Lecture 1

Lecturer: G. S. Paraoanu

Department of Applied Physics, School of Science,
Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland

I. INTRODUCTION

In this lecture we will review key concepts from quantum mechanics, electromagnetism, and solid-state physics which will be essential for this course.

II. MOTIVATION

Moore's Law – Doubling of the number of transistors per chip every 18-24 months.

FIG. 1. Moore's Law

- dimension of gate = 5 nm presently! Very near the molecular scale and approaching atomic scale, where quantum effects (tunneling) will become important.
- density: with 5 nm technology has $\simeq 10^8/mm^2$.

– power density, i.e., how much heat they generate. Presently approaching 6 $W/mm^2 = 600 \ W/cm^2$.

Compare with a light bulb $\simeq 0.01~W/mm^2 = 1~W/cm^2$ and our Sun = $60~W/mm^2$.

III. CLASSICAL WAVE PHYSICS

Recall plane waves have the form

$$\psi(x) = e^{ikx} \,, \tag{1}$$

where x denotes the position, and k the wavenumber. The wavelength λ relates to the wavenumber via $\lambda = 2\pi/k$. Furthermore, recognizing the dimensionless quantity $\phi = kx$ as the phase, Eq. 1 is more compactly $\psi(x) = e^{i\phi}$.

FIG. 2.

(k,ω) -space

-Defined by the respective Fourier transforms

$$\psi[k] = \int_{-\infty}^{\infty} dx e^{-ikx} \psi(x) \Longleftrightarrow \psi(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk e^{ikx} \psi[k]$$
 (2)

$$\psi[k,\omega] = \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dt e^{-ikx + i\omega t} \psi(x,t) \iff \psi(x,t) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} dk \int_{-\infty}^{\infty} d\omega e^{ikx - i\omega t} \psi[k,\omega] . \tag{3}$$

Some properties:

Real coordinates (x, t)	Fourier coordinates (k, ω)
shifted by x_0	xe^{-ikx_0}
xe^{ik_0x}	shifted by k_0
shifted by t_0	$xe^{i\omega t_0}$
$xe^{-i\omega_0 t}$	shifted by ω_0

IV. QUANTUM MECHANICS

Recall, the time-dependent Schrödinger equation is

$$i\hbar \frac{d}{dt}\psi(x,t) = H\psi(x,t)$$
, (4)

where $\psi(x,t)$ is the wavefunction. Also, the probability density is $|\psi(x,t)|^2$ and the probability that a particle is between points a and b is

$$\int_{a}^{b} |\psi(x,t)|^2 dx \ . \tag{5}$$

• Typically H = kinetic energy + potential energy, i.e.,

$$H = \frac{p^2}{2m} + V , \qquad (6)$$

where p is the momentum operator, which in the position representation reads

$$p = -i\hbar \frac{d}{dx} \ . \tag{7}$$

Importantly, p relates to the position operator x via the canonical commutation relation:

$$[x,p] = i\hbar \tag{8}$$

- Dirac notation, aka bra-ket notation.
 - 1. $\psi(x,t) = \langle x | \psi(t) \rangle$.
 - 2. $\int_{-\infty}^{\infty} dx |\psi(x,t)|^2 = \int_{-\infty}^{\infty} dx \langle \psi(t)|x\rangle \langle x|\psi(t)\rangle = \langle \psi(t)|\psi(t)\rangle = 1, \text{ where we have used } \int_{-\infty}^{\infty} |x\rangle \langle x| = \mathbb{I}.$

3. Schrödinger equation: $i\hbar \frac{d}{dt} = H|\psi(t)\rangle$. Note that it is possible to have a time-dependent Hamiltonian H(t). However, if H is time-independent, we can solve the Schrödinger equation by the method of separation of variables.

- 4. Time-evolution: $|\psi(t)\rangle = e^{-i\frac{E}{\hbar}t}|\psi(0)\rangle$.
- 5. Eigenvector-eigenvalue problem: $H|\psi\rangle = E|\psi\rangle$.

A. Free particle

For a free particle by definition V(x) = 0.

Solution:

The time-dependent Schrödinger equation is $-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x)=E\psi(x)$, and can be solved by $\psi(x)=\psi e^{\pm ikx}$, with $k=\sqrt{2mE/\hbar^2}$.

Then, using the method above, we can write the solution of the time-dependent Schr'odinger equation $i\hbar \frac{d}{dt} = H|\psi(t)\rangle$ as $\psi(x,t) = \psi e^{\pm i(kx-\omega t)}$, where $\omega = E/\hbar$.

B. Infinite square well

Consider an infinite square well potential with the boundaries

$$V(x) = \begin{cases} 0, & x \in [-L/2, L/2] \\ \infty, & x \in (-\infty, -L/2) \cup (L/2, +\infty) \end{cases}$$
 (9)

We seek the eigenenergies and eigenstates.

Solution:

$$\psi(x) = A\sin(kx + kL/2).$$

The boundary conditions are

$$\begin{cases} x = -L/2 \to \psi(-L/2) = 0 \\ x = L/2 \to \psi(L/2) = A\sin(kL) = 0 \end{cases}$$
 (10)

where the second condition implies that $k_n L = n\pi$.

With normalization we have

$$\int_{-\infty}^{+\infty} |\psi(x)|^2 dx = \int_{-L/2}^{L/2} dx A^2 \sin^2\left(\frac{n\pi}{L}x + \frac{n\pi}{2}\right) = 1 , \qquad (11)$$

which implies that $A = \sqrt{2/L}$. Moreover, the eigenstates are

$$\psi_n(x) = \sqrt{2/L} \sin\left(k_n x + \frac{k_n L}{2}\right), \qquad (12)$$

where $n = 1, 2, 3 \cdots$.

The eigen-energies are recovered from the time-independent Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi_n(x) = E_n\psi_n(x) , \qquad (13)$$

where we find $E_n = \hbar^2 k_n^2 / 2m$.

FIG. 3. 1-D infinite square well potential.

Important observations:

- there exists a minimum non-zero energy $E_1 = \hbar^2 \pi^2 / 2mL^2$, corresponding to the ground state ψ_1 . So a particle in a box <u>always</u> has some kinetic energy! This is very different from classical physics.

- energy levels are quantized not every energy is allowed!- and form a discrete ladder.
- $E_n \propto 1/L^2$. The larger the box, the smaller the gap between levels. Eventually, as $L \to \infty$ we reach the continuum again.

C. The quantum harmonic oscillator

The quantum harmonic oscillator has the Hamiltonian

$$H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2 \ . \tag{14}$$

We wish to find eigenenergies and eigenstates.

Solution:

 $E_n = (n+1/2)\hbar\omega$, where $n = 0, 1, 2 \cdots$.

 $\psi_n(x) = N_n e^{-\frac{-m\omega}{2\hbar}x^2} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right)$, where $N_n = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}$, and H_n is a Hermite polynomial of degree n. Explicitly, $H_n(z) = (-1)^n e^{z^2} \frac{d^n}{dz^n} \left(e^{-z^2}\right)$, so

$$H_0(z) = 1$$

$$H_1(z) = 2z$$

$$H_2(z) = 4z^2 - 2$$

$$H_3(z) = 8z^3 - 12z$$

Introduce the ladder operators a (lowering) and a^{\dagger} (raising)

•
$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{i}{m\omega} p \right)$$
 $x = \sqrt{\frac{\hbar}{2m\omega}} (a + a^{\dagger})$

•
$$a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(x - \frac{i}{m\omega} p \right)$$
 $p = i\sqrt{\frac{\hbar m\omega}{2}} (a^{\dagger} - a)$

- The number operator $N = a^{\dagger}a$, $N|n\rangle = n|n\rangle$, where $|n\rangle = \frac{(a^{\dagger})^n}{\sqrt{n!}}|0\rangle$. Note: $a|0\rangle = 0$. Therefore, in terms of the number operator, the Hamiltonian is $H = \hbar\omega(N + 1/2)$.
- Commutation relations:

$$[a, a^{\dagger}] = 1$$

$$[N, a^{\dagger}] = a^{\dagger}$$

$$[N, a] = -a$$

Important Observations:

- Energy levels are equally spaced by $\hbar\omega$.
- There exists a minimum energy of $\hbar\omega/2$ which corresponds to the ground state, i.e., zero-point motion energy.

Example: Calculate the variance $\langle (\Delta x)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$ for the vacuum state $|0\rangle$, where $\Delta x \equiv x - \langle x \rangle$.

Solution:

With $x = \sqrt{\frac{\hbar}{2m\omega}}(a + a^{\dagger})$, we find $\langle x \rangle = 0$, and $\langle x^2 \rangle = \frac{\hbar}{2m\omega}$. Therefore, $\langle x^2 \rangle = x_{zpf}^2$, where $x_{zpf} = \sqrt{\frac{\hbar}{2m\omega}}$ is the zero-point fluctuation.

D. Spin-1/2 particles

- Comes from the Stern-Gerlach experiment where a beam of silver atoms running through a non-homogeneous magnetic field is split into two beams.
- Angular momentum

$$\mathbf{S} = \frac{\hbar}{2} \ \sigma$$
 $\sigma = (\sigma_{\mathbf{x}}, \sigma_{\mathbf{y}}, \sigma_{\mathbf{z}})$

s = 1/2:

$$|s,m\rangle = \begin{cases} \left|\frac{1}{2},\frac{1}{2}\right\rangle & m = 1/2\\ \left|\frac{1}{2},-\frac{1}{2}\right\rangle & m = -1/2 \end{cases}$$

$$(15)$$

$$S^2|\frac{1}{2},\frac{1}{2}\rangle = \hbar^2 s(s+1)|\frac{1}{2},\frac{1}{2}\rangle = \frac{3}{4}\hbar^2|\frac{1}{2},\frac{1}{2}\rangle$$
.

• In quantum information,

$$\begin{vmatrix}
\frac{1}{2}, \frac{1}{2} \rangle \equiv |0\rangle \\
\frac{1}{2}, -\frac{1}{2} \rangle \equiv |1\rangle
\end{vmatrix}$$
 qubit states (16)

General qubit state: $|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$.

• Eigenvectors-eigenvalues:

$$\begin{aligned}
\sigma_{x} &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & \sigma_{y} &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} & \sigma_{z} &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\
\sigma_{x} |\chi_{\pm}^{(x)}\rangle &= \pm |\chi_{\pm}^{(x)}\rangle & \sigma_{y} |\chi_{\pm}^{(y)}\rangle &= \pm |\chi_{\pm}^{(y)}\rangle & \sigma_{z} |0\rangle &= |0\rangle, \ \sigma_{z} |1\rangle &= -|1\rangle \\
|\chi_{\pm}^{(x)}\rangle &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix} & |\chi_{\pm}^{(y)}\rangle &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm i \end{pmatrix} & |0\rangle &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ |1\rangle &= \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\end{aligned}$$

Question: What is the analogue of zero-point fluctuations for spin-1/2?

E. Many-particle quantum systems

In many-particle systems it is necessary to concatenate the Hilbert spaces of each particle.

$$V, W \text{ Hilbert spaces} \qquad |v\rangle \in V, |w\rangle \in W$$

$$V \otimes W = \text{tensor product} \qquad |v\rangle \otimes |w\rangle \in V \otimes W$$

• But how do we write the wavefunctions?

Say we have two particles, is the wavefunction $|v\rangle_1|w\rangle_2$, $|w\rangle_1|v\rangle_2$ or $\frac{1}{\sqrt{2}}(\alpha|v\rangle_1|w\rangle_2 + \beta|w\rangle_1|v\rangle_2$?

• In nature there are only two types of particles:

bosons \rightarrow symmetric wavefunction

fermions \rightarrow anti-symmetric wavefunction

Good news, we do not necessarily need to work with cumbersome symmetrized or antisymmetrized wavefunctions. Instead, a compact way of writing the wavefunction is provided by the Fock space:

$$|n_1, n_2, \cdots\rangle$$
Bosons:

$$[a_i, a_j^{\dagger}] = \delta_{ij}$$

 $[a_i, a_j] = [a_i^{\dagger}, a_j^{\dagger}] = 0$

$$N = \sum_{i} a_{i}^{\dagger} a_{i}$$

$$a_{i}^{\dagger} | \cdots, n_{i}, \cdots \rangle = \sqrt{n_{i} + 1} | \cdots, n_{i+1}, \cdots \rangle$$

$$a_{i} | \cdots, n_{i}, \cdots \rangle = \sqrt{n_{i}} | \cdots, n_{i-1}, \cdots \rangle$$

$$a_{i} | \cdots, n_{i} = 0, \cdots \rangle = 0$$

$$|n_{1}, n_{2}, \cdots \rangle = \frac{1}{\sqrt{n_{1}! n_{2}! \cdots}} (a_{1}^{\dagger})^{n_{1}} (a_{2}^{\dagger})^{n_{2}} \cdots | 0, 0, \cdots \rangle$$

Fermions:

$$c_{i}, c_{j}^{\dagger} = \delta_{ij}$$

$$c_{i}, c_{j} = c_{i}^{\dagger}, c_{j}^{\dagger} = 0$$

$$N = \sum_{i} c_{i}^{\dagger} c_{i}$$

$$c_{i}^{\dagger} | \cdots, n_{i}, \cdots \rangle = (1 - n_{i})(-1)^{\sum_{j < i} n_{j}} | \cdots, n_{i+1}, \cdots \rangle$$

$$c_{i} | \cdots, n_{i}, \cdots \rangle = n_{i}(-1)^{\sum_{j < i} n_{j}} | \cdots, n_{i-1}, \cdots \rangle$$

$$c_{i} | \cdots, n_{i} = 0, \cdots \rangle = 0$$

$$c_{i}^{\dagger} | \cdots, n_{i} = 1, \cdots \rangle = 0 \longrightarrow \text{Pauli exclusion principle.}$$

$$|n_{1}, n_{2}, \cdots \rangle = (c_{1}^{\dagger})^{n_{1}} (c_{2}^{\dagger})^{n_{2}} \cdots | 0, 0, \cdots \rangle$$

V. ELEMENTS OF SOLID STATE PHYSICS

Electrons – they are <u>fermions</u>; i.e., Pauli exclusion principle applies.

– at T=0, we fill all the states until we use all of the electrons.

For example, take a wire (just because we have a single k-vector \cdots).

At $T \neq 0$ the distribution of electrons is described by the Fermi-Dirac distribution:

$$f_{FD}(E) = \frac{1}{\exp\left[(E - E_F)/k_B T\right] + 1}$$
 (17)

Two limits:

- degenerate limit: $f_{FD}(E) \approx \Theta(E_F E)$.
- non-degenerate limit: $f_{FD} = \exp\left[-(E-E_F)/k_BT\right]$ when $E-E_F \gg k_BT$.

FIG. 4. Energy bands of a metal and insulator.

FIG. 5.

Density of states:

Free electron wavefunction: $\psi(\vec{r}) = \frac{e^{ik_x \cdot x}}{\sqrt{L}} \cdot \frac{e^{ik_y \cdot y}}{\sqrt{L}} \cdot \frac{e^{ik_z \cdot z}}{\sqrt{L}} = \frac{1}{\sqrt{V}} e^{ik \cdot r}$. Here, V is the volume in k-space and $E = \hbar^2 k^2 / 2m$ is the dispersion relation, where $k_x = 2\pi n_x / L$, $k_y = 2\pi n_y / L$, and $k_z = 2\pi n_z / L$.

We want to calculate the number of states per volume within an energy interval dE. This is known as the density of states.

The volume element in k-space is $V_{3D} = \left(\frac{2\pi}{L}\right)^3$ and the volume of shell between k and k + dk is $V_{dk} = 4\pi k^2 dk$.

The number of states in this shell is $2 \cdot \frac{V_{dk}}{V_{3D}} = \frac{k^2 dk}{\pi^2} \cdot L^3$, where the factor of 2 comes from

FIG. 6.

the electron spin.

$$E = \hbar^2 k^2 / 2m \implies dk = \frac{1}{\sqrt{2mE/\hbar^2}} \frac{m}{\hbar^2} dE$$

Therefore, the number of states in the interval dE per unit volume is

$$\mathcal{N}_{3D}(E)dE = \frac{k^2 dk}{\pi^2} = \frac{1}{2\hbar^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E} dE \ .$$
 (18)

VI. ELECTROMAGNETISM

Maxwell's equations (in SI units):

$$\nabla \times \vec{H} = \vec{\mathcal{J}} + \frac{\partial \vec{D}}{\partial t} \qquad \text{Faraday's Law}$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \text{Ampère's Law}$$

$$\vec{\nabla} \cdot \vec{D} = \rho \qquad \text{Coulomb's Law}$$

$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \text{Gauss' Law},$$
(19)

where $\vec{\mathcal{J}}$ is the current density and ρ is the charge density.

Electromagnetic potentials:

- * magnetic vector potential $\vec{\mathcal{A}}$ defined as $\vec{B} = \vec{\nabla} \times \vec{A}$.
- * electric potential V.

Electric field in terms of potentials: $\vec{E} = -\vec{\nabla}V - \frac{\partial}{\partial}\vec{A}$.

Constitutive relations:

$$\vec{D}=arepsilon \vec{E}$$

$$arepsilon = arepsilon_0 arepsilon_r = ext{electrical permittivity},$$

$$arepsilon_0 = 8.854 \times 10^{-12} \ F/m = ext{vacuum permittivity}$$

$$arepsilon_r = ext{relative permittivity}$$

$$c=rac{1}{\sqrt{arepsilon_0\mu_0}}={
m speed}$$
 of light in vacuum.
$$egin{align*} &\mu=\mu_0\mu_r={
m magnetic} \ {
m permeability} \ &\mu_0=4\pi\times 10^{-7}\ H/m={
m vacuum} \ {
m permeability}. \ &\mu_r={
m relative} \ {
m permeability}. \end{aligned}$$

In AC fields: $\epsilon \to \epsilon = \epsilon' - i\epsilon''$ & $\tan \delta \equiv \frac{\epsilon''}{\epsilon'} = \text{loss tangent}$.

Other fundamental relations:

- Ohm's law $\vec{\mathcal{J}} = \vec{\sigma} \cdot \vec{E}$
- Continuity equation: $-\frac{\partial \rho}{\partial t} = \vec{\nabla} \cdot \vec{\mathcal{J}}$

FIG. 7.

• Gauss-Ostrogradsky theorem: $-\frac{\partial}{\partial t} \iiint_V dV \cdot \vec{\rho} = \oiint_S d\vec{s} \cdot \vec{\mathcal{J}}$, i.e, the rate of decrease of positive charge = total current flux flowing out of the closed surface.

VII. THERMODYNAMICS

• First law of thermodynamics: $\Delta U = Q - W$

This is conservation of energy, where ΔU denotes the change in internal energy, Q is the heat supplied to the system, and W is the work done by the system onto the environment.

• Second law of thermodynamics: $\delta Q = TdS$ (for reversible processes)

This says that the total entropy of an isolated system can never decrease. δQ denotes the amount of heat transferred and dS is the change in entropy produced by the transferred heat.

Corollary: It is impossible to construct a cyclic engine that produces work from the energy extracted from a single reservoir (Planck).

• Third law of thermodynamics. The entropy approaches a constant value when $T \to 0$

$$\lim_{T\to 0} S = \text{const} .$$

A. Equipartition Theorem

– In thermal equilibrium, energy is shared equally between the degrees of freedom ($\frac{1}{2}k_BT$ per degree of freedom).

Example:

Ideal gas:
$$E = \frac{1}{2}mv_x^2 + \frac{1}{2}mv_y^2 + \frac{1}{2}mv_z^2 = \text{average energy} = \frac{1}{2}k_BT + \frac{1}{2}k_BT + \frac{1}{2}k_BT = \frac{3}{2}k_BT \implies v_{rms} = \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3k_BT}{m}}.$$

Harmonic oscillator: $E = \frac{p^2}{2m} + \frac{1}{2}kx^2 = \text{average energy } \frac{1}{2}k_BT + \frac{1}{2}k_BT = k_BT$ where $k_B = 1.38 \times 10^{-23} \frac{m^2 kg}{s^2 K}$ – Boltzmann's constant.

VIII. FURTHER READING

Any introductory textbook on quantum mechanics, solid state physics, and electromagnetism should suffice. For example, *cf.*

- The Open University: SM358 The Quantum World Science Level 3 Books 1-3
- David J. Griffiths Introduction to Quantum Mechanics
- Charles Kittel Introduction to Solid State Physics
- Martin Sibley Introduction to Electromagnetism

There is a plethora of information, lecture notes, and video lectures on the internet!

15