Introduction to microfabrication (Based on chapter 1)

sami.franssila@aalto.fi

Figures from: Franssila: Introduction to Microfabrication unless indicated otherwise.

Tools, wafers, devices

These are called tools, or equipment; they are reactors, furnaces, chambers,...

These are devices, accelerometers, transistors, filters...

These are components. Not part of this course.

This is a wafer. This particular wafer has 32 chips (a.k.a. die) on it.

Dimension in microworld

0	.1 nm	1 nm	10 nm	100 nm	1 µm	10 µm	100 µm
		X-rays	EUV	UV v	isible IR		
atoms biomolecules viruses bacteria cells							
	R&D transistors		CN s pro	CMOS production		MEMS devices	fluidic devices
	TEM	AFM	SEM	NSO	M optica	al microsc	ope
				smog	smoke	dust	
							Fig. 1.12

Microfabrication vs. Nanofabrication ?

Fig. 1.3: Electron beam lithography defined goldpalladium nanobridge Fig. 24.4: Focussed ion beam patterned Aalto vase

Common materials

Thin films: Substrates: Others: SiO_2 Photoresist Silicon SiN_x Polysilicon A Cu W Pt

The most important film: SiO₂

 $Si + O_2 \rightarrow SiO_2$

Oxygen atmosphere (1)

What happens this structure at 1000°C? Tungsten melting point is 3 422°C

Oxygen atmosphere (2)

Solution: CVD Chemical Vapor Deposition

We bring all ingredients needed in gas phase, and no material on the wafer is consumed.

Insulator films

By Chemical Vapor Deposition (CVD) Or Atomic Layer Deposition (ALD)

Metallic films

conductors (AI, Au, Cu): low resistivity

resistors (Ta, W, Pt, Si) high and stable resistivity

capacitor electrodes (poly-Si, Al, Mo) good interface against the dielectric

other uses: mirrors, protective coatings, catalysts,...

Sputter deposition: most generic method for metal films

How to change resistor resistance ?

Change L: vary its length
 Easy to vary on wafer
 Change W: vary its width
 Everything on
 Change ρ: try another material

Sheet resistance

 R_s is in units of Ohm, but it is usually denoted by Ohm/square to emphasize the concept of sheet resistance.

R_s is useful because it is direct measurement.

Resistance of a conductor line can now be easily calculated by breaking down the conductor into n squares: $R = nR_s$

Patterning: lithography and etching

Fig. 9.1

Photoresist exposure

UV light

photomask

photoresist

silicon wafer

Positive resist: exposed parts become soluble

Fig. 9.10

Negative resist: exposed parts crosslinked and insoluble

After lithography

Quantum-Tunneling Metal-Insulator-Metal Diodes

Abdullah H. Alshehri et al:Advanced Functional Materials 2019

Diode process flow

- 1. Thermal oxidation SiO₂
- 2. Pt deposition
- 3. Lithography
- 4. Pt etching aqua regia
- 5. Resist strip
- 6. Al₂O₃ deposition by ALD
- 7. Al deposition
- 8. Lithography
- 9. Al and Al₂O₃ etching
- 10. Resist strip

IC multilevel metallization

CMOS RF Process cross section

Silicon wafers

Fig. 1.4: 100 mm diameter silicon wafer

Fig. 1.20 Real estate allocation on a wafer

Silicon strengths

- silicon is a good mechanical material
- silicon is good thermal conductor
- silicon is transparent in infrared
- silicon is a semiconductor
- silicon is optically smooth and flat
- silicon is known inside out

➔ consider silicon first, alternatives then

Single crystalline silicon (a.k.a. monocrystalline)

<100> silicon

Fig. 4.6

Real silicon wafers

- Almost perfect, but **ALWAYS** contain:
- -dopants (B, P, at least 1 dopant atom per billion silicon atoms $\approx 5^{10^{13}}$ cm⁻³/5^{10²²} cm⁻³)
- -oxygen from silica crucible (15 pmma)
- -carbon from graphite heaters (1 ppma)
- -impurities (C, Fe, Zn, ... e.g. 10^{10} cm⁻³, or ppta)
- -defects (voids, dislocations, precipitates,...)
- -intentional dopants, B, P typically 10¹⁵-10¹⁸ cm⁻³

Videos

- Doping: if you need to refresh your memory about semiconductors and doping, this video is useful:
- <u>https://www.youtube.com/watch?v=k12GM</u>
 jtN8aA

Doping

backside metallization

n-diffusion (e.g. 10¹⁶ cm⁻³ phosphorous)

p-substrate (e.g. 10¹⁵ cm⁻³ boron)

p+ diffusion (e.g. 10¹⁸ cm⁻³ boron)

Silicon substrate (p-type with boron – majority)

phosporous

boron

Impurities (e.g. Fe, Cu)

Phosphorous ⊖ diffusion → top layer turned into n-type

Junction depth x_j

X_j is the depth where diffused dopant concentration equals wafer dopant concentration (of opposite type).

Silicon FinFET

M. -J. Tsai *et al.*, *IEEE Journal of the Electron Devices Society*, vol. 7, pp. 1033-1037, 2019, doi: 10.1109/JEDS.2019.2942381.

Fig. 6.2: GaAs multiple quantum well solar cell

MEMS: Micro Electro Mechanical Systems

Fig. 29.21: Microgears, courtesy Sandia National Labs. Fig. 21.3: comb-drive actuator

Clandestine NEMS tags.

"Tags exploit the electromechanical spectral signature as a fingerprint that is characterized by inherent randomness in fabrication processing."

Power MEMS

Fabricated by bonding together 5 silicon wafers.

Fig. 1.17: Microturbine

MOEMS (Micro Opto Electro Mechanical Systems)

Fig. 21.4: variable optical attenator

Fig. 1.2: Micromirror made of silicon, 1 mm diameter, supported by 1.2 μ m wide, 4 μ m thick torsion bars

Micro-optics

Fig. 1.7: Aluminum oxide and titanium oxide thin films deposited over silicon waveguide ridges, courtesy Tapani Alasaarela.

Fig. 7.13: Refractive index $SiO_2/SiO_xN_y/SiO_2$ waveguide: n_f 1.46/1.52/1.46. From ref. Hilleringmann.

Microfluidics and BioMEMS

Fig. 1.13: silicon microneedle

Fig. 1.11: Oxyhydrogen burner flame ionization detector

Cleanrooms

Fig. 1.19

Yield

$Y = Y_0^n$

Yield of a total process (Y) is a product of yield of individual process steps (Y_o)

50 step MEMS process, $Y_0 = 0.999$ → $Y = 0.999^{50} = 95\%$

500 step DRAM process, $Y_0 = 0.999$ → $Y = 0.999^{500} = 61\%$

Yield (2)

$$Y = e^{-DA}$$

Yield depends on chip area (A) and defect density (D)

 $D = 0.01 \text{ mm}^{-2} (= 1/\text{cm}^2)$

A= 10 mm² \rightarrow Y = 90%

A= 100 mm² → Y = 37%

Microindustries are big

Integrated circuits Other semiconductors (of which MEMS/sensors Flat panels displays Solar cells Hard disks

Equipment Materials \$24 B) \$130 B \$170 B \$35 B \$100 B

\$550 B (2021)

\$115 B

\$50 B*

Best source: semi.org

* Includes packaging materials, leadframes etc.