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Learning Outcomes

After this lecture and exercises you will be able to:
▶ Explain the principle of rotor-flux orientation
▶ Derive the rotor-flux orientation equations (torque, flux dynamics, slip relation)

using the inverse-Γ model
▶ Draw block diagrams for the most typical control schemes and explain them
▶ Derive the current model and explain its properties
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Vector Control Methods

▶ Based on the dynamic motor model
▶ Rotor-flux-oriented vector control,

direct torque control (DTC)
▶ Torque can be controlled
▶ High accuracy and fast dynamics
▶ Speed measurement can be

replaced with speed estimation in
most applications

M

Vector
controller

τM,ref

ωM,ref

Speed
controller

ωM

udc

DC-link voltage is typically measured, but this
measurement will be omitted in the following
block diagrams (or constant udc is assumed)

ia, ib, ic
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State-Space Representation

Principle of Rotor-Flux Orientation

Flux Estimation With the Current Model
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Review: Model in Synchronous Coordinates

▶ Voltage equations

us = Rsis +
dψs

dt
+ jωsψs

uR = RRiR +
dψR

dt
+ jωrψR = 0

▶ Flux linkages

ψs = Lσis +ψR

ψR = LM(is + iR)

▶ Steady state: d/dt = 0

dψR

dt

iR

LM
dψs

dt

Lσ

iM

is
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State-Space Representation

▶ Stator current is and rotor flux ψR are selected as state variables
▶ Derivation: rotor current iR and stator flux ψs are eliminated from the voltage

equations by means of the flux equations

Lσ
dis
dt

= us − (Rs +RR + jωsLσ)is +

(
RR

LM
− jωm

)
ψR

dψR

dt
= RRis −

(
RR

LM
+ jωr

)
ψR

▶ Dynamics of the stator current are governed by current control
▶ Dynamics of the rotor flux are taken into account by rotor-flux orientation

Study the derivation of these equations (see the compendium)
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State-Space Representation

Principle of Rotor-Flux Orientation

Flux Estimation With the Current Model
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Rotor-Flux Dynamics

▶ Fast closed-loop stator-current controller is used
▶ Stator current is the input from the point of view of the rotor-flux dynamics
▶ Rotor equations in synchronous coordinates

dψR

dt
= −RRiR − j (ωs − ωm)︸ ︷︷ ︸

ωr

ψR

ψR = LM(is + iR) ⇒ iR = ψR/LM − is

▶ Rotor current can be eliminated

dψR

dt
= −

(
RR

LM
+ jωr

)
ψR +RRis
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Rotor-Flux Orientation

▶ d-axis of coordinate system is fixed to the rotor flux

ψR = ψRd + jψRq = ψR + j · 0 is = id + jiq

▶ Real and imaginary parts of the rotor-flux dynamics

dψR

dt
= −RR

LM
ψR +RRid (in the steady state ψR = LMid)

0 = −ωrψR +RRiq

▶ Rotor-flux magnitude ψR follows id slowly,

ψR(s) =
LM

1 + Trs
id(s) (in the Laplace domain)

due to the rotor time constant Tr = LM/RR (typically 0.1. . . 1.5 s)
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Rotor-Flux Orientation

▶ d-axis of coordinate system is fixed to the rotor flux

ψR = ψR + j · 0 is = id + jiq

▶ Electromagnetic torque

τM =
3np
2

Im {isψ∗
R} =

3np
2
ψRiq

▶ If ψR is constant, the torque can be controlled using iq (without delays)

The coordinate system could be fixed to the stator fluxψs instead of the rotor flux. This stator-flux orientation would simplify the field weakening,
but other parts of the control system would become more complicated.
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Steady-State Equivalent Circuit in Rotor-Flux Coordinates

is jωsLσ

RR

ωr/ωs
us

Rs

jωsLM jωsψR

jiq

id

is

iR = −jiq

id

jiq

ψR
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Stator Coordinates (αβ)

▶ Vectors are rotating
(in the steady state ϑs = ωst)

▶ Controlling the torque

τM =
3np
2

Im
{
iss
(
ψs

R

)∗}
=

3np
2

(iβψRα − iαψRβ)

would be difficult

α

β

iss

ψs
R

jiβ

ϑs

iα ψRα

jψRβ
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Rotor-Flux Coordinates (dq)

▶ Variables are constant
in the steady state

▶ Torque

τM =
3np
2

Im {isψ∗
R} =

3np
2
ψRiq

easily controllable via iq

α

β

is

ψR

id

d

q

ϑs

jiq
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Rotor-Flux Coordinates (dq)

▶ Variables are constant
in the steady state
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Example Measured Waveforms: 45-kW Induction Motor Drive
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Rotor-Flux-Oriented Vector Control

Current
controller

Flux
estimator

ψR,ref

ϑ̂s

ωM,ref
Current

reference
Speed

controller PWM

dq
abc

ia, ib, ic

dq
abc

is

ωM

np

us,ref
is,ref ua,ref , ub,ref , uc,refτM,ref

ωm

Fast current-control
loop

Stator coordinatesEstimated rotor-flux coordinates

Rotor-flux angle
is estimated

Calculated
in estimated
rotor-flux coordinates

M
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Space-Vector and Coordinate Transformations

▶ Space-vector transformation (abc/αβ)

iss =
2

3

(
ia + ibe

j2π/3 + ice
j4π/3

)
▶ Transformation to rotor flux coordinates

(αβ/dq)
is = i

s
se

−jϑ̂s

▶ Combination of these two transformations is
often referred to as an abc/dq transformation

▶ Similarly, the inverse transformation is
referred to as a dq/abc transformation

Space-vector

iss

αβ

abc

dq

αβ is

ia

ib

ic

ϑ̂s

is

transformation
Coordinate

transformation

dq

abc
ia

ib

ic

ϑ̂s
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Current References

1. Flux-producing current reference

id,ref =
ψR,ref

L̂M

(where the hat refers to estimates)

▶ Integral term based on umax − |us,ref | can be used for field weakening
▶ If fast torque dynamics are not required, the flux level can be optimized

according to the load1

2. Torque-producing current reference

iq,ref =
2τM,ref

3npψR,ref

▶ Flux reference ψR,ref is often replaced with the estimate ψ̂R

1Qu, Ranta, Hinkkanen, et al., “Loss-minimizing flux level control of induction motor drives,” IEEE Trans. Ind. Appl., 2012.
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State-Space Representation

Principle of Rotor-Flux Orientation

Flux Estimation With the Current Model
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Current-Model Flux Estimator in Stator Coordinates
▶ Current model is based on the rotor voltage equation

dψ̂
s

R

dt
= −

(
R̂R

L̂M

− jωm

)
ψ̂

s

R + R̂Ri
s
s

▶ Corresponding forward Euler approximation

ψ̂
s

R(k + 1) = ψ̂
s

R(k) + Ts

{
−

[
R̂R

L̂M

− jωm(k)

]
ψ̂

s

R(k) + R̂Ri
s
s(k)

}

where Ts is the sampling period and k is the discrete-time index
▶ At each time step, the angle of the flux estimate ψ̂

s

R = ψ̂Rα + jψ̂Rβ is

ϑ̂s = atan2
(
ψ̂Rβ, ψ̂Rα

)
In practice, the forward Euler approximation should not be used in stator coordinates due to its poor accuracy and limited stability
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Current Model in Estimated Rotor Flux Coordinates

M

Current
controller

Flux
estimator

ψR,ref

ϑ̂s

ωM,ref

Current
reference

Speed
controller PWM

dq
abc

ia, ib, ic

dq
abc

is

ωM

us,ref
is,refτM,ref

ωm
np

▶ Signals fed to the flux estimator are DC in the steady state
▶ Discrete-time implementation becomes easier
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Current-Model Flux Estimator in Estimated Flux Coordinates

dψ̂R

dt
= −

(
R̂R

L̂M

+ jω̂r

)
ψ̂R + R̂Ris ψ̂R = ψ̂R + j · 0

▶ Real and imaginary parts in estimated flux coordinates

dψ̂R

dt
= − R̂R

L̂M

ψ̂R + R̂Rid ω̂r =
R̂Riq

ψ̂R

▶ Flux-angle estimation

ϑ̂s =

∫
ω̂sdt =

∫
(ωm + ω̂r)dt
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Indirect Field Orientation (IFO)

M

Current
controller

Flux
estimator

ψR,ref

ϑ̂s

ωM,ref
Current

reference
Speed

controller PWM

dq
abc

ia, ib, ic

dq
abc

is

ωM

us,ref

is,ref

τM,ref

ωm
np

▶ Current reference is used as an input of the flux estimator
▶ Flux estimator is also simplified (see the following slide)
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IFO

▶ Flux-magnitude dynamics are omitted in the slip relation

ω̂r =
RRiq,ref
ψR,ref

▶ Flux-angle estimation

ϑ̂s =

∫
(ωm + ω̂r)dt

▶ Poor performance if the flux reference ψR,ref is not constant
or if the current controller does not work as intended
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Properties of the Current Model and IFO

Disadvantages:
▶ Rotor speed measurement is needed
▶ Converges slowly (with the rotor time constant), which can be a problem if the

flux reference ψR,ref is varied
▶ Inaccurate model parameters R̂R and L̂M cause errors in field orientation

⇒ degraded control performance

Advantages:
▶ Simplicity
▶ Robustness
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Reasons for Parameter Detuning: Actual Motor Parameters Vary

▶ Inductances depend on the magnetic state2

▶ Stator inductance increases as the flux decreases in the field-weakening region
▶ Torque may also affect the inductances

▶ Resistances depend on
▶ Temperature (about 0.4%/K)
▶ Frequency due to the skin effect

(especially the resistances of the rotor bars)
▶ Some phenomena are omitted in the model but exist in the actual machine

(e.g. core losses, deep-bar effect)
▶ Identification of the motor parameters is never perfect

2Mölsä, Saarakkala, Hinkkanen, et al., “A dynamic model for saturated induction machines with closed rotor slots and deep bars,” IEEE Trans.
Energy Convers., 2020.
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Magnetic Saturation: 2.2-kW Motor as an Example
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ψs (p.u.) Ls (p.u.)

iM (p.u.) ψs (p.u.)

Rated operating point ψs = ψsN

Field weakening at ψs = 0.5ψsN

No-load saturation characteristics Corresponding stator inductance

▶ Stator inductance Ls = Lσ + LM depends on the stator-flux magnitude ψs

▶ Effect should be taken into account in control, if field weakening is used
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Summary: Rotor-Flux Orientation

▶ Decoupled control of the flux and the torque, as in the DC machines
▶ d-axis of the coordinate system is fixed to the rotor flux vector

(or its estimate in practice)
▶ Rotor-flux magnitude is controlled using the d-component of the stator current
▶ Torque is controlled using the q-component of the current

▶ Sensitivity to the parameter errors can be reduced by using more advanced
flux observers

▶ Similar control structure can also be used in sensorless methods
(with a suitable flux observer)
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