

Mastering openFrameworks: Creative
Coding Demystified

Denis Perevalov

Chapter No. 7
"Drawing in 3D"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.7 "Drawing in 3D"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Denis Perevalov is a computer vision research scientist. He works at the Institute
of Mathematics and Mechanics of the Ural Branch of the Russian Academy of
Sciences (Ekaterinburg, Russia). He is the co-author of two Russian patents on
robotics computer vision systems and an US patent on voxel graphics. Since 2010
he has taught openFrameworks in the Ural Federal University. From 2011 he has been
developing software for art and commercial interactive installations at kuflex.com
using openFrameworks. He is the co-founder of interactive technologies laboratory
expo32.ru (opened in 2012).

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Mastering openFrameworks: Creative
Coding Demystified
openFrameworks is a simple and powerful C++ toolkit designed to develop real-time
projects with focus on generating and processing graphics and sound. Nowadays, this
is a popular platform for experiments in generative and sound art and creating interactive
installations and audiovisual performances.

Mastering openFrameworks: Creative Coding Demystified covers programming
openFrameworks 0.8.0 for Windows, Mac OS X, and Linux. It provides a complete
introduction to openFrameworks, including installation, core capabilities, and addons.
Advanced topics like shaders, computer vision, and depth cameras are also covered.

You will learn everything you need to know to create your own projects, ranging from
simple generative art experiments to big interactive systems consisting of a number of
computers, depth cameras, and projectors.

This book focuses on low-level data processing, which allows you to create really
unique and cutting-edge works.

What This Book Covers
Chapter 1, openFrameworks Basics, covers installing openFrameworks, the structure
of openFrameworks projects, and creating the pendulum-simulation project.

Chapter 2, Drawing in 2D, explains the basics of two-dimensional graphics, including
drawing geometric primitives, working with colors and drawing in the offscreen buffer.
It also contains a generative art example of using numerical instability for drawing.

Chapter 3, Building a Simple Particle System, teaches the basics of particle system
modeling and drawing. By the end of this chapter, you will build a fully featured project
that can be used as a sketch for further experiments with particles.

Chapter 4, Images and Textures, covers the principles of working with images, including
loading images from file; rendering it on the screen with different sizes, color, and
transparency; creating new images; and modifying existing images. It also touches the
basics of image warping and video mapping.

Chapter 5, Working with Videos, covers basic and advanced topics on playing, layering,
and processing videos, including playing video files, processing live video grabbed from
a camera, and working with image sequences. This chapter contains an implementation
of the slit-scan effect and a simple video synthesizer, which uses a screen-to-camera
feedback loop to create vivid effects on prerecorded videos.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 6, Working with Sounds, explains how to play sound samples, synthesize new
sounds, and get sounds from the microphone. It includes the project wherein we generate
music using bouncing-ball simulation, the PWM synthesizer, and the image-to-sound
transcoding. Finally, it teaches us how to use spectrum analysis for creating an audio-
reactive visual project.

Chapter 7, Drawing in 3D, covers representing, modifying, and drawing 3D objects.
It includes examples of drawing a sphere-shaped cloud of triangles, an oscillating
surface, and a twisting 3D knot.

Chapter 8, Using Shaders, explains how to use fragment, vertex, and geometry
shaders for creating 2D video effects and 3D object deformations.

Chapter 9, Computer Vision with OpenCV, teaches the basics of computer vision using
the OpenCV library. It explains how to perform filtering and correct perspective
distortions in images and how to look for motion areas and detect bright objects in the
videos. It includes an advanced example of using optical flow for video morphing.

Chapter 10, Using Depth Cameras, covers using depth cameras in openFrameworks
projects using the ofxOpenNI addon. It includes an example of the projector-camera
interactive system, which lets us draw abstract images on the wall. The example can
be used as a sketch for creating interactive walls, tables, and floors.

Chapter 11, Networking, covers how to use OSC and TCP protocols in your
openFrameworks projects for creating distributed projects that run on several
computers. It includes an image-streaming example.

Appendix A, Working with Addons, teaches the basic principles of addons, explains
how to link addons to your projects, and discusses some of the most useful addons.

Appendix B, Perlin Noise, explains the principles of using Perlin noise, which
is employed in many of the examples in the book.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D
3D graphics often looks more impressive than 2D graphics because 3D has unique
expressive capabilities, such as depth, perspective, and shading. Also, the third
dimension allows objects to interweave and twist in the space in ways that are hard
to achieve using 2D graphics. In this chapter we will cover the basics of rendering
and animating 3D surfaces and primitive clouds with openFrameworks. We'll cover
the following topics:

� Simple 3D drawing

� Using ofMesh

� Enabling lighting and setting normals

� Texturing

� Working with vertices

3D basics
Working with 3D means working with objects modeled in the three-dimensional
scene, where the dimensions are horizontal (x), vertical (y), and depth (z). The
resulting 3D scene is projected either onto a 2D image to show it on the screen,
two 2D images for stereoscreen, or even printed as a 3D object using a 3D printer.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[184]

Representation of 3D objects
Each 3D object is represented using a number of elementary primitives such
as points, line segments, triangles, or other polygons. Methods of the object's
representation are as follows:

� An object is a number of surfaces assembled from polygonal primitives such
as triangles and quadrangles (often called quads). This method is used in
3D-modeling software for representing "surface" objects, such as a human
body, a car, a building, and also clothes and a rippled water surface.

� An object is a number of curves assembled from line segments. Such a
representation is used for modeling hair and fur.

� An object is a huge number of small points called particles. This is
representation of objects without distinct shape: smoke, clouds, fi re,
and a waterfall (see Chapter 3, Building a Simple Particle System).

These methods refer to realistic representation of real-world objects. We are interested
in experimental 3D, so we can play with representations freely. For example:

� Triangles can be used to draw some clouds made from triangles but not
smooth surfaces

� Thousands of long curves can interweave inside a volume with specifi ed
bounds, creating an evolving "hairy" 3D object

� Particles can represent a rigid 3D object that suddenly changes its shape in a
complex way

In openFrameworks, you can represent and draw 3D objects by yourself; see the Simple
3D drawing section. But normally it is preferable to use a powerful ofMesh class, which
lets you represent and draw surfaces, curves, particles, and distinct primitives at the
fastest speed; see the Using ofMesh section. Also you can manipulate the static and
animated 3D models stored in fi les such as 3DS; see the Additional topics section.

3D scene rendering
In this chapter we will consider rendering a 3D scene on a 2D screen (and will not
consider stereoscreens and 3D printers).

Recall that, when we draw a fl at 2D scene, we just imprint objects such as images
and curves onto the screen at the specifi ed coordinates. And the order of the object's
drawing defi nes its visibility; the last object is visible as a whole and can occlude the
objects drawn before it.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[185]

The rendering of a 3D scene differs from the case of a 2D scene because the object's
visibility here is defi ned by its z coordinate (depth). By default, in openFrameworks,
points with a zero value for the z coordinate forms an xy plane, which is used for 2D
drawing. Increasing and decreasing the value of the z coordinate leads to moving the
objects closer or farther correspondingly.

openFrameworks graphics is based on Open Graphics Library (OpenGL), which
renders objects using z-buffering technology. This technology just stores z values
for each screen pixel in a special buffer, called z-buffer (or depth buffer). During
rendering, if the z value of the object's pixel is greater than the z value in the buffer,
the pixel is rendered and the z-buffer is updated to this value. Otherwise, the object's
pixel is not rendered.

By default, the z-buffering is disabled. To enable it, call the following function:

ofEnableDepthTest();

When enabled, the z-buffer clears automatically at each frame, together with the
background drawing (if you do not call ofSetBackgroundAuto(false)). To
disable z-buffering, use the ofDisableDepthTest() function.

There is another 3D rendering technology, called ray tracing. Instead of
directly projecting the pixels of primitive onto the screen, it simulates
light ray propagation from the light sources to the camera. Such a
method is a natural way to construct shadows and other natural-world
lighting effects. It is used for the highest quality 3D graphics and is
available in 3D animation software. But its real-time implementations
are currently very resource intensive, and we do not consider them here.

The volumetric nature of the 3D objects introduces new attributes into the 3D
scene. These are lights, the object's materials interacting with lights, the 3D scene
perspective, and virtual cameras. See the Enabling lighting and setting normals and
Additional topics sections for more information.

Note, the modern approach in 3D that includes advanced lighting and shading,
object's shape manipulation, and the rendered scene postprocessing requires using
shaders; see Chapter 8, Using Shaders, for further details.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[186]

openFrameworks is a thin wrapper over OpenGL, so it
provides low-level functionality, which is great for working
with custom-generated 3D graphics. However, if you need
to work with 3D worlds consisting of many life-like models
and characters, it is probably better to use some other 3D
engine, such as Unity 3D. We use Unity 3D for complex 3D
world rendering and add interactivity by controlling it from
openFrameworks' project, which processes sensors such as
depth cameras. openFrameworks and Unity 3D are connected
via OSC network protocol; see Chapter 11, Networking.

Now we will consider a simple 3D drawing example with openFrameworks.

Simple 3D drawing
For simple 3D drawing in openFrameworks, follow these steps:

1. Add the ofEnableDepthTest() function call in the beginning of the
testApp::draw() function to enable z-buffering. If you omit it, all the
graphics objects will be rendered without respect to their z coordinate
in correspondence with the graphical primitives' rendering order.

2. Draw primitives as follows:

  The ofLine(x1, y1, z1, x2, y2, z2) function draws a
line segment between points (x1, y1, z1) and (x2, y2, z2). There
is an overloaded version of the function, ofLine(p1, p2),
where p1 and p2 have type ofPoint. Use the ofSetColor() and
ofSetLineWidth() functions to adjust its rendering properties of
color and line width.

In Chapter 2, Drawing in 2D, we used the ofPoint class to
represent 2D points using its fields x and y. Actually, ofPoint
has a third field z, which, by default, is equal to zero. So ofPoint
can represent points in 3D. Just declare ofPoint p and work
with values p.x, p.y, and p.z.

  The ofTriangle(p1, p2, p3) function draws a triangle with
vertices in points p1, p2, and p3. Use the ofSetColor(), ofFill() ,
ofSetLineWidth() , and ofNoFill() functions to adjust its
rendering properties.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[187]

  The ofRect(x, y, z, w, h) function draws a rectangle with the
top-left corner at (x, y, z) and the width w and height h, oriented
parallel to the screen plane. If you need to get a rotated rectangle, you
need to rotate the coordinate system using the ofRotate() function.

To draw arbitrary polygons—for example, quadrangles—use the
following method:

ofBeginShape(); //Begin shape

ofVertex(x1, y1, z1); //The first vertex

ofVertex(x2, y2, z2); //The second vertex

//...

ofVertex(xn, yn, zn); //The last vertex

ofEndShape(); //End shape

If ofFill() was called before drawing, the shape will be drawn fi lled and
closed. If ofNoFill() was called before drawing, just an unclosed polygon
will be drawn.

3. Translate, scale, and rotate the rendered objects by manipulating the
coordinate system:

  The ofTranslate(x, y, z) function translates the coordinate
system by vector (x, y, z)

  The ofScale(x, y, z) function scales the coordinate system by
factors (x, y, z)

  The ofRotate(angle, x, y, z) function rotates the coordinate
system along vector (x, y, z) by angle degrees

As in a 2D case, use ofPushMatrix() and ofPopMatrix() to store and retrieve the
current coordinate system in a matrix stack.

Now we will illustrate these steps in an example.

The triangles cloud example
Let's draw 1500 random triangles, located at an equal distance from the center of the
coordinates. This will look like a triangle cloud in the shape of a sphere. To make the
visualization more interesting, colorize the triangles with random colors from black
to red and add constant rotation to the cloud.

This is example 07-3D/01-TrianglesCloud.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[188]

The example is based on the emptyExample project in openFrameworks. In the
testApp.h fi le, inside the testApp class declaration, add arrays vertices and
colors to hold the vertices and the colors of the triangles and variables nTri and
nVert corresponding to the number of triangles and their vertices:

vector<ofPoint> vertices;

vector<ofColor> colors;

int nTri; //The number of triangles

int nVert; //The number of the vertices equals nTri * 3

The setup() function fi lls the arrays for the triangles' vertices and colors. The
vertices of the fi rst triangle are stored in vertices[0], vertices[1], and
vertices[2]. The vertices of the second triangle are stored in vertices[3],
vertices[4], vertices[5], and so on. In general, the vertices of the triangle with
index i (where i is in range from 0 to N-1) are stored in the vertices with the indices
i * 3, i * 3 + 1, and i * 3 + 2.

void testApp::setup() {

 nTri = 1500; //The number of the triangles

 nVert= nTri * 3; //The number of the vertices

 float Rad = 250; //The sphere's radius

 float rad = 25; //Maximal triangle's "radius"

 //(formally, it's the maximal coordinates'

 //deviation from the triangle's center)

 //Fill the vertices array

 vertices.resize(nVert); //Set the array size

 for (int i=0; i<nTri; i++) { //Scan all the triangles

 //Generate the center of the triangle

 //as a random point on the sphere

 //Take the random point from

 //cube [-1,1]x[-1,1]x[-1,1]

 ofPoint center(ofRandom(-1, 1),

 ofRandom(-1, 1),

 ofRandom(-1, 1));

 center.normalize(); //Normalize vector's length to 1

 center *= Rad; //Now the center vector has

 //length Rad

 //Generate the triangle's vertices

 //as the center plus random point from

 //[-rad, rad]x[-rad, rad]x[-rad, rad]

 for (int j=0; j<3; j++) {

 vertices[i*3 + j] =

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[189]

 center + ofPoint(ofRandom(-rad, rad),

 ofRandom(-rad, rad),

 ofRandom(-rad, rad));

 }

 }

 //Fill the array of triangles' colors

 colors.resize(nTri);

 for (int i=0; i<nTri; i++) {

 //Take a random color from black to red

 colors[i] = ofColor(ofRandom(0, 255), 0, 0);

 }

}

The update() function is empty here, and the draw() function enables z-buffering,
which rotates the coordinate system based on time, and draws the triangles with the
specifi ed colors.

void testApp::draw(){

 ofEnableDepthTest(); //Enable z-buffering

 //Set a gradient background from white to gray

 //for adding an illusion of visual depth to the scene

 ofBackgroundGradient(ofColor(255), ofColor(128));

 ofPushMatrix(); //Store the coordinate system

 //Move the coordinate center to screen's center

 ofTranslate(ofGetWidth()/2, ofGetHeight()/2, 0);

 //Calculate the rotation angle

 float time = ofGetElapsedTimef(); //Get time in seconds

 float angle = time * 10; //Compute angle. We rotate at speed

 //10 degrees per second

 ofRotate(angle, 0, 1, 0); //Rotate the coordinate system

 //along y-axe

 //Draw the triangles

 for (int i=0; i<nTri; i++) {

 ofSetColor(colors[i]); //Set color

 ofTriangle(vertices[i*3],

 vertices[i*3 + 1],

 vertices[i*3 + 2]); //Draw triangle

 }

 ofPopMatrix(); //Restore the coordinate system

}

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[190]

Run the code and you will see a sphere-like rotating cloud of triangles as shown in
the following screenshot:

To draw the background, we use the ofBackgroundGradient(color1, color2,
type) function. It creates the gradient fi lling of type type for the entire application's
screen, with colors interpolated from color1 to color2. The possible values of type
are as follows:

� OF_GRADIENT_CIRCULAR – This type gives a circular color gradient with the
center being the center of screen. This is the default value.

� OF_GRADIENT_LINEAR – This type gives you a top-to-bottom gradient.

� OF_GRADIENT_BAR – This type gives you a center-to-top and a
center-to-bottom gradient.

Note that each triangle moves and rotates on the screen but its color always remains
unchanged. The reason for this is that we don't use light and normals, which control
how a graphics primitive is lit and shaded.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[191]

The simplest way to add lighting and normals is using the ofMesh class , which we
will consider now.

Using ofMesh
The ofMesh class is a powerful class that is used for representing, modifying, and
rendering 3D objects. By default, it draws triangle meshes, but it can also be used
for drawing curves and points.

The ofMesh class performs rendering of many thousands and even millions of
triangles by one OpenGL call, at the highest possible speed. Even though using
ofMesh will at fi rst seem slightly more complicated than using ofTriangle() ,
it will give you more fl exibility in creating and modifying 3D objects in return.
So it is highly recommended that you use ofMesh for 3D in all cases, except the
very beginning or for learning 3D. You can use ofMesh not only for 3D but for
2D graphics as well.

openFrameworks has one more class, named ofVBOMesh, that is used
for working with meshes. The class name means "mesh based on Vertex
Buffer Object (VBO)". This class is similar to ofMesh, but it renders
signifi cantly faster when the vertices of the mesh are not changing. See
details of its usage and performance in comparison with ofMesh in
openFrameworks example examples/gl/vboExample.

To draw a surface consisting of a number of triangles, follow these steps:

This is example 07-3D/02-PyramidMesh. It is based on
the emptyExample project in openFrameworks.

1. Declare an object mesh of type ofMesh in the testApp class declaration:

ofMesh mesh;

2. Add the vertices of the surface triangles to the mesh using the mesh.
addVertex(p) function . Note that if a vertex belongs to several triangles,
you should specify these vertices just once. This feature is very useful for
changing the surface; you change the position of just one vertex, and all the
triangles will be drawn correctly.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[192]

Vertices are added to the end of a special array of vertices in the mesh and
are later referenced by indices in this array. So the fi rst vertex has the index
0, the second vertex has the index 1, and so on. For example, to draw a
pyramid, we specify its four vertices as follows:

//Pyramid's base vertices with indices 0, 1, 2

mesh.addVertex(ofPoint(-200, -100, -50));

mesh.addVertex(ofPoint(200, -100, -50));

mesh.addVertex(ofPoint(0, 200, 0));

//Pyramid's top vertex with index 3

mesh.addVertex(ofPoint(0, 0, 50));

3. Add the triangles by specifying the indices of the vertices for each triangle
using the mesh.addTriangle(index1, index2, index3) function. Be
careful to order this in the clockwise direction for correct lighting. In our
pyramid example, we specify just three of its four triangles, so that you can
see the interior of the object.

//Vertices with indices 3, 2, 0

mesh.addTriangle(3, 2, 0);

//Vertices with indices 3, 1, 2

mesh.addTriangle(3, 1, 2);

//Vertices with indices 3, 0, 1

mesh.addTriangle(3, 0, 1);

4. Draw a mesh in the testApp::draw() function using the mesh.draw()
function. You may need coordinate system transformations for moving and
rotating the object. For example, a rotating pyramid can be drawn with the
following code in testApp::draw():

ofEnableDepthTest(); //Enable z-buffering

//Set a background

ofBackgroundGradient(ofColor(255), ofColor(128));

ofPushMatrix(); //Store the coordinate system

//Move coordinate center to screen's center

ofTranslate(ofGetWidth()/2, ofGetHeight()/2, 0);

//Rotate the coordinate system

float time = ofGetElapsedTimef(); //Get time in seconds

float angle = time * 30; //Rotate angle

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[193]

ofRotate(angle, 0, 1, 1);

ofSetColor(0, 128, 0); //Set a dark green color

mesh.draw(); //Draw the mesh

ofPopMatrix(); //Restore the coordinate system

When you run this code, you will see the pyramid is uniformly colored a dark green
color. It looks like some animated 2D polygon and it is hard to make out that this
is really a 3D pyramid surface. To see the mesh as a 3D object, you need to enable
lighting for the scene and add normals information to the mesh. Let's do it.

Enabling lighting and setting normals
Lighting is needed for different parts of the surface to have different shading,
depending on their orientation to the viewer. Such shading makes the surfaces
look much more interesting than if just rendered with a uniform color because it
emphasizes the 3D curvature of the surfaces. openFrameworks has an ofLight class
for controlling light sources.

This is example 07-3D/03-PyramidLighting. This example
is a good starting point for drawing smooth surfaces using the
setNormals() function.

It is a continuation of example 07-3D/02-PyramidMesh.

To use one light source with default parameters, add the following line in the
testApp class declaration:

ofLight light;

Add the following line in the testApp::setup() function to enable it:

light.enable(); //Enabling light source

For the light to interact with the mesh properly, you need to set up normal vectors
for all the vertices using the mesh.addNormal(normal) function. Each normal
vector should have unit length and direction perpendicular to the surface in the
vertex. Information about the normals gives openFrameworks information about
the correct lighting of the surface. Across the chapter, we will use the setNormals()
function for normals computing, which we will discuss.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[194]

Computing normals using the setNormals() function
To compute normals for a mesh consisting of triangles, you can use the
following function:

//Universal function which sets normals for the triangle mesh
void setNormals(ofMesh &mesh){

 //The number of the vertices
 int nV = mesh.getNumVertices();

 //The number of the triangles
 int nT = mesh.getNumIndices() / 3;

 vector<ofPoint> norm(nV); //Array for the normals

 //Scan all the triangles. For each triangle add its
 //normal to norm's vectors of triangle's vertices
 for (int t=0; t<nT; t++) {
 //Get indices of the triangle t
 int i1 = mesh.getIndex(3 * t);
 int i2 = mesh.getIndex(3 * t + 1);
 int i3 = mesh.getIndex(3 * t + 2);

 //Get vertices of the triangle
 const ofPoint &v1 = mesh.getVertex(i1);
 const ofPoint &v2 = mesh.getVertex(i2);
 const ofPoint &v3 = mesh.getVertex(i3);

 //Compute the triangle's normal
 ofPoint dir = ((v2 - v1).crossed(v3 - v1)).normalized();

 //Accumulate it to norm array for i1, i2, i3
 norm[i1] += dir;
 norm[i2] += dir;
 norm[i3] += dir;
 }

 //Normalize the normal's length
 for (int i=0; i<nV; i++) {
 norm[i].normalize();
 }

 //Set the normals to mesh
 mesh.clearNormals();
 mesh.addNormals(norm);
}

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[195]

To use it in your project, insert this function at the end of the testApp.cpp fi le, and
add its declaration in the testApp.h fi le (outside the testApp class):

//Universal function which sets normals for the triangle mesh

void setNormals(ofMesh &mesh);

Now you can call setNormals(mesh) and the normals will be computed. You
need to call the setNormals(mesh) function after each modifi cation of vertices
of mesh for the normals to be up-to-date.

Scaling using ofScale() while drawing affects not only the object's
vertices but the normals vectors too, and it can make shading improper.
So when using normals, just avoid scaling or recalculating the normals
 so that they have unit length even after the usage of ofScale().

With lighting and normals, the pyramid looks a little more like a 3D object, which
changes its shade depending on its orientation:

Note that the lightness of all the surface triangles mainly depends on the orientation
of the central ("top") vertex of the pyramid. The reason is that shading of each
triangle is computed by interpolating the normals of its vertices, and in our case,
the normal of the central vertex is perpendicular to the pyramid's base. Such an
approach works well for drawing smooth surfaces; see the The oscillating plane
example section. Although in our case of pyramid, it can look a little bit unnatural.

To obtain the most natural visualization of the pyramid with sharp edges, we need to
draw triangles independently without formally creating any common vertices.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[196]

Drawing sharp edges
The simplest way to achieve sharp edges is to add the vertices for all the triangles
in mesh and not use the addTriangle() function at all and then call the mesh.
setupIndicesAuto() function , which sets indices automatically such that vertices
(0, 1, 2) are used for drawing the fi rst triangle, vertices (4, 5, 6) for the second triangle,
and so on.

This is example 07-3D/04-PyramidSharpEdges. This example
is a good starting point for drawing sharp 3D objects.

It is based on example 07-3D/03-PyramidLighting.

In the example with the pyramid, replace all the lines with addVertex() and
addTriangle() with the following lines:

//Pyramid's base vertices

ofPoint v0 = ofPoint(-200, -100, 0);

ofPoint v1 = ofPoint(200, -100, 0);

ofPoint v2 = ofPoint(0, 200, 0);

//Pyramid's top vertex

ofPoint v3 = ofPoint(0, 0, 100);

//Add triangles by its vertices

mesh.addVertex(v3); mesh.addVertex(v2); mesh.addVertex(v0);

mesh.addVertex(v3); mesh.addVertex(v1); mesh.addVertex(v2);

mesh.addVertex(v3); mesh.addVertex(v0); mesh.addVertex(v1);

mesh.setupIndicesAuto(); //Set up indices

As a result, you will see a pyramid with sharp edges as shown in the
following screenshot:

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[197]

We have considered a basic workfl ow with meshes. Now we will consider other
 useful capabilities of the ofMesh class.

Drawing line segments and points
Instead of mesh.draw() , you can use the following functions:

� The mesh.drawWireframe() function draws only surface edges without the
interiors of the triangles. Such a mode of drawing is called wireframe drawing;
it is very useful for debugging, and of course, can be used as an effect.

� The mesh.drawVertices() function draws only vertices of the mesh. It is
useful for debugging and also as an effect.

Also, to represent not only triangular surfaces but also objects consisting of line
segments or points, use the mesh.setMode(mode) function , where mode has type
ofPrimitiveMode enumeration. To see all the possible values for mode, check its
defi nition. We will mention only three values:

� OF_PRIMITIVE_TRIANGLES is a default value, which draws a mesh
as triangles. We had considered how to use this mode in the pyramid
examples mentioned earlier.

� OF_PRIMITIVE_LINES draws a mesh as a number of line segments.

� OF_PRIMITIVE_POINTS draws a mesh as a number of points.

Let's consider the last two modes in detail.

Drawing line segments
Calling mesh.setMode(OF_PRIMITIVE_LINES) switches mesh to a mode in which
it draws line segments. After calling this function, add all vertices of segments using
mesh.addVertex(p), and for each segment, it adds the indices of the vertices
using the following code:

mesh.addIndex(i1); //Index of segment's first vertex

mesh.addIndex(i2); //Index of segment's second vertex

For example, to draw a tripod, create the mesh using the following code:

mesh.setMode(OF_PRIMITIVE_LINES);

mesh.addVertex(ofPoint(0, 0, 0)); //Vertex 0

mesh.addVertex(ofPoint(-100, -100, 0)); //Vertex 1

mesh.addVertex(ofPoint(100, -100, 0)); //Vertex 2

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[198]

mesh.addVertex(ofPoint(0, 100, 0)); //Vertex 3

mesh.addIndex(0); mesh.addIndex(1); //Segment 0

mesh.addIndex(0); mesh.addIndex(2); //Segment 1

mesh.addIndex(0); mesh.addIndex(3); //Segment 2

Note that for correct lighting you need to specify normals, which normally
cannot be defi ned for lines. So the best idea is to disable lighting using the
ofDisableLighting() function before drawing and then enabling it again
using the ofEnableLighting() function:

ofDisableLighting(); //Disable lighting

mesh.draw(); //Draw lines

ofEnableLighting(); //Enable lighting

Drawing points
Calling mesh.setMode(OF_PRIMITIVE_POINTS) switches mesh to a mode in which
it draws its vertices as points.

Additionally, call glPointSize(size) to specify point size in pixels, and call
glEnable(GL_POINT_SMOOTH) to draw circular points (instead of square points as
on some graphics cards). For example, add the following lines after specifying tripod
vertices in the previous example:

mesh.setMode(OF_PRIMITIVE_POINTS);

glPointSize(10);

glEnable(GL_POINT_SMOOTH);

Once you run the code, you will see four circles, corresponding to the tripod's vertices.

Coloring the vertices
It is possible to specify the colors of the vertices. In this case, you must provide
a color for all the vertices using the mesh.addColor(color) function; for
example, mesh.addColor(ofColor(255, 0, 0)). Note that in this case, the
ofSetColor() function will not affect the drawing of the mesh. Remember: you
should call this function as many times as you call the mesh.addVertex() function.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[199]

Texturing
You can wrap any image or texture on the surface using the mesh.addTexCoord(
texPoint) function. Here texPoint is of the ofPoint type. It is a 2D point that
should lie in range [0, w] × [0, h], where w × h is the size of the image that you want to
use as a texture. Remember that you should call this function as many times as you call
the mesh.addVertex() function so that all the vertices will have texture coordinates.

During rendering each primitive of the mesh (whether triangle, line, or point
depends on the mesh's mode), the texture coordinates of each rendered pixel will
be calculated by OpenGL as interpolation of texture coordinates of the primitive's
vertices. Resulting texture coordinates for the pixel are used for the pixel's color
computing. In other words, the fi nal pixel color is computed using three values:
the color given by the texture, the color of the last ofSetColor() calling, and the
shading information obtained from the light and normals data. To change the
algorithm of computing pixel color and the use of fragment shaders, see Chapter 8,
Using Shaders.

For example, let's wrap the sunflower.png image onto the pyramid.

This is example 07-3D/05-PyramidTextured. It is a
continuation of example 07-3D/04-PyramidSharpEdges.

Copy the image into the bin/data folder of the project, and declare the ofImage image
in the testApp class declaration. Then add the following lines in testApp::setup():

 //Set up a texture coordinates for all the vertices

 mesh.addTexCoord(ofPoint(100, 100)); //v3

 mesh.addTexCoord(ofPoint(10, 300)); //v2

 mesh.addTexCoord(ofPoint(10, 10)); //v0

 mesh.addTexCoord(ofPoint(100, 100)); //v3

 mesh.addTexCoord(ofPoint(300, 10)); //v1

 mesh.addTexCoord(ofPoint(10, 300)); //v2

 mesh.addTexCoord(ofPoint(100, 100)); //v3

 mesh.addTexCoord(ofPoint(10, 10)); //v0

 mesh.addTexCoord(ofPoint(300, 10)); //v1

 //Load an image

 image.loadImage("sunflower.png");

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[200]

Finally, in testApp::draw(), fi nd the following lines:

ofSetColor(0, 128, 0); //Set a dark green color

mesh.draw();

Replace the preceding lines with the following:

 ofSetColor(255, 255, 255); //Set white color

 image.bind(); //Use image's texture for drawing

 mesh.draw(); //Draw mesh

 image.unbind(); //End using image's texture

After running the preceding code, you will see the pyramid with a wrapped texture
as shown in the following screenshot:

Working with vertices
There are a number of functions for accessing the vertices and their properties:

� The getNumVertices() function returns the number of vertices.

� The getVertex(i) function returns the position of the vertex with index i.

� The setVertex(i, p) function sets the position of vertex i to p. Note that
this function can change the vertex but it cannot add a new vertex. So if i is
greater or equal to mesh.getNumVertices() , you need to add a vertex
(or vertices) using the mesh.addVertex(p) function as described in
the Using ofMesh section.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[201]

� The removeVertex(i) function deletes the vertex with index i. Be very
 careful when using this function; after deleting a vertex, you should probably
also delete the corresponding normal, color, and texture coordinate, and
change the indices of the triangles to keep its coherence.

� The clearVertices() function deletes all the vertices. See corresponding
cautions for removeVertex().

� The clear() function clears the mesh, including its vertices, normals, and all
other arrays.

After changing vertices, you will most probably need to update the normals using
the setNormals(mesh) function, as described in the Computing normals using
the setNormals() function section.

There are similar functions for controlling normals, colors, texture coordinates,
and indices; for example, functions getNumNormals(), getNumColors(),
getNumTexCoords(), and getNumIndices() return number of normals, colors,
texture coordinates, and indices respectively.

Let's see a simple example of modifying the positions of the vertices.

The oscillating plane example
This example demonstrates how to create a fl at plane from triangles and then
oscillate its vertices to obtain a dynamic surface. Also, the color of vertices will
depend on the oscillation amplitude.

This is example 07-3D/06-OscillatingPlane.

The example is based on the emptyExample project in openFrameworks. Begin with
adding the declaration and defi nition of the setNormals() function, as described in
the Computing normals using the setNormals() function section. Then in the testApp.h
fi le, in the testApp class declaration, add defi nitions of mesh and light:

ofMesh mesh; //Mesh

ofLight light; //Light

In the beginning of the testApp.cpp fi le, add constants with vertex grid size:

int W = 100; //Grid size

int H = 100;

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[202]

The setup() function adds vertices and triangles to the mesh and enables lighting:

void testApp::setup(){

 //Set up vertices and colors

 for (int y=0; y<H; y++) {

 for (int x=0; x<W; x++) {

 mesh.addVertex(

 ofPoint((x - W/2) * 6, (y - H/2) * 6, 0));

 mesh.addColor(ofColor(0, 0, 0));

 }

 }

 //Set up triangles' indices

 for (int y=0; y<H-1; y++) {

 for (int x=0; x<W-1; x++) {

 int i1 = x + W * y;

 int i2 = x+1 + W * y;

 int i3 = x + W * (y+1);

 int i4 = x+1 + W * (y+1);

 mesh.addTriangle(i1, i2, i3);

 mesh.addTriangle(i2, i4, i3);

 }

 }

 setNormals(mesh); //Set normals

 light.enable(); //Enable lighting

}

The update() function changes the z coordinate of each vertex using Perlin noise
(refer to Appendix B, Perlin Noise) and also sets its color between the range blue
to white:

void testApp::update(){

 float time = ofGetElapsedTimef(); //Get time

 //Change vertices

 for (int y=0; y<H; y++) {

 for (int x=0; x<W; x++) {

 int i = x + W * y; //Vertex index

 ofPoint p = mesh.getVertex(i);

 //Get Perlin noise value

 float value =

 ofNoise(x * 0.05, y * 0.05, time * 0.5);

 //Change z-coordinate of vertex

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[203]

 p.z = value * 100;

 mesh.setVertex(i, p);

 //Change color of vertex

 mesh.setColor(i,

 ofColor(value*255, value * 255, 255));

 }

 }

 setNormals(mesh); //Update the normals

}

The draw() function draws the surface and slowly rotates it:

void testApp::draw(){

 ofEnableDepthTest(); //Enable z-buffering

 //Set a gradient background from white to gray

 ofBackgroundGradient(ofColor(255), ofColor(128));

 ofPushMatrix(); //Store the coordinate system

 //Move the coordinate center to screen's center

 ofTranslate(ofGetWidth()/2, ofGetHeight()/2, 0);

 //Calculate the rotation angle

 float time = ofGetElapsedTimef(); //Get time in seconds

 float angle = time * 20; //Compute angle. We rotate at speed

 //20 degrees per second

 ofRotate(30, 1, 0, 0); //Rotate coordinate system

 ofRotate(angle, 0, 0, 1);

 //Draw mesh

 //Here ofSetColor() does not affects the result of drawing,

 //because the mesh has its own vertices' colors

 mesh.draw();

 ofPopMatrix(); //Restore the coordinate system

}

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[204]

Run the example and you will see a pulsating surface that slowly rotates on the screen:

Now replace in the testApp::draw() function in the line mesh.draw(); by the
following line:

mesh.drawWireframe();

Now, run the project and you will see the wireframe structure of the surface.

Until now you knew how to create simple animated smooth surfaces and
disconnected clouds of primitives. Let's consider an advanced example of
constructing a smooth surface that grows and twists in space.

The twisting knot example
In this example we will create a tube-like surface, that is formed from a number of
deformed circles. At each update() call, we will generate one circle and connect it
with the previous circle by adding triangles to the surface. At each step the circle
will slowly move, rotate, and deform in space. As result, we will see a growing and
twisting 3D knot.

This is example 07-3D/07-TwistingKnot.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Chapter 7

[205]

The example is based on the emptyExample project in openFrameworks. Begin with
adding declaration and defi nition of the setNormals() function , as is described in
the Computing normals using the setNormals() function section. Then in the testApp.h
fi le, in the testApp class declaration, add defi nitions of the mesh, light, and
addRandomCircle() function:

ofMesh mesh; //Mesh

ofLight light; //Light

void addRandomCircle(ofMesh &mesh); //Main function which

 //moves circle and adds triangles to the object

In the beginning of the testApp.cpp fi le, add the constants and the variables for the
circle that will be used for knot generation:

//The circle parameters

float Rad = 25; //Radius of circle

float circleStep = 3; //Step size for circle motion

int circleN = 40; //Number of points on the circle

//Current circle state

ofPoint pos; //Circle center

ofPoint axeX, axyY, axyZ; //Circle's coordinate system

The setup() function sets the initial values of the circle's position and also enables
lighting with light, using its default settings:

void testApp::setup(){

 pos = ofPoint(0, 0, 0); //Start from center of coordinate

 axeX = ofPoint(1, 0, 0); //Set initial coordinate system

 axyY = ofPoint(0, 1, 0);

 axyZ = ofPoint(0, 0, 1);

 light.enable(); //Enable lighting

 ofSetFrameRate(60); //Set the rate of screen redrawing

}

The update() function just calls the addRandomCircle() function , which adds one
more circle to the knot:

void testApp::update(){

 addRandomCircle(mesh);

}

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/mastering-openframeworks-creative-coding-demystified/book

Drawing in 3D

[206]

The draw() function draws the mesh on the screen. Note that we use the mesh.
getCentroid() function , which returns the center of mass of mesh's vertex array.
In other words, we apply it for the shift coordinate system ofTranslate(-mesh.
getCentroid()), which helps us to draw our object positioned in the center :

void testApp::draw(){

 ofEnableDepthTest(); //Enable z-buffering

 //Set a gradient background from white to gray

 ofBackgroundGradient(ofColor(255), ofColor(128));

 ofPushMatrix(); //Store the coordinate system

 //Move the coordinate center to screen's center

 ofTranslate(ofGetWidth()/2, ofGetHeight()/2, 0);

 //Calculate the rotation angle

 float time = ofGetElapsedTimef(); //Get time in seconds

 float angle = time * 20; //Compute the angle.

 //We rotate at speed 20 degrees per second

 ofRotate(angle, 0, 1, 0); //Rotate the coordinate system

 //along y-axe

 //Shift the coordinate center so the mesh

 //will be drawn in the screen center

 ofTranslate(-mesh.getCentroid());

 //Draw the mesh

 //Here ofSetColor() does not affects the result of drawing,

 //because the mesh has its own vertices' colors

 mesh.draw();

 ofPopMatrix(); //Restore the coordinate system

}

The most important function in the example is addRandomCircle(). It
pseudorandomly moves the circle, adds new vertices from the circle to the
object's vertex array, and adds corresponding triangles to the object. It also
sets colors for the new vertices.

void testApp::addRandomCircle(ofMesh &mesh){

 float time = ofGetElapsedTimef(); //Time

 //Parameters – twisting and rotating angles and color

 float twistAngle = 5.0 * ofSignedNoise(time * 0.3 + 332.4);

 float rotateAngle = 1.5;

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

www.packtpub.com/mastering-openframeworks-creative-codingdemystified/

Chapter 7

[207]

 ofFloatColor color(ofNoise(time * 0.05),

 ofNoise(time * 0.1),

 ofNoise(time * 0.15));

 color.setSaturation(1.0); //Make the color maximally

 //colorful

 //Rotate the coordinate system of the circle

 axeX.rotate(twistAngle, axyZ);

 axyY.rotate(twistAngle, axyZ);

 axeX.rotate(rotateAngle, axyY);

 axyZ.rotate(rotateAngle, axyY);

 //Move the circle on a step

 ofPoint move = axyZ * circleStep;

 pos += move;

 //Add vertices

 for (int i=0; i<circleN; i++) {

 float angle = float(i) / circleN * TWO_PI;

 float x = Rad * cos(angle);

 float y = Rad * sin(angle);

 //We would like to distort this point

 //to make the knot's surface embossed

 float distort = ofNoise(x * 0.2, y * 0.2,

 time * 0.2 + 30);

 distort = ofMap(distort, 0.2, 0.8, 0.8, 1.2);

 x *= distort;

 y *= distort;

 ofPoint p = axeX * x + axyY * y + pos;

 mesh.addVertex(p);

 mesh.addColor(color);

 }

 //Add the triangles

 int base = mesh.getNumVertices() - 2 * circleN;

 if (base >= 0) { //Check if it is not the first step

 //and we really need to add the triangles

 for (int i=0; i<circleN; i++) {

 int a = base + i;

 int b = base + (i + 1) % circleN;

 int c = circleN + a;

 int d = circleN + b;

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

www.packtpub.com/mastering-openframeworks-creative-codingdemystified/

Drawing in 3D

[208]

 mesh.addTriangle(a, b, d); //Clock-wise

 mesh.addTriangle(a, d, c);

 }

 //Update the normals

 setNormals(mesh);

 }

}

Run the example and you will see a growing and twisting knot, as shown in the
following screenshot:

Note that we control the rate of testApp::update() callings (and hence
the addRandomCircle() rate) using the ofSetFrameRate(60) call in
testApp::setup(). If you change the rate, say to ofSetFrameRate(30),
you will obtain a differently shaped knot. To make the resultant shape
independent of frame rate, you should make the circleStep parameter
dependent on the time between current and previous frames.

At each update() call, the application constantly adds new vertices
and triangles to the object. Then it recalculates all the normals, though
many of the triangles did not change. So application performance will
degrade with time because the setNormals() function will take more
and more computing power. To solve this problem, you can optimize
the setNormals() function so it does not recalculate the unchanged
normals and does not check the old triangles at all.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

www.packtpub.com/mastering-openframeworks-creative-codingdemystified/

Chapter 7

[209]

Additional topics
In this chapter we mainly considered representing and drawing 3D objects using
openFrameworks. For further learning, we suggest studying the following topics:

� Working with the ofLight class to control lights, that is, the type of light
(spot light and point light), its position, light direction, and color parameters.
See openFrameworks examples examples/3d/normalsExample and
examples/3d/advanced3dExample.

� Working with the ofCamera and ofEasyCam classes to control the camera,
that is, the position of the observer of the 3D scene. The camera lets you move
easily through the virtual 3D world and also change perspective parameters.
See openFrameworks examples examples/3d/cameraRibbonExample and
examples/3d/easyCamExample.

� Using 3D model fi les with the .3ds and .dae extensions. You can load and
draw such fi les as static or animated objects. Note that you can use 3D fi le
models as a source of vertex data for further manipulation and processing. See
openFrameworks examples examples/3d/modelNoiseExample, examples/
addons/3DModelLoaderExample, and examples/addons/assimpExample.

� Rendering volumetric data using the marching cubes algorithm. This
technique allows rendering isolines of an arbitrary function defi ned in
some volume. It opens the possibility of drawing complex surfaces
with constantly changing shape and number of connected components,
such as metaballs. To use this algorithm, download and install the
ofxMarchingCubes addon from ofxaddons.com and see its example. For
more details on installing addons see Appendix A, Working with Addons.

Summary
In this chapter we learned how to represent, modify, and draw 3D objects using the
ofMesh class and also how to perform simple 3D drawing with the ofTriangle()
function. We looked at examples of drawing a sphere-shaped cloud of trianlges, a
oscillating surface, and a twisting 3D knot.

In the next chapter, we will cover how to use shaders to process images and 3D
object geometry.

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

www.packtpub.com/mastering-openframeworks-creative-codingdemystified/

Where to buy this book
You can buy Mastering openFrameworks: Creative Coding Demystified from the Packt
Publishing website: http://www.packtpub.com/mastering-openframeworks-
creative-coding-demystified/book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/mastering-openframeworks-creative-coding-

demystified/book

http://www.packtpub.com/Shippingpolicy
www.packtpub.com/mastering-openframeworks-creative-codingdemystified/

	www.packtpub.com/mastering-openframeworks-creative-codingdemystified/book

