
CS-E4890: Deep Learning

Learning with few labeled examples

Alexander Ilin

Motivation

• Deep learning is data hungry. To learn to classify handwritten digits, we need thousands of

samples, to learn to classify natural images we need millions of images.

• Suppose we have a custom classification task, for example, we need to classify images to custom

classes (not covered by imageNet). What can we do?

• Collect a lot of training examples and label them.

• Time consuming and expensive.

• Sometimes collecting new examples is impossible.

• Transfer learning

• Semi-supervised learning

• Self-supervised learning

• Few-shot learning (meta learning)

1

Transfer learning

Transfer learning: Image classification

• Features that are useful for some tasks can be useful for other tasks in the same domain.

• For image classification tasks, it is common to fine-tune the last layer of a deep neural network

pre-trained on imageNet (there is a bunch of them in PyTorch).

• Example: Donahue et al. (2013) use outputs from the sixth layer of AlexNet and as features for a

classifier trained on Caltech-101 dataset.

AlexNet

Accuracy on Caltech-101

Hand-crafted features + kernel classifier

• A common way of doing transfer learning on vision tasks: use a ResNet pre-trained on ImageNet

as a feature extractor, train the last linear layer on a target dataset.

3

https://arxiv.org/pdf/1310.1531.pdf

Transfer learning with Vision Transformers (Dosovitskiy et al., 2020)

• We have seen transfer learning with BERT on natural language understanding tasks.

• Transformers has been shown to work well

in the vision domain as well.

• Vision Transformer (ViT)

• split an image into fixed-size patches

• linearly embed each of them

• add position embeddings

• feed the resulting sequence of vectors to a

standard Transformer encoder.

• In order to perform classification, add an

extra learnable “classification token” to

the sequence.

• ViT is pre-trained on large datasets and then fine-tuned to (smaller) downstream tasks.

4

https://arxiv.org/pdf/2010.11929.pdf

Semi-supervised learning

Semi-supervised classification

• Semi-supervised classification: few labeled examples, many unlabeled examples.

Source: (Tarvainen and Valpola, 2017)

6

https://github.com/CuriousAI/mean-teacher/blob/master/nips_2017_slides.pdf

When semi-supervised learning is possible?

• Semi-supervised learning is possible when the knowledge

on p(x) that one gains through the unlabeled data carries

information that is useful in the inference of p(y | x).

• In the hypothetical example on the right, modeling the

distribution of unlabeled data can improve the

classification accuracy.

• The labels can be propagated to the unlabeled data in

the same cluster yielding better classification accuracy.

Red and blue dots: labeled samples

Black dots: unlabeled samples

7

When semi-supervised learning is possible?

• Semi-supervised learning is possible when the knowledge

on p(x) that one gains through the unlabeled data carries

information that is useful in the inference of p(y | x).

• In the hypothetical example on the right, modeling the

distribution of unlabeled data can improve the

classification accuracy.

• The labels can be propagated to the unlabeled data in

the same cluster yielding better classification accuracy.

Red and blue dots: labeled samples

Black dots: unlabeled samples

7

When semi-supervised learning is possible?

• Semi-supervised learning is possible when the knowledge

on p(x) that one gains through the unlabeled data carries

information that is useful in the inference of p(y | x).

• In the hypothetical example on the right, modeling the

distribution of unlabeled data can improve the

classification accuracy.

• The labels can be propagated to the unlabeled data in

the same cluster yielding better classification accuracy.

Red and blue dots: labeled samples

Black dots: unlabeled samples

7

When semi-supervised learning is possible?

• Semi-supervised learning is possible when the knowledge

on p(x) that one gains through the unlabeled data carries

information that is useful in the inference of p(y | x).

• In the hypothetical example on the right, modeling the

distribution of unlabeled data can improve the

classification accuracy.

• The labels can be propagated to the unlabeled data in

the same cluster yielding better classification accuracy.

Red and blue dots: labeled samples

Black dots: unlabeled samples

7

When semi-supervised learning is possible?

• Semi-supervised learning is possible when the knowledge

on p(x) that one gains through the unlabeled data carries

information that is useful in the inference of p(y | x).

• In the hypothetical example on the right, modeling the

distribution of unlabeled data can improve the

classification accuracy.

• The labels can be propagated to the unlabeled data in

the same cluster yielding better classification accuracy.

Red and blue dots: labeled samples

Black dots: unlabeled samples

7

Ladder networks (Rasmus et al., 2015)

• Rasmus et al. (2015) showed that a denoising

autoencoder trained on two tasks (denoising and

classification) can be very efficient in semi-supervised

learning.

• The architecture resembles a ladder (or a U-net).

• Denoising task: produce a clean input at the bottom

(use both labeled and unlabeled examples to compute

the loss).

• Classification task: produce the correct label at the

bottleneck (use labeled examples to compute the

loss). x x̂

ŷ

x

y

denoising
cost

denoising
cost

denoising
cost

denoising
cost

classification
cost

noise

noise

noise

noise

8

https://arxiv.org/abs/1507.02672
https://arxiv.org/abs/1507.02672

Π-model (Laine and Aila, 2016): Consistency-based semi-supervised learning

• Laine and Aila (2016) proposed a simplification of the Ladder networks that does not contain the

top-down pass.

• There are two copies of the same network performing

computations for x1 and x2, which is the same training example

changed with different transformations.

• The cost for unlabeled data is

consistency cost = ‖z1 − z2‖2 = ‖f (x1)− f (x2)‖2

• The gradients propagate through both networks, z is the input of

the softmax (logit).

• The model resembles siamese networks (Bromley et al., 1993).

• The intuition: we do not know the correct output for unlabeled

data but we know that the output should not change for a

transformed input. x

z1

ŷ

x

z2

y

consistency

cost

classification
cost

transform 1 transform 2

9

https://arxiv.org/pdf/1610.02242.pdf
https://arxiv.org/pdf/1610.02242.pdf
https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf

Mean Teacher (Tarvainen and Valpola, 2017)

• Since the Π-model, the majority of semi-supervised methods maximize the consistency between

different transformations of the same training examples.

• Mean teacher: Instead of using two identical networks, one

network (teacher) is obtained by computing exponential moving

average (EMA) of the weights of the other (student) network:

θ′t = γθ′t−1 + (1− γ)θt

• Using a fixed target usually stabilizes training (gradients are

propagated only through the student).

• EMA removes the noise caused by stochastic gradient descent,

which makes the teacher more accurate than the student.

• The same consistency cost is used:

consistency cost =
∥∥f (x1,θt)− f (x2,θ

′
t)
∥∥2 x

student

ŷ

x

teacher

y

consistency

cost

classification
cost

noise

noise

noise

noise

noise

noise

10

https://arxiv.org/pdf/1703.01780.pdf

Evolution of consistency-based semi-supervised methods

Student Teacher Teacher label CIFAR-10 accuracy
Algorithm augment. augment. post-processing 4K labels (from here)

Fully supervised Wide ResNet with 50K labels – – – 94.6

Π-Model (Laine and Aila, 2016) Weak Weak – 87.84

VAT (Miyato et al., 2017) Adversarial – – 88.64

Mean Teacher (Tarvainen and Valpola, 2017) Weak Weak – 93.72

UDA (Xie et al., 2019) Strong Weak Sharpening 94.73

MixMatch (Berthelot et al., 2019) Weak Weak Sharpening 93.76

ReMixMatch (Berthelot et al., 2019) Strong Weak Sharpening 94.86

FixMatch (Sohn et al., 2020) Strong Weak Pseudo-labeling 95.69

• Weak augmentations: translation, flip, Gaussian noise. Strong augmentations: uniformly sample all image

processing transformations from the Python Image Library (PIL).

• Label sharpening, pseudo-labeling: reduce the entropy of the targets.

11

https://paperswithcode.com/sota/semi-supervised-image-classification-on-cifar
https://arxiv.org/pdf/1610.02242.pdf
https://arxiv.org/pdf/1704.03976.pdf
https://arxiv.org/pdf/1703.01780.pdf
https://arxiv.org/pdf/1904.12848.pdf
https://arxiv.org/pdf/1905.02249.pdf
https://arxiv.org/pdf/1911.09785.pdf
https://arxiv.org/abs/2001.07685

Self-supervised learning

Self-supervised learning

• The assumption that is made in semi-supervised learning: The unlabeled examples belong to the

same classes. This can be difficult to assure in many practical applications.

• Can we lean useful representations in a completely unsupervised manner?

• Self-supervised learning: Invent an auxiliary task that can be learned in an unsupervised manner

and use the developed features for the downstream task.

• In order to succeed, the auxiliary task should be relevant for the downstream task.

13

Examples of self-supervised learning models

x x̂

ŷ

x
denoising

costnoise

noise

noise

noise

Ladder networks

CLS Tok 1 MASK Tok 3 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

Tok 2

Sentence A Sentence B

CLS Tok 1 Tok 2 Tok 3 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

True/False

Sentence A Sentence B

14

Discriminative unsupervised feature learning (Dosovitskiy et al., 2014)

• One of the early works on self-supervised training.

• A convolutional neural network is pre-trained using

an artificially created learning task.

• N patches of size 32× 32 are sampled from

different images at varying positions and scale.

• Each patch is transformed multiple times using (a

composition of elementary) transformations.

• The task is to classify a transformed image patch to

one of the N classes that correspond to the original

N patches.

• The features produced by the CNN are used as

inputs of a support vector machine classifier.

sampled patches

transformed patches

elementary transformations used: translation,

scaling, rotation, contrast (raise S and V

components of the HSV color representation),

color (change the H component of the HSV

representation)

15

https://arxiv.org/abs/1406.6909

Contrastive Predictive Coding

(van den Oord et al., 2018)

https://arxiv.org/abs/1807.03748

Motivation

• The goal is to learn representations that encode the underlying shared information between

different parts of the (high-dimensional) signal. At the same time we want to discard low-level

information and noise that is more local.

• When predicting further in the future, the amount of shared information becomes much lower,

and the model needs to infer more global structure. These ’slow features’ that span many time

steps are often more interesting (e.g., phonemes and intonation in speech, objects in images, or

the story line in books.)

17

Contrastive Predictive Coding (CPC): The model

• A non-linear encoder genc maps the input sequence of observations xt to a sequence of latent

representations zt = genc(xt), potentially with a lower temporal resolution.

• Next, an autoregressive model gar summarizes all z ≤ t in the latent space and produces a context

latent representation ct = gar(z ≤ t).

18

CPC: Contrastive loss

• The task: Given the context ct , select the correct future code zt+k = genc(xt+k) after k steps

among N alternatives {zt+k , zτ1 , ..., zτN−1}.

• The alternatives zτ = genc(xτ) are selected as encoder outputs produced for inputs xτ randomly

selected from the dataset (for example, from the same input sequence).

• The loss is the categorical cross-entropy

of selecting the correct encoding:

L = − log
exp(z>t+kWkct)∑
j

exp(z>τj Wkct)

• The logits produced by the classifier are

postulated to have the form z>τ Wkct .

19

CPC: Results for audio data

• The quality of developed representations are tested by

training a classifier using representations ct as features on

the phone classification task:

• linear classifier: 64.6

• MLP classifier: 72.5

• CPC captures both speaker identity and speech contents.

t-SNE visualization of audio (speech) representations for a subset of 10 speakers

(out of 251). Every color represents a different speaker.

Classification accuracy on audio data.

Phone classification: 41 classes

Speaker classification: 251 classes.

random initialization: random genc and

gar

20

CPC for image data

• Contrastive Predictive Coding for images:

• The quality of developed representations are tested by

training a linear classifier using RNN outputs ct as input

features.

ImageNet top-5 unsupervised

classification results.

21

A Simple Framework for

Contrastive Learning (SimCLR)

(Chen et al., 2020a, 2020b)

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2006.10029

SimCLR (Chen et al., 2020a)

• SimCLR can be seen as the siamese networks processing two different

augmentations of the same image (as in the Π-model, Mean

Teacher) combined with the CPC contrastive loss.

• Sample a minibatch of N examples.

• Augment each example with two different transformations, which

results in 2N data points.

• Process each example with a deep neural network z = g(x).

• The training task is similar to CPC: For each image in the minibatch,

we need to select the other image that was produced with the other

transformation of the same original image among 2N − 1 alternatives

li,j = − log
exp(sim(zi , zj)/τ)

2N∑
k=1

1[k 6=i] exp(sim(zi , zk)/τ)

x

z

x

z′
maximize
agreement

transform transform′

23

https://arxiv.org/abs/2002.05709

SimCLR (Chen et al., 2020a)

li,j = − log
exp(sim(zi , zj)/τ)

2N∑
k=1

1[k 6=i] exp(sim(zi , zk)/τ)

• The cosine similarity is used:

sim(u, v) = u>v/ ‖u‖ ‖v‖

• As representation h, we take the output of an intermediate layer

(two layers before the output).

• The intuition: The formulated task of contrastive learning needs

development of the right features but the downstream task is

likely to be different and to require a different post-processing

head. x

h

z

x

h′

z′

representation

maximize
agreement

transform transform′

24

https://arxiv.org/abs/2002.05709

SimCLR augmentations

• Three augmentations are sequentially applied:

original 1) random cropping

followed by resize to the

original size

2) random color

distortions

3) random Gaussian blur

• Random cropping and color distortions give the largest boost in performance.

• It is important to apply both transformations for good performance. Why?

Because with one transformation only it is relatively easy to find matching pairs of images.

25

SimCLR augmentations

• Three augmentations are sequentially applied:

original 1) random cropping

followed by resize to the

original size

2) random color

distortions

3) random Gaussian blur

• Random cropping and color distortions give the largest boost in performance.

• It is important to apply both transformations for good performance. Why?

Because with one transformation only it is relatively easy to find matching pairs of images.

25

Linear classifier trained on top of SimCLR representations

ImageNet accuracies of linear classifiers trained

on representations learned with different self-supervised methods

26

Bootstrap your own latent (BYOL)

(Grill et al., 2020)

https://arxiv.org/abs/2006.07733

Bootstrap your own latent (BYOL) (Grill et al., 2020)

• BYOL can be seen as an extension of the Mean Teacher to the

fully unsupervised scenario:

• The teacher network is obtained by computing exponential

moving average of the weights of the student.

• The two networks process two different transformations of the

same example.

• The objective is

consistency cost =
∥∥q(z)− z′

∥∥2

where z = f (x,θt), z′ = f (x′,θ′t)

• Differences:

• Use strong augmentations (same set of augmentations as in

SimCLR).

• Use an extra predictor MLP q(z) in the student network.

x

student

z

q(z)

x

teacher

z′

consistency cost

transform transform′

28

https://arxiv.org/abs/2006.07733

Bootstrap your own latent (BYOL) (Grill et al., 2020)

consistency cost =
∥∥q(z)− z′

∥∥2

• The representations can collapse: the network can learn to

produce the same output z for any input x, which would yield a

zero consistency cost.

• In practice, this does not happen for the given architecture. In

fact, the representations collapse if the predictor network q(z) is

removed.

x

student

z

q(z)

x

teacher

z′

consistency cost

transform transform′

29

https://arxiv.org/abs/2006.07733

BYOL: Linear evaluation

ImageNet accuracies of linear classifiers trained

on representations learned with different self-supervised methods

30

Self-Supervised Vision Transformers (DINO)

(Caron et al., 2021)

https://arxiv.org/pdf/2104.14294.pdf

Self-Supervised Vision Transformers (DINO) (Caron et al., 2021)

• Self-supervised learning with Vision Transformers.

• The model passes two different random transformations of

an input image to the student and teacher networks.

• The collapse of the presentations is prevented by using the
effects of two tricks:

• Centering: the output of the teacher network is centered

using ema means of the outputs. Centering prevents one

dimension to dominate but encourages collapse to the

uniform distribution.

• Sharpening: The logits are divided temperatures.

Sharpening has the opposite effect of centering.

• The teacher parameters are updated with an exponential

moving average (ema) of the student parameters.

32

https://arxiv.org/pdf/2104.14294.pdf

Unsupervised object segmentations with DINO

• Self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any

label nor supervision.

• These maps show that the model automatically learns class-specific features leading to

unsupervised object segmentations.

33

Masked Autoencoders (MAE)

(He et al., 2021)

https://arxiv.org/pdf/2111.06377.pdf

Masked Autoencoders (He et al., 2021)

• Training task: mask random patches of the

input image and reconstruct the missing pixels.

• The encoder that operates only on the visible

subset of patches (without mask tokens).

• A lightweight decoder reconstructs the original

image from the latent representation and

mask tokens.

• MAE has an auxiliary dummy token in the encoder input, this token is treated as the class token

for linear probing and fine-tuning (MAE with average pooling works similarly).

• MAE with a ViT-Huge model achieves the best accuracy (87.8%) among methods that use only

ImageNet-1K data.

35

https://arxiv.org/pdf/2111.06377.pdf

Few-shot learning

Few-shot learning

• Humans can learn new concepts from just a single example:

drone segway

• Yet machine learning algorithms typically require thousands of examples to perform with similar

accuracy (Lake et al., 2015).

• Few-shot learning: How can we train an accurate model using a very small amount of training

data?

37

https://web.mit.edu/cocosci/Papers/Science-2015-Lake-1332-8.pdf

Few-shot learning

• The problem of few-shot learning attracted a lot

of attention after releasing the Omniglot

challenge (Lake et al., 2015).

Part A of Omniglot challenge: Two trials of one-shot

classification, where a single image of a new character is

presented (top) and the goal is to select another example

of that character amongst other characters from the same

alphabet (in the grid below).

38

https://web.mit.edu/cocosci/Papers/Science-2015-Lake-1332-8.pdf

Prototypical networks (Snell et al., 2017)

• Prototypical networks compute an M-dimensional

representation ck , or prototype, of each class through an

embedding function fθ. Each prototype is the mean vector of

the embedded support points belonging to its class:

ck =
1

|Sk |
∑

(xi ,yi)∈Sk

fθ(xi)

• Then they produce a distribution over classes for a query point x based on a softmax over

distances to the prototypes in the embedding space:

p(y = k | x) =
exp(−d(fθ(x), ck))∑
k′ exp(−d(fθ(x), ck′))

• In one-shot learning scenario, prototypical networks are equivalent to matching networks.

39

https://arxiv.org/pdf/1703.05175.pdf

Prototypical networks: Training

• N-way K -shot classification task: Each training example is a classification task with N classes and

K training examples per class.

• One iteration of episodic training:

• Select N classes by randomly sampling

from the training set.

• Select a support set by taking K random

samples for each of the selected classes.

• Select a query set (a few samples from

the same classes as in the support set).

• Use the support set to compute the

prototypes.

• Use the query set to compute the loss.

• Do backpropagation and update the

parameters θ of the embedding network.

zi = fθ(xi)

support xi

ck =
1

|Sk |
∑
i|yi=k

zi

zj = fθ(xj)

query xj

pk (zj) =
exp(−d(zj , ck))∑
k′ exp(−d(zj , ck′))

L(p, yj)

θ

Computational graph

40

Model-Agnostic Meta-Learning (MAML; Finn et al., 2017)

• We want to train a classifier y = fθ(x) to solve a new few-shot learning task.

• Learning can be done by performing a few iterations of gradient descent (GD).

• In the case of one iteration of GD:

θ′ ← θ0 − α∇θL((x1, y1), ..., (xk , yk))

• {(xi , yi)}ki=1 are the few training examples (support set)

• L is the loss function (for example, cross-entropy for classification tasks)

• α is the learning rate

• θ0 is the vector of the initial values of the parameters

• The idea of meta-learning: we can learn initialization θ0 and the learning rate α to minimize the

loss (on the query set) after the GD-adaptation.

41

https://arxiv.org/pdf/1703.03400.pdf

Model-Agnostic Meta-Learning: Training

One iteration of episodic training:

• Use the support set to compute the loss

and its gradient ∇θL.

• Compute adapted values θ′ of the

parameters (as part of computational

graph) with one (or a few) iteration of

gradient descent.

• Use the query set to compute the loss

with the adapted parameters θ′.

• Perform backpropagation and update

parameters θ0 and learning rate α.

ŷ = fθ0 (x)

xi
support

L(ŷi , yi)

support yi

∇θL

θ0

θ′ = θ0 − α∇θL

α

ŷ = fθ′(x)

xj
query

L(ŷj , yj)

query yj

Computational graph

42

Model-Agnostic Meta-Learning: First-order approximation

• MAML requires computation of gradient

through gradient, which can be

computationally expensive.

• The first-order approximation (which stops

gradient propagation through ∇θL) works

almost equally well.

ŷ = fθ0 (x)

xi
support

L(ŷi , yi)

support yi

∇θL

θ0

θ′ = θ0 − α∇θL

α

ŷ = fθ′(x)

xj
query

L(ŷj , yj)

query yj

stop
gradient

Computational graph

43

Zero-shot visual models with

natural language supervision

(CLIP, Radford et al., 2021)

https://arxiv.org/pdf/2103.00020.pdf

CLIP (Radford et al., 2021)

• Previous pre-training tasks for representation learning for images:

• match different representations of the same image (e.g., SimCLR, BYOL)

• use labels from classification tasks from the same domain (ResNet pre-trained on ImageNet, ViT

pre-trained on huge labeled datasets)

• CLIP: learn image representations with supervision by natural language (textual descriptions of

images).

• One of the goals: good zero-shot

capabilities, that is learning to solve

new classification tasks without

training examples.

plane car dog ... bird

zero-shot classifier

dog

45

https://arxiv.org/pdf/2103.00020.pdf

CLIP’s contrastive learning task

• Jointly train an image encoder and text encoder to maximize the cosine similarity of the image

and text embeddings of the N real pairs in the batch while minimizing the cosine similarity of the

embeddings of the N2 − N incorrect pairings.

46

CLIP: Structure of the zero-shot classifier at test time

• Prompt engineering: create a short

text using the name of the label. For

example, ’plane’ is converted to ’A

photo of a plane’.

• Prompt engineering helps improve the

zero-shot results.

• CLIP achieves impressive zero-shot

accuracies in many image

classification tasks. For example,

76.2% on ImageNet (without seeing

ImageNet data), which is on par with

a ResNet trained on ImageNet with

labels.

47

The pre-training task of CLIP

• The authors have tried three pre-training tasks:

• Image CNN and text transformer from scratch to

predict the caption of an image.

• A model that predicts a bag-of-words encoding of

the caption.

• Contrastive learning: Given a batch of N (image,

text) pairs, predict which of the N × N possible

(image, text) pairings across a batch actually

occurred.

• The contrastive learning approach learns much faster compared to the other two methods.

• This is natural because the test task (zero-shot classification of ImageNet) is similar to the

training task: each caption can be seen as a separate class.

48

Linear probing of CLIP image features

• CLIP is trained on 400 million (image, text) pairs

collected from the internet.

• The text encoder is a Transformer with the

modifications from GPT-2.

• Image encoders: ResNets or Vision Transformers (ViT).

• Training times: 18 days on 592 V100 GPUs (largest

ResNet), 12 days on 256 V100 GPUs (largest ViT).

• Natural language supervision provides a stronger signal

for representation learning compared to classification

tasks (compare CLIP-ViT vs ViT).

• ViT works better than ResNet in this task.

49

Parameter-Efficient Fine-Tuning

of Large Language Models

(review by Lialin et al., 2023)

https://arxiv.org/pdf/2303.15647.pdf

Parameter-Efficient Fine-Tuning of LLMs

• The size of contemporary LLMs scales almost two orders of magnitude quicker than

computational resources making fine-tuning the largest models to downstream tasks infeasible for

most and impractical for everyone .

• In-context learning thus became the new normal: pass training examples in the prompt of LLMs.

However, the limited context size of transformers limits the training set size to just a few

examples, typically less than 100.

• Parameter-efficient fine-tuning (PEFT) aims to resolve this problem by only training a small set of
parameters, which might be

• a subset of the existing model parameters

• a set of newly added parameters

• Popular techniques include adapters, prompt and prefix tuning and LoRa. More techniques can be

found in the review by Lialin et al., 2023.

51

https://arxiv.org/pdf/2303.15647.pdf

Adapters (Houlsby et al., 2019)

• Houlsby et al. (2019) propose to add fully-connected networks after attention and FFN layers in

Transformer. Unlike the transformer FFN block, Adapters usually have a smaller hidden dimension

than the input.

• Adapters have demonstrated impressive param-

eter efficiency at the time, showing that it is

possible to achieve performance competitive to

full fine-tuning by tuning less than 4% of the

total model parameters.

• Inserting the adapter only after the self-

attention layer (after normalization) achieves

similar performance as using two adapters per

transformer block.

52

https://arxiv.org/pdf/1902.00751.pdf
https://arxiv.org/pdf/1902.00751.pdf

Prompt and prefix tuning

• Prompt tuning (Lester et al., 2021): prepend the

model input embeddings with a trainable ten-

sor. This tensor is commonly referred to as “soft

prompt” and it is optimized directly through gra-

dient descent.

prompt tuning:

• Prefix tuning (Li and Liang, 2021): instead of

adding a soft prompt to the model input, train-

able parameters are prepended to the hidden

states of all layers. The same prefix is prepended

to all of the hidden states.

prefix tuning (pseudocode for a single layer):

53

https://arxiv.org/pdf/2104.08691.pdf
https://arxiv.org/pdf/2101.00190.pdf

LoRa (Hu et al., 2021)

• All matrix parameters of the model are updated

as

W′ = W + ∆W

where ∆W is modeled as a product of two low-

rank matricies:

∆W
n×m

= WA
n×r

WB
r×m

After training, the new weights W′ are used.

• In transformers, LoRa is typically used for WK and WV projection matrices in multi-head

attention modules.

54

Home assignment

Assignment 11 fewshot

• You need to implement prototypical networks (Snell et al., 2017).

ck =
1

|Sk |
∑

(xi ,yi)∈Sk

fθ(xi)

p(y = k | x) =
exp(−d(fθ(x), ck))∑
k′ exp(−d(fθ(x), ck′))

56

https://arxiv.org/pdf/1703.05175.pdf

Recommended reading

• Papers cited in the lecture slides.

57

