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For the reader

The present publication is a collection of the main results of the appendices of the Lecture
Notes on Continuum Thermodynamics; January 2023. The idea of the collection is that a
student can have it with her/him in the examination.
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APPENDIX A

Double-dot product of a skew-symmetric third-order tensor and of a symmetric
second-order tensor

Theorem 1: The following expressions holds:

where c is a third-order tensor which is skew-symmetric in the last two indices and h is a
symmetric second-order tensor. The notation  refers to a zero vector, which means that the
values of all the components of the vector  vanish.

APPENDIX B

Legendre transformation

The investigation is started with a given scalar-valued function F of m second-order tensorial
variables u1,...,u2, viz.

A new set of second-order tensors γ1,...,γm is introduced by means of the following
transformation:

where the coefficient a is independent of the variables ui and γi (i = 1,...,m). In the present
derivation variables  ui and γi are assumed to be second-order tensors, but certainly can be
tensors of any order.

The so-called “Hessian” - i.e. the determinant formed by the second partial derivatives of F -
is assumed to be different from zero, guaranteeing the independence of the m variables γi.
In that case, Equations (2) are solvable for ui as a function of γi. 

The Legendre transformation Ω of the function F is defined as

where b is a coefficient independent of the variables ui and γi (i = 1,...,m). The variables  ui

as expressed in terms of tensors γi [Equation (2)] are substituted into Equation (3). The
function Ω can then be expressed in terms of the new variables γi alone as follows:
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The following result is obtained:

APPENDIX C

Legendre partial transformation

In this case, the scalar-valued function F is assumed to be a function of two independent sets
of tensorial variables, which are u1,...,um and w1,...,wn, i.e.

The new independent set of second-order tensorial variables γ1,...,γm  is assumed to be
defined by

where a is a coefficient independent of ui, wj and γi (i = 1,...,m and j = 1,...,n). The variables
ui are called the active variables and the variables wj are called the passive variables of the
transformation. A new function Ω, called the Legendre partial transformation, is introduced.
It is defined by

The following results are obtained:

and
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APPENDIX D

Divergence of the dot product of a second-order tensor and a vector

Theorem 1: The following expression holds:

where  is the vector operator del, h is a second-order tensor, and  is a vector.

APPENDIX E

Stress power per unit volume

Theorem 1: The following expression holds:

Theorem 2: In the case of small displacements and displacement gradients the following
holds:

APPENDIX F

Legendre transformation of a homogeneous function

A scalar-valued function F of m different tensorial variables u1,...,um is studied. Function is
F expressed as follows:

is assumed to be a homogeneous function of degree ω and therefore it satisfies the following
definition and equation:

and

where k is an arbitrary positive real number. [see e.g. Widder (1989, p. 19 and 20)].

Next, m second-order tensors are introduced by defining



Collection of the main results of the appendices Page 4

(1)

(2)

(3)

(5)

(16)

(4)

where a is an arbitrary coefficient independent of both  and  . 

The Legendre transformation Ω of the function F is defined as in Appendix B, i.e.

where the coefficient  does not depend on the tensorial variables  and   .

The result can be written in the form

Equation (16) therefore shows the Legendre transformation  to be a
homogeneous function of degree ω/(ω - 1), where ω is the degree of the original function F.
This does not hold for the case ω = 1, as can be seen in Equation (16).

If the original function F were a homogeneous function of degree μ = 1/κ, the function Ω
would be a homogeneous function of degree 1/(1 - μ). As above, this does not hold for the
case μ = 1.

APPENDIX G

Normality rule for the non-separated dissipation  

The non-separated form of the Clausius-Duhem Inequality is given by Equation (13.1), viz.

By following the concept given by Section 13.1 the principle of maximum dissipation for
non-separated dissipation  is written in the following mathematical form:

maximise with respect to the fluxes 

subject to:

where = 0 is a constraint and  is the specific dissipation function.
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As a result the following normality rule was achieved:

and

and finally

The specific dissipation function  has to satisfy the following condition:

The first-order sufficient condition for the point  to be a local maximum is that
Equations (7), (8) and (9) hold and that the specific dissipation function  is a homogeneous
function of degree 1/μ. The latter property is obtained if the coefficient μ in Expression (10)
is a constant. If the multiplier μ is not a constant but , the specific
dissipation function  is not a homogeneous function and the value for μ is obtained from
Equation (10).

APPENDIX H

Normality rule for the separated dissipation Φ

Not included here.

APPENDIX I

Normality rule for the separated specific dissipation function  having same
internal variables in several parts 

This appendix evaluates cases when the specific dissipation function  is separated into
several parts but the same internal variable exists in more than one specific dissipation
function. In order to make the evaluation easy to follow, the simplest possible case is
evaluated here. It is: The specific dissipation function  is assumed to be separated into
two parts.

The Clausius-Duhem inequality for the mechanical part was given by Expression (13.2)1. It
has the following appearance:
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The mechanical part of the specific dissipation function  is assumed to be separated
into two parts as follows:

As Separation (1) shows, the internal variable  is on both parts of the specific dissipation
function n.

According to Expressions (13.5) and (13.6) of Section 13.1, the principle of maximum
dissipation:   

maximise with respect to the fluxes ( , α̇)

subject to:

where = 0 is a constraint and  is the specific dissipation function for
mechanical behaviour.

The investigation can be continued by following the same procedure as in Section 13.1. This
means that the normality rule follows Normality Rule (13.20) and (13.21), viz.

and

In Normality Rule (5) and (6) the set of state variables  and function h are
expressed by the notation state. It is worth noting that the approach given by Expressions (3)
and (4) leads to the result that the parameters μ related to the specific dissipation functions

 and  are the same [as shown by Expressions (5) and (6)]. 
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APPENDIX J

On partial derivatives of the von Mises operator  acting on a tensorial variable

Theorem 1: The following results hold:

and

In Derivatives (14) and (15) the notations s and b1 are deviatoric tensors of σ and .

APPENDIX K

Proof of equality

Theorem 1: The following expression holds:

APPENDIX L

Miscellaneous expressions

This appendix proves miscellaneous theorems. The proofs are too short for separate
appendices.

Theorem 1: The following expression holds:

where  is second-order identity tensor given by Definition (2.26) and  and  are arbitrary
vectors.

Theorem 2: The following expression holds:

Theorem 3: The derivative of a second order tensor  with respect a second-order tensor
, where , is obtained by the following chain rule:



Collection of the main results of the appendices Page 8

(12)

(17)

(18)

(12)

(20)

(28)

(19)

Theorems 4.1 and 4.2: The following expressions hold: 

where  is a vector,  is a scalar and  and  are second-order tensors.

Theorems 5.1 and 5.2: The following expressions hold: 

where  is a vector,  is a scalar and  and  are vectors.

Theorem 6: The material derivative of the scalar-valued function  has the form

Theorem 7: The following expression holds:

Theorem 8: The following expression holds:

APPENDIX M

Material derivative of the Jacobian determinant

The following equality holds:
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APPENDIX N

Constitutive tensor C and the compliance tensor S

Theorem 1: The following holds: 

Theorem 2: The following expressions for the compliance tensor  are coincide:

Theorem 3: Constitutive tensor  has a major symmetry. This is

Theorem 4: Constitutive tensor  has a minor symmetry in the first pair of indices and in
the second pair of indices. This is

Theorem 5: The following holds:

Theorem 6: The following holds:

where  is the effective compliance tensor for deformation of a material containing non-
interacting spherical microvoids within a matrix material having a linear elastic response. 

APPENDIX O

Scalar components of the compliance tensor Sdr

Not included here.
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APPENDIX P

Change of the coordinate system

Not included here.

APPENDIX Q

Heat equation for solids in terms of the specific Gibbs free energy g

Not included here.

APPENDIX R

Clausius-Duhem inequality when the material model is expressed by the specific
Helmholtz free energy ψ   

Not included here.
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