
Analysis, Random Walks and Groups

Exercise sheet 5: solutions

Homework exercises: Return these for marking to Kai Hippi in the tutorial on Week 6.
Contact Kai by email if you cannot return these in-person, and you can arrange an alterna-
tive way to return your solutions. Remember to be clear in your solutions, if the solution is
unclear and difficult to read, you can lose marks. Also, if you do not know how to solve the
exercise, attempt something, you can get awarded partial marks.

Comments etc. by Kai in red color.

1. (5pts)

Let G be a finite group and ϱ1 : G → U(Vϱ1) and ϱ2 : G → U(Vϱ2) be unitary repre-
sentations and let φ : V1 → V2 be a morphism between ϱ1 to ϱ2. Prove the following version
of Schur’s lemma:

(a) if ϱ1 is irreducible, then φ is either injective or zero;
(b) if ϱ2 is irreducible, then φ is either surjective or zero.

Solution 1.a

The kernel of φ,
ker(φ) = {v ∈ Vϱ1 : φ(v) = 0} < Vϱ1

is ϱ1 invariant: as φ is a morphism, we have for all v ∈ ker(φ) that

φ(ϱ1(x)v) = ϱ2(x)φ(v) = ϱ2(x)0 = 0

so ϱ1(x)v ∈ ker(φ) for all x ∈ G. Thus as φ1 is irreducible, ker(φ) = {0}, in which case φ is
injective as a linear map, or Vϱ1 , in which case it is zero.

Solution 1.b

The range (i.e. image) of φ,

im(φ) = {w ∈ Vϱ2 : φ(v) = w for some v ∈ Vϱ1} < Vϱ2

is ϱ2 invariant. Indeed, fix w ∈ im(φ) so there exists v ∈ Vϱ1 such that φ(v) = w. As φ is a
morphism, we thus have

φ(ϱ1(x)v) = ϱ2(x)φ(v) = ϱ2(x)w

so ϱ2(x)w ∈ im(φ) for all x ∈ G. Thus as φ2 is irreducible, im(φ) = {0}, in which case φ is
zero, or Vϱ2 , in which case it is surjective by definition.

2. (5pts)

Fix p ≥ 2 and let H be a subgroup of Zp. Prove the Poisson summation formula: for
any f : Zp → C, we have

1

|H|
∑
h∈H

f(h) =
1

p

∑
k∈H⊥

f̂(k),

1
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where
H⊥ := {k ∈ Zp : e

2πikt/p = 1 for all t ∈ H}.

Hint: There are couple of ways to do this. One way is to apply the inverse Fourier transform to
the function F (s) =

∑
h∈H f(sh), and then set s = 1, or first verifying the Poisson summation

formula for Dirac measures δt and then using linearity to extend for all f .

Solution 2.

Let us first verify the formula for Dirac measures and then use these for the asked equality.
Let x ∈ Zp and consider f = δx. First let us note:

δ̂x(k) = e−2πixk/p

• Case: H = Zp

– Case: x ∈ H
Consider

H⊥ = {k ∈ Zp | e2πikt/p = 1 ∀t ∈ H}

= {k ∈ Zp | e2πikt/p = 1 ∀t ∈ Zp}.

Clearly H⊥ = {0} as for k ∈ Zp, k ̸= 0 it holds that

k
p− 1

p
̸∈ Z ⇐⇒ e2πik(p−1)/p ̸= 1

which means that k ̸∈ H⊥.

Clearly
1

|H|
∑
h∈H

f(h) =
1

|Zp|
=

1

p
.

And now
1

p

∑
k∈H⊥

f̂(k) =
1

p

∑
k∈H⊥

δ̂x(k) =
1

p

∑
k∈H⊥

e−2πikx/p =
1

p
.

This case is okay.

– Case: x ̸∈ H
Clearly this is not a possible situation as H = Zp.

• Case: H = {0}
– Case: x ∈ H

Now δx = δ0 necessarily. We quickly that

H⊥ = Zp.

Clearly
1

|H|
∑
h∈H

f(h) = 1.
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Also
1

p

∑
k∈H⊥

f̂(k) =
1

p

∑
k∈Zp

δ̂0(k) =
∑

k∈H⊥

1 =
1

p
p = 1.

This case is okay.

– Case: x ̸∈ H
Clearly

1

|H|
∑
h∈H

f(h) = 0.

Also
1

p

∑
k∈H⊥

f̂(k) =
1

p

∑
k∈Z

e−2πikx/p = 0,

as x ̸= 0. This case is okay.

• Case: H ̸= {0}, H ̸= Zp

– Case: x ∈ H

By thm.2.9., if p is prime, then no such H exists we are focusing on here.
Hence we may assume p is not a prime number. Also by thm.2.9.

H = ⟨w⟩

for some w ∈ Zp so that w|p. From this we see that

H = {aw | a ∈ {0, ..., p
w

− 1}}.

We also see that |H| = p
t

Consider

H⊥ = {k ∈ Zp | e2πikt/p=1 ∀t∈H}

= {k ∈ Zp |
kt

p
∀t ∈ H}

= {k ∈ Zp | k
a

p/w
∈ Z ∀a ∈ {0, ..., p

w
− 1}}.

Clearly

{r p
w

∈ Zp | r ∈ Z} ⊆ H⊥.

Let us assume that there exists χ ∈ H⊥ so that χ ̸∈ {r p
w ∈ Zp | r ∈ Z}. Thus

χ
p
w − 1

p
w

∈ Z.

Since p
w and p

w − 1 are coprime integers we have the following result from
number theory:

if (
p

w
)|(k( p

w
− 1)), then (

p

w
)|k,

where k is an integer. This means that

χ = r
p

w
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for some r ∈ Z. This is a contradiction so

H⊥ = {r p
w

∈ Zp | r ∈ Z}.

Clearly

|H⊥| = p
p
w

= w.

So then:

1

|H|
∑
h∈H

δx(h) =
1

|H|
=

w

p
.

Now also:

1

p

∑
k∈H⊥

f̂(k) =
1

p

∑
k∈H⊥

δ̂x(k) =
1

p

∑
k∈H⊥

e−2πikx/p =
1

p

∑
k∈H⊥

1 =
|H⊥|
p

=
w

p
.

This case is okay.

– Case: x ̸∈ H
Clearly again

1

|H|
∑
h∈H

f(h) = 0.

Now consider (and use observations regarding H⊥ from the last part):

1

p

∑
k∈H⊥

f̂(k) =
1

p

∑
k∈H⊥

δ̂x(k)

=
1

p

w−1∑
s=0

e−2πis p
w
/p

=
1

p

w−1∑
s=0

e−2πis/w = 0.

This case is okay.

We have confirmed that for f = δx, x ∈ Zp the Poisson summation works. Now consider

f : Zp → C, z 7→ f(z) :=
∑
a∈Zp

caδa(z),
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where ca ∈ C. Consider
1

|H|
∑
h∈H

f(h) =
1

|H|
∑
h∈H

∑
b∈Zp

cbδb(h)

=
∑
b∈Zp

cb
1

|H|
∑
h∈H

δb(h)

=
∑
b∈Zp

cb
1

p

∑
k∈H⊥

δ̂b(k)

=
1

p

∑
k∈H⊥

∑̂
b∈Zp

cbδb(k)

=
1

p

∑
k∈H⊥

f̂(k).

We have confirmed the Poisson summation formula.

Further exercises: Attempt these before the tutorial, they are not marked and will be
discussed in the tutorial. If you cannot attend the tutorial, but want to do the attendance
marks, you can return your attempts to these before the tutorial to Kai. Here Kai will
not mark the further exercises, but will look if an attempt has been made and awards the
attendance mark for that week’s tutorial.

3.

Let G be a finite group and x ∈ G, x ̸= 1 (identity element). Define a probability dis-
tribution in G:

µx =
1

2
δx +

1

2
δ−x

Give an example of a finite group G such that the Fourier transform

µ̂x(ξ)

is unitary for all ξ ∈ Ĝ.

Solution 3.

Let G = Z2. Then we must have x = 1 so x−1 = 1. Hence by definition of the Fourier
transform

µ̂x(ξ) =
1

2
ϱξ(x) +

1

2
ϱξ(x

−1) =
1

2
ϱξ(1) +

1

2
ϱξ(1) = ϱξ(1),

which is unitary for all ξ ∈ Ĝ as the definition of Ĝ is the equivalence classes of all unitary
(irreducible) representations, so in particular ϱξ is unitary representation.

4.

Recall that the Uncertainty Principle in a finite abelian group G said: for all f : G → C
with f ̸= 0, we have

|spt(f)||spt(f̂)| ≥ |G|.
(we did this in the lecture for G = Zp, but the proof is same for general abelian G)
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Now, prove the following structure theorem relates to this: if G is an abelian group and a
function f : G → C with 0 ∈ spt(f) satisfies the equality:

|spt(f)||spt(f̂)| = |G|,
then spt(f) is a subgroup of G.

Solution 4.

For the proof in full generality see:
https://www.emis.de/journals/AMUC/_vol-73/_no_2/_przebinda/przebinda.
pdf
(Matusiak, Özaydin, Przebinda)

Very good supplements for this problem are also:
https://epubs.siam.org/doi/pdf/10.1137/0149053
(Donoho, Stark - This is about the cyclic case)

https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf
(Conrad)

Let us get some flavor on this. Let us verify this for a very simple case of Z4. If |spt(f)| = 1
or 4, we are done since in these cases spt(f) = {0} or Z4, respectively. Also, |spt(f)| = 3 is
impossible as then |spt(f̂)| ̸∈ Z. Hence |spt(f)| = 2.

• Case: spt(f) = {0, 1}
Consider:

f̂(k) =
∑
a∈Zp

f(a)e2πika/4 = f(0) + f(1)e2πik/4.

Clearly f̂(1), f̂(3) ̸= 0. Also both f̂(0) and f̂(2) cannot be zero simultaneously. Thus

|spt(f)||spt(f̂)| ≠ 4,

this case is not possible.

• Case: spt(f) = {0, 3}
Similar as the previous case.

• Case: spt(f) = {0, 2}
Consider:

f̂(k) =
∑
a∈Zp

f(a)e2πika/4 = f(0) + f(2)eπik.

Here it is possible to have |spt(f̂)| = 2.
Hence only suitable and possible case is that spt(f) = {0, 2} which is a subgroup. Similar
ideas of cancellations (and non-cancellations) should generalize to a more general proof in
Zp.

5.

Construct a probability distribution µ on S3 with entropy H(µ) = log 2. Then, using
the character table of S3 and finding the dimensions of the irreducible representations of

https://www.emis.de/journals/AMUC/_vol-73/_no_2/_przebinda/przebinda.pdf
https://www.emis.de/journals/AMUC/_vol-73/_no_2/_przebinda/przebinda.pdf
https://epubs.siam.org/doi/pdf/10.1137/0149053
https://kconrad.math.uconn.edu/blurbs/grouptheory/charthy.pdf
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S3, construct some n0 ∈ N such that the entropy H(µ∗n) > log 6 + 1
1000 for all n ≥ n0.

Solution 5.

S3 = {e, (12), (13), (23), (123), (132)}.
Let us define µ as follows:

µ =
1

2
δe +

1

2
δ(12).

Let us confirm that it has the wanted entropy:

H(µ) = −
∑
s∈S3

µ(s)log(µ(s))

= −1

2
log(

1

2
)− 1

2
log(

1

2
)

=
1

2
log(2) +

1

2
log(2)

= log(2).

Character table for S3 is found in the lecture notes from pages 106-107.

We notice that this seems to be wrong! Why? Let γ =
∑

s∈S3
asδs (ai ∈ C) be any probability

distribution no S3. Then:

H(γ) = −
∑
s∈S3

γ(s)log(γ(s))

=
∑
s∈S3

−(
∑
z∈S3

azδz(s))log(
∑
z∈S3

azδz(s))

≤ [Concavity and subadditivity]
∑
s∈S3

∑
z∈S3

−azδz(s)log(azδz(s))

=
∑
z∈S3

az(−
∑
s∈S3

δz(s)log(az)−
∑
s∈S3

δz(s)log(δz(s)))

= [Latter = 0]
∑
z∈S3

az(−
∑
s∈S3

δz(s)log(az))

=
∑
z∈S3

−azlog(az)

So we have an optimization problem at hand which we can solve using the method of
Lagrange multipliers roughly as follows:

Maximize
f(a) =

∑
z∈S3

−azlog(az)

with respect to

g(a) =
∑
z∈S3

az = 1.

We see that
∇g = 1

so it being zero matters not. Let

L(a, λ) = f(a)− λg(a).
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We want to find suitable values so that

∇L = 0.

We get that for every z ∈ S3:

−log(az)− 1 = λ ⇐⇒ az = e−λ−1.

We also get:

1 =
∑
z∈S3

az =
∑
z∈S3

e−λ−1 = 6e−λ−1 ⇐⇒ log(
1

6
) + 1 = −λ.

Thus az = 1
6 . We maximize with az =

1
6 . Thus it follows that

max(
∑
z∈S3

−azlog(az)) = log(6).

Clearly we cannot construct the demanded probability distribution.

What was probably the idea of this exercise? First we construct the asked probability
distribution with entropy log(2). After this, I think the idea would be to use Pinsker’s
inequality (thm.2.34.) (the proof should work for S3 as well). Using Pinsker’s inequality
we would get:

d(µ∗n,λ) ≥ 1

2(H(λ) + 1)
|H(µ∗n)−H(λ)|

⇐⇒ 2(H(λ) + 1)d(µ∗n, λ) ≥ H(λ)−H(µ∗n)

⇐⇒ H(µ∗n) ≥ H(λ)− 2(H(λ) + 1)d(µ∗n, λ).

⇐⇒ H(µ∗n) ≥ log(6) + 2(log(6) + 1)(−d(µ∗n, λ))

Entropy for the Lebesgue measure λ can be verified to be log(6). Next we can ask, how big
n is needed to get:

log(6)− 1

1000
≤ log(6) + 2(log(6) + 1)(−d(µ∗n, λ))

so we would get some estimate on n indicating that

H(µ∗n) ≥ log(6)− 1

1000

We proceed. We can use the upper bound lemma to get lowe bound for (−d(µ∗n, λ)):

(−d(µ∗n, λ)) ≥ −1

2

√ ∑
ξ∈Ŝ3,ξ ̸=1

dim(Vξ)||µ̂(ξ)n||2HS,ξ.

Here, the dimension can be checked from the character table. The Hilbert-Schmidt norm
goes like:

||µ̂(ξ)n||HS,ξ =
√
TrVξ

((µ̂(ξ)n)(µ̂(ξ)n)∗).

With a good enough choice of µ, the matrix µ̂(ξ) should be computable. For this, we should
again use the given character table of the lecture notes. After this all is done, perhaps we
can compute some n with which we get the wanted property.

In the end, a final note on the fact that with a badly chosen µ, it is possible that µ∗n

does not converge into λ in total variation distance. Hence, even with a ”correct” under-
standing of the exercise, we might not be able to construct the wanted n0. Examples of this
has been discussed in the earlier exercises.


