Lecture 1

Lecturer: G. S. Paraoanu
Department of Applied Physics, School of Science, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland

I. INTRODUCTION

In this lecture we will review key concepts from quantum mechanics, electromagnetism, and solid-state physics which will be essential for this course.

II. MOTIVATION

Moore's Law - Doubling of the number of transistors per chip every 18-24 months.

FIG. 1. Moore's Law

- dimension of gate $=5 \mathrm{~nm}$ presently! Very near the molecular scale and approaching atomic scale, where quantum effects (tunneling) will become important.
- density: with 5 nm technology has $\simeq 10^{8} / \mathrm{mm}^{2}$.
- power density, i.e., how much heat they generate. Presently approaching $6 \mathrm{~W} / \mathrm{mm}^{2}=$ $600 \mathrm{~W} / \mathrm{cm}^{2}$.

Compare with a light bulb $\simeq 0.01 \mathrm{~W} / \mathrm{mm}^{2}=1 \mathrm{~W} / \mathrm{cm}^{2}$ and our Sun $=60 \mathrm{~W} / \mathrm{mm}^{2}$.

III. CLASSICAL WAVE PHYSICS

Recall plane waves have the form

$$
\begin{equation*}
\psi(x)=e^{i k x} \tag{1}
\end{equation*}
$$

where x denotes the position, and k the wavenumber. The wavelength λ relates to the wavenumber via $\lambda=2 \pi / k$. Furthermore, recognizing the dimensionless quantity $\phi=k x$ as the phase, Eq. 1 is more compactly $\psi(x)=e^{i \phi}$.

FIG. 2.
(k, ω)-space
-Defined by the respective Fourier transforms

$$
\begin{gather*}
\psi[k]=\int_{-\infty}^{\infty} d x e^{-i k x} \psi(x) \Longleftrightarrow \psi(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k e^{i k x} \psi[k] \tag{2}\\
\psi[k, \omega]=\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d t e^{-i k x+i \omega t} \psi(x, t) \Longleftrightarrow \psi(x, t)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} d k \int_{-\infty}^{\infty} d \omega e^{i k x-i \omega t} \psi[k, \omega] . \tag{3}
\end{gather*}
$$

$\underline{\text { Some properties: }}$

Real coordinates (\mathbf{x}, \mathbf{t})	Fourier coordinates (\mathbf{k}, ω)
shifted by x_{0}	$x e^{-i k x_{0}}$
$x e^{i k_{0} x}$	shifted by k_{0}
shifted by t_{0}	$x e^{i \omega t_{0}}$
$x e^{-i \omega_{0} t}$	shifted by ω_{0}

IV. QUANTUM MECHANICS

Recall, the time-dependent Schrödinger equation is

$$
\begin{equation*}
i \hbar \frac{d}{d t} \psi(x, t)=H \psi(x, t) \tag{4}
\end{equation*}
$$

where $\psi(x, t)$ is the wavefunction. Also, the probability density is $|\psi(x, t)|^{2}$ and the probability that a particle is between points a and b is

$$
\begin{equation*}
\int_{a}^{b}|\psi(x, t)|^{2} d x \tag{5}
\end{equation*}
$$

- Typically $H=$ kinetic energy + potential energy, i.e.,

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+V, \tag{6}
\end{equation*}
$$

where p is the momentum operator, which in the position representaion reads

$$
\begin{equation*}
p=-i \hbar \frac{d}{d x} . \tag{7}
\end{equation*}
$$

Importantly, p relates to the position operator x via the canonical commutation relation:

$$
\begin{equation*}
[x, p]=i \hbar \tag{8}
\end{equation*}
$$

- Dirac notation, aka bra-ket notation.

1. $\psi(x, t)=\langle x \mid \psi(t)\rangle$.
2. $\int_{-\infty}^{\infty} d x|\psi(x, t)|^{2}=\int_{-\infty}^{\infty} d x\langle\psi(t) \mid x\rangle\langle x \mid \psi(t)\rangle=\langle\psi(t) \mid \psi(t)\rangle=1$, where we have used $\int_{-\infty}^{\infty}|x\rangle\langle x|=\mathbb{I}$.
3. Schrödinger equation: $i \hbar \frac{d}{d t}=H|\psi(t)\rangle$.

Note that it is possible to have a time-dependent Hamiltonian $H(t)$. However, if H is time-independent, we can solve the Schrödinger equation by the method of separation of variables.
4. Time-evolution: $|\psi(t)\rangle=e^{-i \frac{E}{\hbar} t}|\psi(0)\rangle$.
5. Eigenvector-eigenvalue problem: $H|\psi\rangle=E|\psi\rangle$.

A. Free particle

For a free particle by definition $V(x)=0$.

Solution:

The time-dependent Schrödinger equation is $-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x)$, and can be solved by $\psi(x)=\psi e^{ \pm i k x}$, with $k=\sqrt{2 m E / \hbar^{2}}$.

Then, using the method above, we can write the solution of the time-dependent Schr'odinger equation $i \hbar \frac{d}{d t}=H|\psi(t)\rangle$ as $\psi(x, t)=\psi e^{ \pm i(k x-\omega t)}$, where $\omega=E / \hbar$.

B. Infinite square well

Consider an infinite square well potential with the boundaries

$$
V(x)= \begin{cases}0, & x \in[-L / 2, L / 2] \tag{9}\\ \infty, & x \in(-\infty,-L / 2) \cup(L / 2,+\infty)\end{cases}
$$

We seek the eigenenergies and eigenstates.

Solution:

$\psi(x)=A \sin (k x+k L / 2)$.
The boundary conditions are

$$
\left\{\begin{array}{l}
x=-L / 2 \rightarrow \psi(-L / 2)=0 \tag{10}\\
x=L / 2 \rightarrow \psi(L / 2)=A \sin (k L)=0
\end{array}\right.
$$

where the second condition implies that $k_{n} L=n \pi$.
With normalization we have

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|\psi(x)|^{2} d x=\int_{-L / 2}^{L / 2} d x A^{2} \sin ^{2}\left(\frac{n \pi}{L} x+\frac{n \pi}{2}\right)=1 \tag{11}
\end{equation*}
$$

which implies that $A=\sqrt{2 / L}$. Moreover, the eigenstates are

$$
\begin{equation*}
\psi_{n}(x)=\sqrt{2 / L} \sin \left(k_{n} x+\frac{k_{n} L}{2}\right) \tag{12}
\end{equation*}
$$

where $n=1,2,3 \cdots$.
The eigen-energies are recovered from the time-independent Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi_{n}(x)=E_{n} \psi_{n}(x) \tag{13}
\end{equation*}
$$

where we find $E_{n}=\hbar^{2} k_{n}^{2} / 2 m$.

FIG. 3. 1-D infinite square well potential.

Important observations:

- there exists a minimum non-zero energy $E_{1}=\hbar^{2} \pi^{2} / 2 m L^{2}$, corresponding to the ground state ψ_{1}. So a particle in a box always has some kinetic energy! This is very different from classical physics.
- energy levels are quantized - not every energy is allowed!- and form a discrete ladder.
$-E_{n} \propto 1 / L^{2}$. The larger the box, the smaller the gap between levels. Eventually, as $L \rightarrow \infty$ we reach the continuum again.

C. The quantum harmonic oscillator

The quantum harmonic oscillator has the Hamiltonian

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2} . \tag{14}
\end{equation*}
$$

We wish to find eigenenergies and eigenstates.

Solution:

$E_{n}=(n+1 / 2) \hbar \omega$, where $n=0,1,2 \cdots$.
$\psi_{n}(x)=N_{n} e^{-\frac{-m \omega}{2 \hbar} x^{2}} H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right)$, where $N_{n}=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}$, and H_{n} is a Hermite polynomial of degree n. Explicitly, $H_{n}(z)=(-1)^{n} e^{z^{2}} \frac{d^{n}}{d z^{n}}\left(e^{-z^{2}}\right)$, so
$H_{0}(z)=1$
$H_{1}(z)=2 z$
$H_{2}(z)=4 z^{2}-2$
$H_{3}(z)=8 z^{3}-12 z$

Introduce the ladder operators a (lowering) and a^{\dagger} (raising)

- $a=\sqrt{\frac{m \omega}{2 \hbar}}\left(x+\frac{i}{m \omega} p\right)$

$$
x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right)
$$

- $a^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}}\left(x-\frac{i}{m \omega} p\right)$

$$
p=i \sqrt{\frac{\hbar m \omega}{2}}\left(a^{\dagger}-a\right)
$$

- The number operator $N=a^{\dagger} a, N|n\rangle=n|n\rangle$, where $|n\rangle=\frac{\left(a^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle$. Note: $a|0\rangle=0$. Therefore, in terms of the number operator, the Hamiltonian is $H=\hbar \omega(N+1 / 2)$.
- Commutation relations:

$$
\begin{aligned}
& {\left[a, a^{\dagger}\right]=1} \\
& {\left[N, a^{\dagger}\right]=a^{\dagger}} \\
& {[N, a]=-a}
\end{aligned}
$$

Important Observations:

- Energy levels are equally spaced by $\hbar \omega$.
- There exists a minimum energy of $\hbar \omega / 2$ which corresponds to the ground state, i.e., zero-point motion energy.

Example: Calculate the variance $\left\langle(\Delta x)^{2}\right\rangle=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$ for the vacuum state $|0\rangle$, where $\Delta x \equiv x-<x>$.

Solution:
With $x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right)$, we find $\langle x\rangle=0$, and $\left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega}$. Therefore, $\left\langle x^{2}\right\rangle=x_{z p f}^{2}$, where $x_{z p f}=\sqrt{\frac{\hbar}{2 m \omega}}$ is the zero-point fluctuation.

D. Spin-1/2 particles

- Comes from the Stern-Gerlach experiment where a beam of silver atoms running through a non-homogeneous magnetic field is split into two beams.
- Angular momentum

$$
\begin{array}{ll}
\mathbf{S}=\frac{\hbar}{2} \sigma & \sigma=\left(\sigma_{\mathbf{x}}, \sigma_{\mathbf{y}}, \sigma_{\mathbf{z}}\right) \\
s=1 / 2 &
\end{array}
$$

$$
|s, m\rangle= \begin{cases}\left|\frac{1}{2}, \frac{1}{2}\right\rangle & m=1 / 2 \tag{15}\\ \left|\frac{1}{2},-\frac{1}{2}\right\rangle & m=-1 / 2\end{cases}
$$

$S^{2}\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\hbar^{2} s(s+1)\left|\frac{1}{2}, \frac{1}{2}\right\rangle=\frac{3}{4} \hbar^{2}\left|\frac{1}{2}, \frac{1}{2}\right\rangle$.

- In quantum information,

$$
\left.\begin{array}{rl}
\left|\frac{1}{2}, \frac{1}{2}\right\rangle & \equiv|0\rangle \tag{16}\\
\left|\frac{1}{2},-\frac{1}{2}\right\rangle & \equiv|1\rangle
\end{array}\right\} \text { qubit states }
$$

General qubit state: $\quad|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle$.

- Eigenvectors-eigenvalues:

$$
\begin{array}{c|c|c}
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) & \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) & \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\sigma_{x}\left|\chi_{ \pm}^{(x)}\right\rangle= \pm\left|\chi_{ \pm}^{(x)}\right\rangle & \sigma_{y}\left|\chi_{ \pm}^{(y)}\right\rangle= \pm\left|\chi_{ \pm}^{(y)}\right\rangle
\end{array}\left|\begin{array}{c}
\sigma_{z}|0\rangle=|0\rangle, \sigma_{z}|1\rangle=-|1\rangle \\
\left|\chi_{ \pm}^{(x)}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{ \pm 1}
\end{array}\right| \begin{gathered}
\left.\chi_{ \pm}^{(y)}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{ \pm i}
\end{gathered}|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}
$$

Question: What is the analogue of zero-point fluctuations for spin- $1 / 2$?

E. Many-particle quantum systems

In many-particle systems it is necessary to concatenate the Hilbert spaces of each particle.
V, W Hilbert spaces
$|v\rangle \in V,|w\rangle \in W$
$V \otimes W=$ tensor product

$$
|v\rangle \otimes|w\rangle \in V \otimes W
$$

- But how do we write the wavefunctions?

Say we have two particles, is the wavefunction $|v\rangle_{1}|w\rangle_{2},|w\rangle_{1}|v\rangle_{2}$ or

$$
\frac{1}{\sqrt{2}}\left(\alpha|v\rangle_{1}|w\rangle_{2}+\beta|w\rangle_{1}|v\rangle_{2}\right) ?
$$

- In nature there are only two types of particles:
bosons \rightarrow symmetric wavefunction
fermions \rightarrow anti-symmetric wavefunction

Good news, we do not necessarily need to work with cumbersome symmetrized or antisymmetrized wavefunctions. Instead, a compact way of writing the wavefunction is provided by the Fock space:
$\left|n_{1}, n_{2}, \cdots\right\rangle$
Bosons:
$\left[a_{i}, a_{j}^{\dagger}\right]=\delta_{i j}$
$\left[a_{i}, a_{j}\right]=\left[a_{i}^{\dagger}, a_{j}^{\dagger}\right]=0$
$N=\sum_{i} a_{i}^{\dagger} a_{i}$
$a_{i}^{\dagger}\left|\cdots, n_{i}, \cdots\right\rangle=\sqrt{n_{i}+1}\left|\cdots, n_{i+1}, \cdots\right\rangle$
$a_{i}\left|\cdots, n_{i}, \cdots\right\rangle=\sqrt{n_{i}}\left|\cdots, n_{i-1}, \cdots\right\rangle$
$a_{i}\left|\cdots, n_{i}=0, \cdots\right\rangle=0$
$\left|n_{1}, n_{2}, \cdots\right\rangle=\frac{1}{\sqrt{n_{1}!n_{2}!\cdots}}\left(a_{1}^{\dagger}\right)^{n_{1}}\left(a_{2}^{\dagger}\right)^{n_{2}} \cdots|0,0, \cdots\rangle$

Fermions:
$c_{i}, c_{j}^{\dagger}=\delta_{i j}$
$c_{i}, c_{j}=c_{i}^{\dagger}, c_{j}^{\dagger}=0$
$N=\sum_{i} c_{i}^{\dagger} c_{i}$
$c_{i}^{\dagger}\left|\cdots, n_{i}, \cdots\right\rangle=\left(1-n_{i}\right)(-1)^{\sum_{j<i} n_{j}}\left|\cdots, n_{i+1}, \cdots\right\rangle$
$c_{i}\left|\cdots, n_{i}, \cdots\right\rangle=n_{i}(-1)^{\sum_{j<i} n_{j}}\left|\cdots, n_{i-1}, \cdots\right\rangle$
$c_{i}\left|\cdots, n_{i}=0, \cdots\right\rangle=0$
$c_{i}^{\dagger}\left|\cdots, n_{i}=1, \cdots\right\rangle=0 \longrightarrow$ Pauli exclusion principle.
$\left|n_{1}, n_{2}, \cdots\right\rangle=\left(c_{1}^{\dagger}\right)^{n_{1}}\left(c_{2}^{\dagger}\right)^{n_{2}} \cdots|0,0, \cdots\rangle$

V. ELEMENTS OF SOLID STATE PHYSICS

Electrons - they are fermions; i.e., Pauli exclusion principle applies.

- at $T=0$, we fill all the states until we use all of the electrons.

For example, take a wire (just because we have a single k-vector $\cdot \cdots$).
At $T \neq 0$ the distribution of electrons is described by the Fermi-Dirac distribution:

$$
\begin{equation*}
f_{F D}(E)=\frac{1}{\exp \left[\left(E-E_{F}\right) / k_{B} T\right]+1} . \tag{17}
\end{equation*}
$$

Two limits:

- degenerate limit: $f_{F D}(E) \approx \Theta\left(E_{F}-E\right)$.
- non-degenerate limit: $f_{F D}=\exp \left[-\left(E-E_{F}\right) / k_{B} T\right]$
when $E-E_{F} \gg k_{B} T$.

FIG. 4. Energy bands of a metal and insulator.

FIG. 5.

Density of states:

Free electron wavefunction: $\psi(\vec{r})=\frac{e^{i k_{x} \cdot x}}{\sqrt{L}} \cdot \frac{e^{i k_{y} \cdot y}}{\sqrt{L}} \cdot \frac{e^{i k_{z} \cdot z}}{\sqrt{L}}=\frac{1}{\sqrt{V}} e^{i k \cdot r}$. Here, V is the volume in k-space and $E=\hbar^{2} k^{2} / 2 m$ is the dispersion relation, where $k_{x}=2 \pi n_{x} / L, k_{y}=2 \pi n_{y} / L$, and $k_{z}=2 \pi n_{z} / L$.

We want to calculate the number of states per volume within an energy interval $d E$. This is known as the density of states.

The volume element in k -space is $V_{3 D}=\left(\frac{2 \pi}{L}\right)^{3}$ and the volume of shell between k and $k+d k$ is $V_{d k}=4 \pi k^{2} d k$.
The number of states in this shell is $2 \cdot \frac{V_{d k}}{V_{3 D}}=\frac{k^{2} d k}{\pi^{2}} \cdot L^{3}$, where the factor of 2 comes from

FIG. 6.
the electron spin.
$E=\hbar^{2} k^{2} / 2 m \Longrightarrow d k=\frac{1}{\sqrt{2 m E / \hbar^{2}}} \frac{m}{\hbar^{2}} d E$
Therefore, the number of states in the interval $d E$ per unit volume is

$$
\begin{equation*}
\mathcal{N}_{3 D}(E) d E=\frac{k^{2} d k}{\pi^{2}}=\frac{1}{2 \hbar^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \sqrt{E} d E . \tag{18}
\end{equation*}
$$

VI. ELECTROMAGNETISM

Maxwell's equations (in SI units):

$$
\begin{array}{rlrl}
\nabla \times \vec{H} & =\overrightarrow{\mathcal{J}}+\frac{\partial \vec{D}}{\partial t} & & \text { Faraday's Law } \\
\nabla \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t} & & \text { Ampère's Law } \tag{19}\\
\vec{\nabla} \cdot \vec{D}=\rho & & \text { Coulomb's Law } \\
\vec{\nabla} \cdot \vec{B}=0 & & \text { Gauss' Law }
\end{array}
$$

where $\overrightarrow{\mathcal{J}}$ is the current density and ρ is the charge density.
Electromagnetic potentials:

* magnetic vector potential $\overrightarrow{\mathcal{A}}$ defined as $\vec{B}=\vec{\nabla} \times \vec{A}$.
* electric potential V.

Electric field in terms of potentials: $\vec{E}=-\vec{\nabla} V-\frac{\partial}{\partial} \vec{A}$.
Constitutive relations:
$\vec{D}=\varepsilon \vec{E}$

$$
\left\lvert\, \begin{aligned}
& \varepsilon=\varepsilon_{0} \varepsilon_{r}=\text { electrical permittivity } \\
& \varepsilon_{0}=8.854 \times 10^{-12} F / m=\text { vacuum permittivity } \\
& \varepsilon_{r}=\text { relative permittivity }
\end{aligned}\right.
$$

$c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}=$ speed of light in vacuum.
$\vec{B}=\mu \vec{H}$

$$
\begin{aligned}
& \mu=\mu_{0} \mu_{r}=\text { magnetic permeability } \\
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}=\text { vacuum permeability } \\
& \mu_{r}=\text { relative permeability }
\end{aligned}
$$

In AC fields: $\epsilon \rightarrow \epsilon=\epsilon^{\prime}-i \epsilon^{\prime \prime} \& \tan \delta \equiv \frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}=$ loss tangent.

Other fundamental relations:

- Ohm's law $\overrightarrow{\mathcal{J}}=\vec{\sigma} \cdot \vec{E}$
- Continuity equation: $-\frac{\partial \rho}{\partial t}=\vec{\nabla} \cdot \overrightarrow{\mathcal{J}}$

FIG. 7.

- Gauss-Ostrogradsky theorem: $-\frac{\partial}{\partial t} \iiint_{V} d V \cdot \vec{\rho}=\oiint_{S} d \vec{s} \cdot \overrightarrow{\mathcal{J}}$, i.e, the rate of decrease of positive charge $=$ total current flux flowing out of the closed surface.

VII. THERMODYNAMICS

- First law of thermodynamics: $\quad \Delta U=Q-W$

This is conservation of energy, where ΔU denotes the change in internal energy, Q is the heat supplied to the system, and W is the work done by the system onto the environment.

- Second law of thermodynamics: $\quad \delta Q=T d S$ (for reversible processes)

This says that the total entropy of an isolated system can never decrease. δQ denotes the amount of heat transferred and $d S$ is the change in entropy produced by the transferred heat.
Corollary: It is impossible to construct a cyclic engine that produces work from the energy extracted from a single reservoir (Planck).

- Third law of thermodynamics.

The entropy approaches a constant value when $T \rightarrow 0$

$$
\lim _{T \rightarrow 0} S=\text { const }
$$

A. Equipartition Theorem

- In thermal equilibrium, energy is shared equally between the degrees of freedom $\left(\frac{1}{2} k_{B} T\right.$ per degree of freedom).

Example:

Ideal gas: $E=\frac{1}{2} m v_{x}^{2}+\frac{1}{2} m v_{y}^{2}+\frac{1}{2} m v_{z}^{2}=$ average energy $=\frac{1}{2} k_{B} T+\frac{1}{2} k_{B} T+\frac{1}{2} k_{B} T=$ $\frac{3}{2} k_{B} T \Longrightarrow v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}=\sqrt{\frac{3 k_{B} T}{m}}$.

Harmonic oscillator: $E=\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}=$ average energy $\frac{1}{2} k_{B} T+\frac{1}{2} k_{B} T=k_{B} T$ where $k_{B}=1.38 \times 10^{-23} \frac{m^{2} k g}{s^{2} K}-$ Boltzmann's constant.

VIII. FURTHER READING

Any introductory textbook on quantum mechanics, solid state physics, and electromagnetism should suffice. For example, $c f$.

- The Open University: SM358 The Quantum World

Science Level 3 Books 1-3

- David J. Griffiths - Introduction to Quantum Mechanics
- Charles Kittel - Introduction to Solid State Physics
- Martin Sibley - Introduction to Electromagnetism

There is a plethora of information, lecture notes, and video lectures on the internet!

