
 CS-A1160 • Beginner’s Python for Engineers

Description of Course Project

The course project accounts for 50% of the total course grade. It will be done in groups of 3–4

students. You will be given the chance to select your own groups on MyCourses.

In the course project, you will use the tools covered in the lectures to analyze data. The project will

be handed in as a Python Jupyter notebook (IPYNB-file) that includes all of the code used and a

detailed written report of the analysis (as Markdown cells). The code (programming component)

and the reporting (project report) will be graded separately, but they should be freely interspersed

in the notebook.

 The data you use must come in two separate parts (from different sources):

1. A base dataset (larger) as a CSV or Excel file

2. Some additional data (smaller) either manually written in the code or as a file

Your task is to combine these two groups of semi-related data into a single whole and analyze

their relationship. The combining must be done as part of the code in your notebook (i.e. the

additional data should not be in your base dataset file, it should come from an entirely different

source).

You can find the base dataset yourself OR choose one of the predefined datasets (see below).

You must find the additional data yourself. The selected data and a short topic plan must be sent

in for approval prior to working on the project (a submission box will be in MyCourses on the

Course Project -section).

Once your topic plan is approved, your group can get started on the Project Notebook, which is the

main focus of the course project. Once the Notebook is submitted, all groups will give short

presentations during one of the course lectures. In addition, students must individually conduct a

short peer review of a different group’s project (Notebook and presentation).

 Grading

 The project will be primarily graded via a checklist that is provided to you in advance (see below),

and secondarily based on the overall quality of analysis and reporting. This means that your

overall grade may be reduced, even if the submission superficially meets the requirements of the

checklist. The bullet points in the checklist correspond to project requirements, and the final grade

will be based on the percentage of these requirements met. Note that requirements can also be

 CS-A1160 • Beginner’s Python for Engineers

met only partially, in which case a fraction of the point can be given. After the Project Notebook is

submitted and your group has done its presentation, your task is to peer-review the project of

another group (using the checklist).

 Submissions

 Topic plan:

Prior to working on the Python Jupyter notebook, your group should send a short topic plan

for approval. The topic plan should cover the following: (1) what specific base dataset and

additional data is used (with links), (2) what is the (presumed) connection between the

base dataset and the additional data and (3) what kinds of visualizations will you expect to

use as part of your analysis. You should carefully read through the “requirements for data”

and the overall project, so that you understand what kinds of data to choose. As long as it

answers the above three questions, the topic plan needs to be only about 100 words long.

 Project notebook:

This is the bulk of the project workload, and your group can start working on it as soon as

their topic plan is approved. The project notebook is submitted as a Python Jupyter notebook

file (IPYNB-file), and it should include snippets of code interspersed with a written report of

the analysis. All data processing and calculations should be in the notebook itself (prior

processing of the data before loading it into the notebook is not allowed). The full

requirements of the project notebook are listed in the grading checklist. An easy way to work

on a Jupyter notebook together is to use the Google Colaboratory , but other methods

(such as Git) are allowed, as well.

The notebook should roughly follow the outline of (1) loading the data, (2) cleaning the

data prior to combination (e.g. removing rows with null values), (3) combining the data, (4)

analyzing the data and (5) visualizing and reporting the results. The (relatively simple)

analysis should include both calculations of basic statistical properties (mean, standard

deviation, etc.) and appropriate visualizations of the data (e.g. line charts, histograms,

scatter plots with regression, etc.). It is crucial that your visualizations fit the relationship you

are analyzing; for example, for time series data, a line chart is generally more appropriate

than a pie chart.

 Project presentation:

 All groups will give a short (approx. 5 minutes) presentation on their project during one of

the course lectures (see schedule). The presentation also affects the group’s grade, and it

should roughly follow along with the project report (i.e. the written portion of the notebook).

The presentation’s requirements are outlined in the checklist, alongside the requirements

of the report. A good way to transform your notebook into visual presentation material (

slideshow) is to use the Jupyter notebook extension RISE . RISE has not been tested on

 Google Colab, so to implement it, you may need to download and run the notebook locally.

https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://rise.readthedocs.io/en/stable/
https://rise.readthedocs.io/en/stable/
https://rise.readthedocs.io/en/stable/

 CS-A1160 • Beginner’s Python for Engineers

 Peer reviews (individual work):

 After projects are submitted, students must individually peer-review the project of one

other group (using the checklist). Students will be randomly sent the notebook of another

group, and each student must fill out a MyCourses form and check off all of the

requirements that the other group’s project met. If a requirement was met only partially,

fractional points (between 0 and 1) can also be granted.

Schedule (subject to change)

06.03.2023: Deadline for selecting groups

13.03.2023: Deadline for sending dataset & topic plan to course staff for approval

03.04.2023: Deadline for submitting the project notebook. Projects submitted up to 5 days late will

have their grade reduced by 1. Anything later than this will result in failing the course.

04.04.2023: Short presentations of course projects (during course lecture)

13.04.2023: Deadline for peer reviews

 Predefined base datasets (optional)

The following are two optional datasets to use as your project’s “base dataset” (if you don’t want to

find one yourself). Note that these datasets are panel data, i.e. they contain both cross-sectional

(different countries) and time series (different times) data. Keep this in mind when analysing them.

1. Predefined option #1: ECDC COVID-19 data

Weekly 14-day notification rates (i.e. running averages) of cases and deaths by country

Link: https://opendata.ecdc.europa.eu/covid19/nationalcasedeath/

2. Predefined option #2: Berkeley Earth climate data

Monthly land temperatures by country

Link: https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-

data?select=GlobalLandTemperaturesByCountry.csv

https://opendata.ecdc.europa.eu/covid19/nationalcasedeath/
https://opendata.ecdc.europa.eu/covid19/nationalcasedeath/
https://opendata.ecdc.europa.eu/covid19/nationalcasedeath/
https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data?select=GlobalLandTemperaturesByCountry.csv
https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data?select=GlobalLandTemperaturesByCountry.csv
https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data?select=GlobalLandTemperaturesByCountry.csv
https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data?select=GlobalLandTemperaturesByCountry.csv
https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data?select=GlobalLandTemperaturesByCountry.csv

 CS-A1160 • Beginner’s Python for Engineers

Requirements for data

All of the following requirements must be met for a passing grade; topic plans that do not meet

these requirements will not be approved. Kaggle is a good source for CC-licensed datasets.

 Requirements for the base dataset:

 ○ Dataset is legally available online, for free, from a trustworthy organization

 ■ e.g. Creative Commons licensed data

 ○ Dataset is available as a CSV or Excel file

 ○ Dataset has a minimum of 50 non-null rows (ideally much more)

 ○ Dataset has at least two meaningful columns, at least one of which is quantitative ■

i.e. dataset is (at least) two-dimensional

 ○ Dataset is properly cited in the report using an Aalto-approved reference style

 Requirements for the additional data:

 ○ Additional data is able to be merged together with the base dataset:

 ■ The additional data shares key values with the base dataset (e.g. country names)

 ■ There exists a plausible relationship between the (quantitative or qualitative)

information in the additional data and the quantitative information in the dataset

 ○ Additional data does not need to be from a CSV file, but can be. It can also be manually

written in the code (as a list/dataframe/dictionary/etc.).

 ○ In general, the additional data does not need to be taken as seriously as the base dataset.

The additional data can be gathered from less-serious sources like news articles, blog

posts, etc. Still, you are not allowed to simply make up the additional data.

 Steps to get started (once in groups)

1. Find a dataset that meets the requirements (or select one of the predefined ones).

2. Find additional data that can be meaningfully merged with the base dataset (the additional

data can be quite simple). Note that the additional data also has some requirements.

3. Write a short topic plan: What are the sources of data (include links), how might they be

connected, and what visualizations will you use? Topic plans should be sent to course staff

for approval (see schedule).

4. Create a Jupyter notebook that you can edit together. This is easiest to do with the Google

Colaboratory, but it can also be accomplished via Git or other means.

5. Import the needed libraries and read the base dataset into the notebook.

6. Combine the additional data and the dataset within the notebook.

7. Clean the data with the notebook.

8. Calculate basic statistical properties and create appropriate visualizations of your data in

the notebook.

9. Add written descriptions, clarifications, and other required project report content into the

notebook as Markdown (not Python code) cells.

10. Prepare a short presentation from the finished notebook. The Jupyter extension RISE is a

good way to do this, but it has not been tested for Google Colab (only for local Jupyter

notebooks).

https://www.kaggle.com/datasets?license=cc
https://www.kaggle.com/datasets?license=cc
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/

 CS-A1160 • Beginner’s Python for Engineers

Getting started with Jupyter Notebooks

Jupyter Notebook files are documents created in the Jupyter Notebook App. They contain both

code (in this case Python) and formatted text elements (Markdown) divided into cells that can

be run independently. The Jupyter Notebook App runs through a web browser interface, and it

can either be launched locally or accessed through the internet. You can run the app locally by

downloading and running Jupyter in the Anaconda Distribution . You can also write Jupyter

Notebooks online, through the Aalto JupyterHub or through the Google Colaboratory . Google

Colab can be useful for the course project, as it allows for the shared editing of Notebook files

(similar to how sharing works on Google Docs).

When editing your Notebook, you have two modes: Edit mode (accessed by pressing Enter with a

cell selected) and Command mode (accessed by pressing Esc with a cell selected). Edit mode is

for changing the contents of the cell, while Command mode is used for keyboard shortcuts. The

full list of commands can be found through Help → Keyboard shortcuts (Esc+H) on a local

notebook, [Left menu] → Commands (Ctrl+Shift+C) on the Aalto JupyterHub or Tools →

Command palette (Ctrl+Shift+P) on Google Colab.

 The Notebook cells can be run independently (Ctrl+Enter), so bear in mind that this affects the

order in which changes in cells take effect. To run all of the cells in order, an option named Run all

can be found from the top drop-down menu (the exact location varies by platform).

 Here is a full guide for getting started with Jupyter Notebooks .

 Here is a guide for formatting your text cells with Markdown . Note that the text cells must be “run”

(Ctrl+Enter) in order for the formatting to show.

 Project Checklist:

 Programming component (10 points):

 Basic requirements (1 point):

 ○ The code is easy to comprehend and meets all of the following requirements:

 ■ The program is clearly structured.

 ■ The program’s variables are named clearly, concisely and meaningfully.

 ■ The program includes a sufficient amount of explanation both using Python

comments and Markdown.

 Reading base dataset (1 point):

 ○ The program reads its unmodified base dataset from CSV/XLS file(s) and meaningfully

utilizes Numpy and Pandas to convert the data into a usable form.

 ■ Additional data can be provided as part of the code or read from another file.

 Combining and cleaning data (2 points):

 ○ The program inserts the additional data into the base dataset (Pandas DataFrame) as

new columns.

 ■ e.g. for Climate data by country, a “latitude” column could be inserted

 ○ The program drops any irrelevant columns and incomplete/null data points prior to

analysis, if applicable. If the data is already sufficiently clean, its scope should be

otherwise narrowed down to a smaller subset of rows.

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://jupyter.cs.aalto.fi/
https://jupyter.cs.aalto.fi/
https://jupyter.cs.aalto.fi/
https://jupyter.cs.aalto.fi/
https://colab.research.google.com/
https://colab.research.google.com/
https://colab.research.google.com/
https://jupyter-notebook.readthedocs.io/en/stable/
https://jupyter-notebook.readthedocs.io/en/stable/
https://jupyter-notebook.readthedocs.io/en/stable/
https://jupyter-notebook.readthedocs.io/en/stable/
https://www.markdownguide.org/basic-syntax/
https://www.markdownguide.org/basic-syntax/

 CS-A1160 • Beginner’s Python for Engineers

 Calculations (2 points):

 ○ The program calculates and presents some of the basic statistical properties of the

combined data, including mean and standard deviation values (where relevant).

 ■ These statistical properties should not be simply taken from the data without

thought; they should be values that are relevant to the wider analysis.

 ○ The program follows all logical conventions of statistics and processes data correctly. ■

e.g. combining the percentage rates (of some metric) for two differently-sized

groups is not done by directly summing or averaging these two percentage rates →

because these two groups are of different size, the resulting combined rate should

be a weighted average.

 Results & presentation (4 points):

 ○ Data presentation is clear and concise, meeting all of the following requirements:

 ■ Visualizations/chart(s) with multiple data series have labels on those data series (

using a legend, for example).

 ■ All visualizations/chart(s) have descriptive axis labels.

 ■ All visualizations/chart(s) have appropriate x and y axis tick label values. (See

screenshots for examples).

 ■ None of the visualizations/chart(s) have overlapping or unreadable text.

 ○ Visualization/chart type is always appropriate to the data.

 ■ e.g. a line chart for time series data (and not a bar chart, for example)

 ○ The program creates at least three visualizations to explain different aspects of the

analyzed relationship.

 ○ The program uses at least two different kinds of visualizations (all visualizations cannot be

the same chart type).

 Project report and presentation (10 points):

 Prerequisites (2 points):

 ○ The report meets all of the following basic requirements:

 ■ The report is interspersed with the code using the Jupyter notebook Markdown.

 ■ The report follows a logical structure, such as by following along with the code

cells and giving conclusions at the end.

 ■ The report does not have a significant amount of spelling or grammar errors.

 ○ The presentation meets all of the following basic requirements:

 ■ The presentation is roughly 5 minutes long.

 ■ The presentation has a visual component that supplements the verbal

explanation (e.g. Powerpoint or RISE slideshow).

 Meta-information (1 point):

 ○ The report and the presentation clearly outline the responsibilities of and tasks done by

each group member.

 Description of data (1 point):

 ○ The report and the presentation describe the nature of the used data and define the

relevant columns. All of the following information is given:

 ■ What are the columns used in analysis, and what type of data do they contain?

 ■ How does the data need to be cleaned for analysis (if at all)? If no cleaning is

needed, how will you narrow down the range of rows analysed?

 CS-A1160 • Beginner’s Python for Engineers

 Description of functions and charts (2 points):

 ○ For each function and chart used, the report and the presentation explain why the group

chose to use them specifically (and not a function or chart of another type).

 ■ e.g. for a line graph, why did the group choose a line graph over a scatter plot?

 ○ For each chart, the report and the presentation state the trend/relationship or other

information that can be directly gleaned from it.

 Conclusions (3 points):

 ○ The report and the presentation describe at least three clear and accurate findings from

the analysis. At least one of these findings describes the relationship between the

additional data and the relevant base dataset data.

 ○ The report and the presentation suggest some possible reasons as to why the

relationship(s) exist (or do not exist) in the data.

 ○ The report and the presentation reflect on what things the group member(s) learned as a

result of this project (what was learned from the data and what was learned in terms of

programming).

 Sources (see the Aalto guidelines for academic sourcing) (1 points):

 ○ The report properly sources the data, libraries and other outside information used in the

project.

 Bonus points (max 1 bonus point):

 Data processing (1 point):

 ○ To simplify the program (as a substitute for a self-made function, for instance), the

program meaningfully utilizes an additional library that is not covered by the course.

 Example data visualizations

 Finally, here are some more examples of the kinds of visualizations you can create when doing

this project. In this case, the base dataset was Weekly COVID-19 Cases by Country (predefined

option #1) and the additional data was the amount of cheek kisses* that are traditionally given on

greeting in various countries. After some initial processing, a column “kiss_count” was inserted

into the DataFrame, with values based on the given row’s “country” value. These kiss counts were

then used to group data together and create the following plots.

 CS-A1160 • Beginner’s Python for Engineers

 Visualization #1: Cumulative line chart (both globally and filtered to European countries)

 Visualization #2: Bar chart (both globally and filtered to European countries)

 * Note: the creator of these charts is not seriously implying that the number of traditional cheek kisses on

greeting is a significant factor in COVID-19 spread. In reality, these greeting habits are correlated with

actually significant geographical factors, namely that these countries are mostly in Europe and South

America, where COVID-19 spread has been disproportionately large.

 CS-A1160 • Beginner’s Python for Engineers

Examples of common mistakes in data visualizations

 The following are example screenshots of data visualizations (line charts, in this case) used to

demonstrate some common mistakes. Pay attention to these errors when making your own charts.

 As seen below, the x-axis is not in the correct format. The axis label should be changed to

“Number of Days since DD.MM.YYYY” or the tick marks should contain dates.

 Even though the plot below has the appropriate x and y axes, the ticks on the x-axis are

unreadable since the dates are all clogged up/overlapping with each other.

 CS-A1160 • Beginner’s Python for Engineers

 Remember to label your x and y axes and title your plots. The plot below is an example of a plot

without a main title or axis titles.

 Appropriate Plot:

 CS-A1160 • Beginner’s Python for Engineers

 When visualizing/analyzing more than 1 data series on the same plot, it is important to label them.

This can be done using (for example) a legend. The plot below does not indicate what the lines

represent.

 Appropriate Plot:

 Close Price History of AMZN and TSLA

