien race is through DNA. “But they seem to be able to communicate in English quite well, which I

believe is a sign of evolution, or at least a change in social organization,” said the scientist.

26

GPT-3

• GPT-3 is bigger than GPT-2 and it is

trained with more data.

• GPT-3 can write poetry, carry on

conversation and even write code.

The following is a conversation with an AI assistant. The assistant is helpful,

creative, clever and very friendly.

Human: Hello, who are you?

AI: I am an AI created by OpenAI. How can I help you today?

Human: are we living within a simulation?

AI: Yes, absolutely.

Human: Who designed the simulation?

AI: You did.

Human: But how can I did it, if I am living within it?

AI: Are you trying to ask who designed you?

Human: Yes.

AI: Okay, I will answer you with a joke. Do you know who created this

earth?

Huan: Time?

AI: No.

Human: Who?

AI: Aliens?

Human: No.

AI: God?

Human: Who or what is God?

AI: An intelligence that has created the earth.

Human: Does God exist?

AI: Yes.

Human: Have you seen God?

AI: No.

27

GPT-3 as a few-shot learner

• Traditionally, a pre-trained language model is fine-tuned to a specific task using a large data set of

examples.

• GPT-3 shows excelent learning capabilities without finetuning. Providing a few example of the

expected behavior usually improves accuracy.

28

Scaling Laws for Neural Language Models (Kaplan et al., 2020)

• Model performance depends most strongly on scale, which consists of three factors:

• the number of model parameters N (excluding embeddings)

• the size of the dataset D

• the amount of compute C used for training.

• Within reasonable limits, performance depends very weakly on other architectural hyperparameters

such as depth vs. width.

Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

29

https://arxiv.org/pdf/2001.08361.pdf

Large models are more sample-efficient

• Large models are more sample-efficient than small models, reaching the same level of performance

with fewer optimization steps.

30

How to allocate compute resources

• As more compute becomes available, one can choose how much to allocate towards training larger

models, using larger batches, and training for more steps.

• For optimally compute-efficient training:

• Most of the increase should go towards

increased model size.

• A relatively small increase in data is

needed to avoid reuse.

• Of the increase in data, most can be used

to increase parallelism through larger

batch sizes, with only a very small

increase in serial training time required.

31

Chinchilla (Hoffmann et al., 2022)

• Hoffmann et al. (2022) arrive at different results: for compute-optimal training, the model size

and the number of training tokens should be scaled equally.

• For every doubling of model size the number of training tokens should also be doubled.

• Based on this result, they train Chinchilla

with 70B parameters using (proportionally)

more data compared to previous models.

• Gopher (280B)

• GPT-3 (175B)

• Jurassic-1 (178B)

• Megatron-Turing NLG (530B)

• Chinchilla significantly outperforms

previous LLMs on a large range of

downstream tasks while using less compute

for inference.

32

https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556

LLaMA (Touvron et al., 2023)

• LLaMA uses only publicly available data, making it compatible with open-sourcing (Chinchilla,

PaLM, or GPT-3 rely on data which is either not publicly available or undocumented).

• The network is the transformer architecture with

various improvements:

• Pre-normalization [GPT3]: normalize the input of

each transformer sub-layer, instead of normalizing the

output. RMSNorm normalizing function.

• SwiGLU activation function [PaLM]: replace the

ReLU non-linearity by the SwiGLU activation

function (Shazeer, 2020). Use a dimension of 2
3

4d

instead of 4d as in PaLM.

• Rotary Embeddings [GPTNeo]: remove the absolute

positional embeddings; instead, add rotary positional

embeddings (Su et al., 2021), at each layer of the

network.

33

https://arxiv.org/abs/2302.13971

LLaMA performance

34

Prompting large language models

• The quality of the LLM response often depends on how the prompt is formulated. Practitioners

often put a lot of effort to prompt engineering: tuning the prompt to get better responses.

• An example of this is chain-of-thought prompting (Wei et al., 2022) when a few chain-of-thought

demonstrations are provided as exemplars in prompting.

35

https://arxiv.org/pdf/2201.11903.pdf

InstructGPT (Ouyang et al., 2022)

• Many recent large language models (LLMs) are trained to predict the next token on a webpage

from the internet. This training objective is different from the objective “follow the user’s

instructions helpfully and safely”.

• InstructGPT: train language models to act in accordance with the user’s intention.

• GPT-3 was fine-tuned on three kinds of prompts:

• Plain: The labelers come up with an arbitrary task, while ensuring the tasks have sufficient diversity.

• Few-shot: The labelers come up with an instruction, and multiple query/response pairs for that

instruction.

• User-based: The labelers come up with prompts corresponding to the use cases stated in waitlist

applications to the OpenAI API.

36

https://arxiv.org/abs/2203.02155

InstructGPT Step 1. Supervised fine-tuning

• 40 contractors produced 13k written demonstrations of the desired output behavior on prompts

from Open API and labeler-written prompts.

• A pretrained GPT-3 is fine-tuned on this data using supervised learning.

37

InstructGPT Step 2. Reward modeling (RM)

• The labelers are shown a pair of possible responses for the same prompt and they need to select

the preferred one (binary classification).

• The dataset has 33k training prompts (from the API and labeler-written).

• For each prompt, there is between K = 4 and K = 9 responses ranked.

• The loss function for the reward model is:

loss(θ) =
−1(
K
2

)E(x,yw ,yl)∼D [log(σ(rθ(x , yw)− rθ(x , yl)))]

where rθ(x , yw) is the scalar output of the reward model for prompt x and response y , yw is the

preferred response out of the pair of yw and yl .

• All
(
K
2

)
comparisons from one prompt are used in the same mini-batch. This is computationally

more efficient and reduces overfitting.

38

InstructGPT Step 3. Reinforcement learning (RL)

• The SFT model is fine-tuned on an RL environment using PPO.

• The environment is a bandit environment which presents a random customer prompt and expects a

response to the prompt. Given the prompt and response, it produces a reward determined by the

reward model and ends the episode.

• The agent is trained to maximize

objective(φ) = E(x,y)∼DRL
π

[
rθ(x , y)− β log

(
πRL
φ (y |x)/πSFT(y |x)

)]
+ γEx∼Dpretrain log πRL

φ (x)

where the second term penalizes deviations from the SFT model and the third term fix the

performance regressions on public NLP datasets.

39

InstructGPT results

• Preference results of fine-tuned models, measured by

winrate against the 175B SFT model.

• Prompting GPT-3 with few-shot examples improves the

performance compared to plain GPT-3.

• Supervised finetuning dramatically improves the results.

• RL finetuning improves the results even further such that

a small PPO model wins over a large SFT model.

model size

40

Alpaca (Taori et al., 2023)

• Alpaca is LLaMA (7B) finetuned on the instruction-following demonstrations generated using

GPT 3.5 (text-davinci-003):

• Start with the 175 human-written instruction-output pairs from (Wang et al., 2022).

• Prompt text-davinci-003 to generate more instructions using the seed set as in-context examples.

• Fine-tune LLaMA on 52K generated instructions using supervised finetuning.

41

https://crfm.stanford.edu/2023/03/13/alpaca.html
https://arxiv.org/pdf/2212.10560.pdf

GPT-4

• The new generation of OpenAI’s LLM is even more powerful. I recommend you to read the

description of the model at the GPT-4 web page.

• Check out the examples with images: GPT-4 will be able to process images too.

• Read about experiments with GPT-4 in the paper by Microsoft Research.

42

https://openai.com/research/gpt-4
https://arxiv.org/pdf/2303.12712.pdf

GPT-4: Vision

43

GPT-4: Coding

44

GPT-4: Maths

45

GPT-4: Common sense reasoning

46

GPT-4: Using tools

47

GPT-4: Using tools

48

GPT-4: Using tools

49

Evolutionary tree of modern LLMs (Yang et al., 2023

• Models on the same branch have

closer relationships.

• Transformer-based models are

shown in non-grey colors:

decoder-only models in the blue

branch, encoder-only models in the

pink branch, and encoder-decoder

models in the green branch.

• The vertical position of the models

on the timeline represents their

release dates.

• Open-source models are

represented by solid squares, while

closed-source models are

represented by hollow ones.

• The stacked bar plot in the

bottom right corner shows the

number of models from various

companies and institutions.

50

https://arxiv.org/pdf/2304.13712.pdf

Large language models for code

Codex (Chen et al., 2021)

• Task: generate standalone Python functions from docstrings.

• Codex: a GPT model containing up to 12B parameters fine-tuned on code (54 million public

repositories hosted on GitHub, 159 GB of data).

• Models fine-tuned from GPT converge more quickly but no noticeable improvements in quality

compared to training from scratch.

• Codex is the model that powers GitHub Copilot.

52

https://arxiv.org/abs/2107.03374

Benchmarking Codex

• Codex is benchmarked on the HumanEval

dataset that OpenAI created for this task.

• 164 original programming problems on

language comprehension, reasoning,

algorithms, and simple mathematics.

• Each problem contains several unit tests.

• The model is provided with a prompt which

consists of a header, a signature, and a

docstring (see Fig. on the right).

• Tokens are sampled until one of the

following stop sequences is encountered:

’\nclass’, ’\ndef’, ’\n#’, ’\nif’, or

’\nprint’. Otherwise, the model will

continue generating additional functions

or statements. The prompt provided to the model is shown with a white background,

and a successful model-generated completion is shown in a yellow

background.

53

Codex: Results

• pass@k metric: k code samples are

generated per problem, a problem is

considered solved if any sample passes the

unit tests. The total fraction of problems

solved is reported.

• Codex is able to solve the majority of the

problems in HumanEval for k = 100.

• Codex video

54

https://openai.com/blog/openai-codex

Competition-Level Code Generation with AlphaCode (Li et al., 2022)

• Programming competition: Competitors are given problem descriptions and ∼3 hours to write

programs.

• In contrast to the Codex scenario, problem

descriptions do not contain a detailed

description of the algorithm, just the

description of the problem.

• The model: the classical encoder-decoder

transformer architecture:

• Encoder input: the problem description as

a flat sequence of characters (including

metadata).

• Decoder: an autoregressive model of

solution code.

• Visulalization

55

https://arxiv.org/abs/2203.07814
https://alphacode.deepmind.com/

AlphaCode: Training

• Pre-training on data from public GitHub repositories (715.1 GB)

• Standard cross-entropy next-token prediction loss for the decoder and a masked language modeling

loss (BERT-like) for the encoder. The latter was essential.

• Fine-tuning on data scraped from Codeforces, Description2Code and CodeNet.

• The same loss as in pre-training.

• The dataset includes problems, solutions (both correct and incorrect) and test cases.

• Generated tests are created by mutating existing test inputs and by verifying using correct solutions.

• bit flips to binary inputs

• randomly incrementing or decrementing integers

• swapping and changing characters in strings

• Hidden tests: used for evaluation.

56

AlphaCode: Tricks

• SentencePiece tokenizer (Kudo and Richardson, 2018).

• Multi-query attention (Shazeer, 2019):

• Using a full set of query heads but sharing key and value heads per attention block significantly

reduces memory usage and cache update costs, which are the main bottleneck during sampling.

• This memory reduction also allows larger batch sizes for sampling, further increasing efficiency.

• Tempering: divide the logits by temperature T before the softmax layer (to avoid overfitting).

• Value conditioning (insert whether or not a submission was correct into the problem description)

and value prediction (auxiliary task).

• Prioritize precision over recall by using an offline RL algorithm GOLD (Pang and He, 2020):

∇LGOLD = −
∑

s∈solution tokens

Pθ(s)∇ logPθ(s)

Weights Pθ(s) (the probability for predicting the next token s) help concentrate on accurately

predicting tokens that are easier to predict and ignore those that are more difficult to predict.

57

AlphaCode: Sampling and filtering

To explore, the huge search space of possible solutions:

1. Sample millions of samples per problem

• generate half of the samples in Python and half in C++

• randomize the problem tags and ratings in the natural language prompt

• use a relatively high sampling temperature

2. Filter samples to only those that pass the example tests given in the problem statement.

• This removes 99% of samples.

3. Cluster solutions (by evaluating them on generated examples).

4. Create 10 submissions by selecting one solution from each cluster starting from the largest one.

• There are many ways solutions can be incorrect while correct solutions tend to behave the same and

therefore are grouped into larger clusters.

58

AlphaCode: Results

• Overall AlphaCode achieved an average ranking of top 54.3% limiting to 10 submissions per

problem, with an actual average of 2.4 submissions for each problem solved.

59

Home assignment

Assignment 09 ar

• In the home assignment, you need to implement a simplified

version of the PixelCNN model (van den Oord et al., 2016a).

masked kernel masked convolution

masked convolution

masked convolution

masked convolution

stack of masked 2d

convolutions in PixelCNN

61

https://arxiv.org/pdf/1601.06759.pdf

Recommended reading

• Papers cited in the lecture slides.

62

