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Learning Outcomes

After this lecture and exercises you will be able to:
▶ Express the dynamic inverse-Γ model in synchronous coordinates
▶ Calculate steady-state operating points and

draw the corresponding vector diagrams
▶ Explain the operating principle of V/Hz control
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Model in Stator Coordinates

▶ Voltage equations
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▶ Flux linkages
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Model in Synchronous Coordinates

▶ Synchronous (dq) coordinates rotate at
the angular speed ωs

▶ Coordinate transformation iss = isejϑs ,
where no superscript is used in
synchronous coordinates

▶ Voltage equations become

us = Rsis +
dψs

dt
+ jωsψs

uR = RRiR +
dψR

dt
+ jωrψR = 0

▶ Angular speed of the coordinate system
▶ ωs with respect to the stator
▶ ωr = ωs − ωm with respect to the rotor
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Model in Synchronous Coordinates

▶ Voltage equations

us = Rsis +
dψs

dt
+ jωsψs

uR = RRiR +
dψR

dt
+ jωrψR = 0

▶ Flux linkages

ψs = Lσis +ψR

ψR = LM(is + iR)

▶ Steady state: d/dt = 0

dψR
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Power Balance
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▶ Electromagnetic torque
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▶ Rate of change of the magnetic field energy
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Vector Diagram: Currents and Flux Linkages

▶ Airgap and leakage flux
paths are sketched

▶ All vectors are constant in
synchronous coordinates
in the steady state
(but the rotor slips at −ωr)
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Steady-State Torque

▶ Torque in the steady state

τM =
2τb

ωr/ωrb + ωrb/ωr

▶ Breakdown torque

τb =
3np
2

LM

LM + Lσ

ψ2
s

2Lσ

▶ Breakdown slip

ωrb =
RR

σLM
where σ =

Lσ

LM + Lσ

τM

ωr0

τb

ωrb

See the derivation in Exercise 1.
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Stator Voltage vs. Stator Frequency

▶ Steady-state stator voltage

us = Rsis + jωsψs

▶ Approximate magnitude

us = |ωs|ψs

where us = |us| and ψs = |ψs|
▶ Maximum voltage is limited

us < umax
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us ≈ |ωs|ψsN
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Volts-per-Hertz Control (aka Scalar Control)

▶ Based on the steady-state equations
▶ Supply frequency ωs,ref corresponds

to the desired rotor speed
▶ Some speed error due to the slip

(can be partly compensated for)
▶ Slow, oscillating, or even unstable

dynamics1

▶ Torque cannot be controlled
▶ Current cannot be limited
▶ For simple applications

M

PWM
us
s,refV/Hz

control
ωs,ref

ψs,ref
udc

us,ref = ωs,refψs,ref (+Rsis compensation)

ϑs =
∫
ωs,refdt

us
s,ref = us,refe

jϑs

1Hinkkanen, Tiitinen, Mölsä, et al., “On the stability of volts-per-hertz control for induction motors,” IEEE J. Emerg. Sel. Topics Power Electron., 2021.
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weakened-field
operating area

ωs = ωsN

ψs = ψsN
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