ELEC-C9430 Electromagnetism (week 1)

Electromagnetic quantities
Vector algebra
Coordinate systems
Vector calculus

Electromagnetic quantities

Current density $\bar{\partial} \frac{A}{m^{2}}$
Charge density $S_{v} \frac{A S}{m^{3}}$
del $\nabla \quad(n a b \mid a)$
differentiation with respect to time

$$
\frac{\partial}{\partial t}
$$

MAXWELL EQUATIONS

$$
\begin{aligned}
& \nabla \times \bar{E}=-\frac{\partial \bar{B}}{\partial t} \\
& \nabla \times \bar{H}=\bar{\partial}+\frac{\partial \bar{D}}{\partial t} \\
& \nabla \cdot \bar{D}=\rho_{v}
\end{aligned}
$$

$$
\nabla \cdot \bar{B}=0
$$

Vector algebra
scalar C
vector \quad b

$$
\begin{aligned}
\bar{c} & =\bar{a}+\bar{b} \\
\bar{a} & =\bar{c}-\bar{b} \\
& =\bar{c}+(-\bar{b})
\end{aligned}
$$

Multiplication by scalar

$$
\begin{aligned}
& 2 \bar{b}=\bar{c} \\
& (-1) \bar{b}=-\bar{b}
\end{aligned}
$$

Dot product (scalar product)

$$
\bar{b} \cdot \bar{c}=|\bar{b}||\bar{c}| \cos \theta
$$

$$
\bar{b} \cdot \bar{b}=|\bar{b}||\bar{b}| \sim_{\cos 0}^{1}=|\bar{b}|^{2}=b^{2} \quad \Rightarrow \quad|\bar{b}|=\sqrt{\bar{b} \cdot \bar{b}}
$$

Unit vector:

$$
\frac{\bar{b}}{|\bar{b}|}=\bar{a}_{b} \quad \bar{b}=|\bar{b}| \bar{a}_{b}=b \bar{a}_{b}
$$

UNIT VECTOR \bar{a} :

- magnitude 1
- dimensionless, no unit
dot product commutative:

$$
\bar{b} \cdot \bar{c}=\bar{c} \cdot \bar{b}
$$

Cross product (vector product)

$$
\begin{aligned}
\bar{b} \times \bar{c} & =? \\
|\bar{b} \times \bar{c}| & =|\bar{b}||\bar{c}| \sin \theta
\end{aligned}
$$

cross product anticommutative:

$$
\bar{b} \times \bar{c}=-\bar{c} \times \bar{b}
$$

"bac-cab" rule

$$
\bar{a} \times(\bar{b} \times \bar{c})=\bar{b}(\bar{a} \cdot \bar{c})-\bar{c}(\bar{a} \cdot \bar{b})
$$

Decomposition of a vector:

$$
\begin{aligned}
& \bar{c}=\bar{c}_{11}+\bar{c}_{1} \\
& \bar{c}=\alpha \bar{b}+\bar{b}_{\times} \bar{d}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{b} \cdot \bar{c}=\alpha \bar{b} \cdot \bar{b}+\underbrace{\bar{b} \cdot(\bar{b} \times \bar{d})}_{=0} \Rightarrow \alpha=\frac{\bar{b} \cdot \bar{c}}{\bar{b} \cdot \bar{b}} \\
& \bar{b} \times \bar{c}=\underbrace{\alpha \bar{b} \times \bar{b}}_{=0}+\bar{b} \times(\bar{b} \times \bar{d})=\bar{b}(\underbrace{(\bar{b} \cdot \bar{d})}_{=0}-\bar{d}(\bar{b} \cdot \bar{b}) \\
& \bar{d}=\frac{-\bar{b} \times \bar{c}}{\bar{b} \cdot \bar{b}}=\frac{\bar{c} \times \bar{b}}{\bar{b} \cdot \bar{b}}
\end{aligned}
$$

$$
\bar{c}=\frac{(\bar{b} \cdot \bar{c}) \bar{b}+\bar{b} \times(\bar{c} \times \bar{b})}{\bar{b} \cdot \bar{b}}
$$

We know that a vector ha written as
where A is the magnitude

$$
A=|\mathbf{A}|
$$

(1) $d V=d x d y d z$

$$
\begin{array}{r}
d S=\begin{array}{r}
d x d y \\
\\
d y d z \\
d z d x
\end{array}, \quad \square
\end{array}
$$

$$
\bar{f} \cdot \bar{g}=\left(\bar{a}_{x} f_{x}+\bar{a}_{y} f_{y}+\bar{a}_{z} f_{z}\right) \cdot\left(\bar{a}_{x} g_{x}+\bar{a}_{y} g_{y}+\bar{a}_{z} g_{z}\right)=f_{x} g_{x}+f_{y} g_{y}+f_{z} g_{z}
$$

$$
\bar{f} \times \bar{g}=\left|\begin{array}{lll}
\bar{a}_{x} & \bar{a}_{y} & \bar{a}_{z} \\
f_{x} & f_{y} & f_{z} \\
g_{x} & g_{y} & g_{z}
\end{array}\right|=\bar{a}_{x}\left(f_{y} g_{z}-f_{z} g_{y}\right)+\bar{a}_{y}\left(f_{z} g_{x}-f_{x} g_{z}\right)+\bar{a}_{z}\left(f_{x} g_{y}-f_{y} g_{x}\right)
$$

$$
\bar{h}=\bar{a}_{x} \cdot \bar{h}=h_{x} \quad\left(=\bar{a}_{x} \cdot\left(\bar{a}_{x} h_{x}+\bar{a}_{y} h_{y}+a_{z} h_{z}\right)\right)
$$

visualization in two dimensions?

Visualization of a scalar field (two variables)

$$
F(x, y)=\sin \left(x y^{2}\right)+2 \mathrm{e}^{-\left(x^{2}+2 y^{2}\right)}
$$

Cylindrical coordinate system $(r, \phi, z) \bar{a}_{r}, \bar{a}_{\psi}, \bar{a}_{z}$

$$
\begin{aligned}
& d S=r d \phi d r \\
& d V=d z d S=r d r d \phi d z
\end{aligned}
$$

Spherical coordinate system
(R, θ, ϕ)

$$
\begin{array}{ll}
z & \bar{a}_{R} \\
\uparrow & \bar{\lambda}_{1} n_{1}
\end{array}
$$

$$
d V=R^{2} \sin \theta d R d \theta d \phi
$$

Example: mass of the Earth

$$
\begin{aligned}
M=\int_{\text {CONSTANT }}^{\rho} d V & =\underbrace{\rho}_{0} \int_{0}^{b} R^{2} \frac{R^{3}}{3}
\end{aligned} d R \underbrace{\sin \theta d \theta}_{\int_{0}^{\pi}-\cos \theta=2} \underbrace{\pi}_{0} d \phi
$$

Vector calculus

$$
\nabla=\bar{a}_{x} \frac{\partial}{\partial x}+\bar{a}_{y} \frac{\partial}{\partial y}+\bar{a}_{z} \frac{\partial}{\partial z}
$$

Gradient

$$
\nabla f=\bar{a}_{x} \frac{\partial f}{\partial x}+\bar{a}_{y} \frac{\partial f}{\partial y}+\bar{a}_{z} \frac{\partial f}{\partial z}
$$

Independence of coordinate system: Example:

$$
\begin{gathered}
f(\bar{R})=R \\
\nabla f=\bar{a}_{R} \frac{\partial f}{\partial R}=\bar{a}_{R} \frac{\partial R}{\partial R}=a_{R} \\
\nabla f=\bar{a}_{x} \frac{\partial}{\partial x} \sqrt{x^{2}+y^{2}+z^{2}}+\bar{a}_{y} \cdots \\
\\
=\bar{a}_{x} \frac{\frac{1}{2} 2 x}{\sqrt{2}}+\cdots
\end{gathered}
$$

$$
\begin{aligned}
& \text { Spherical coordinates } \\
& \left.\nabla f=\overline{\mathrm{a}}_{R} \frac{\partial}{\partial R} f\right) \overline{\mathrm{a}}_{\theta} \frac{1}{R} \frac{\partial}{\partial \theta} f+\overline{\mathrm{a}}_{\phi} \frac{1}{R \sin \theta} \frac{\partial}{\partial \phi} f \\
& \nabla \times \bar{f}=\frac{1}{R^{2} \sin \theta}\left|\begin{array}{ccc}
\overline{\mathrm{a}}_{R} & R \overline{\mathrm{a}}_{\theta} & R \sin \theta \overline{\mathrm{a}}_{\phi} \\
\frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\
f_{R} & R f_{\theta} & R \sin \theta f_{\phi}
\end{array}\right| \\
& \nabla \cdot \bar{f}=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} f_{R}\right)+\frac{1}{R \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta f_{\theta}\right)+\frac{1}{R \sin \theta} \frac{\partial}{\partial \phi} f_{\phi} \\
& \nabla^{2} f=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial f}{\partial R}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}}
\end{aligned}
$$

$$
=\bar{a}_{x} \frac{x}{R}+\bar{a}_{y} \frac{y}{R}+\bar{a}_{z} \frac{z}{R}=\frac{x \bar{a}_{x}+y \bar{a}_{y}+z \bar{a}_{z}}{R}=\frac{\bar{R}}{R}=\bar{a}_{R}
$$

Divergence

$$
\begin{gathered}
\nabla \cdot \bar{G}=\frac{\partial}{\partial x} G_{x}+\frac{\partial}{\partial y} G_{y}+\frac{\partial}{\partial z} G_{z} \\
\bar{G}=\bar{a}_{x} G_{x}(x) \\
\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \\
\rightarrow \rightarrow \rightarrow G_{x} \\
\frac{\partial G_{x}}{\partial x}>0
\end{gathered}
$$

$$
\stackrel{4}{4} \underset{4}{4}
$$

Curl

$$
\nabla \times \bar{F}=\left|\begin{array}{ccc}
\bar{a}_{x} & \overline{a_{y}} & \bar{a}_{z} \\
\partial / \partial x & \partial h_{y} & \partial \partial_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=\bar{a}_{x}\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right)+\overline{a_{y}} \ldots
$$

$$
\frac{\partial F_{y}}{\partial x}>0
$$

INTEGRAL THEOREMS

$$
\int_{a}^{b} h^{\prime}(x) d x=h(b)-h(a)
$$

a

Divergence theorem

$$
\int_{V} \nabla \cdot \bar{D} d V=\oint_{S} \bar{D} \cdot d \bar{S}
$$

Stokes's theorem

Gradient theorem

Null identities

$$
\begin{aligned}
& \int_{V} V \cdot(\nabla x E) d V \\
& =\oint_{S} \nabla \times \bar{E} \cdot d \bar{S} \\
& =\oint_{c} \bar{E} \cdot d \vec{C}=0 \\
& \int \nabla_{x}(\nabla g) \cdot d \bar{s} \\
& \Rightarrow \nabla \cdot(\nabla \times \bar{E})=0
\end{aligned}
$$

$$
\begin{aligned}
& \int_{S} \nabla_{x}(\nabla g) \cdot d \bar{S} \\
& =\oint_{C} \nabla g \cdot d \bar{l} \\
& =g(B)-g(A)^{\mu B}=0
\end{aligned}
$$

