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I. INTRODUCTION

The electromagnetic spectrum as seen by a quantum engineer:
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FIG. 1.

e Why don’t lumped circuit models work at high frequencies?

The speed of light ¢ is large but finite.

Load VL 4
resistor

® RZ

FIG. 2.

The delay time t; = é becomes non-negligible if A ~ ¢ ~ cm, as frequency ~ GHz. In
other words, in order to apply the lumped circuit models we need to ensure that t; < T (T

is the period of the electromagnetic field), or [ < A (X is the wavelength).



II. SOME BASIC CONCEPTS - ELECTRICAL CIRCUITS

e FElectric current

_dQ _
I = Q= [, Idt

“dt

By convention, the direction of current is the direction of the motion of positive charges.

e Work done by an electric field
Wba =q fab E . dZ

E
/ b
N/
e Voltage
V=V =V Vo= — e — — [ all
b

A

a FE

Wy, = work done to transport the charge ¢ against the field.
W = —W,, = work done by the field.

e.g. Capacitor

e Magnetic flux

Node flux: ¢(t) = [*_drV(r), .. V()= Lo(t).



Plate with higher electric potential

Power
W(t) = fot P(r)dr

P(t) = 5" = T = VO - 10

Therefore, W (t) = [, V(1) - I(7)dr.

Phasors

Useful concept if:

The circuit is linear

— all independent sources are sinusoidal

only steady-state response is desired.

X(t) = Acos (wt + ¢) = Re(Aei?et)

X = Ae' = phasor = transformation of a sine waveform from time-domain to fre-

quency domain.

Why is it useful? Simple rules:

variable

phasor

Aet®

iw - Ae'®

e Impedance and admittance

Z =V/I with V and I phasors.

Aet?
W




Z = impedance
Z = R+1X { R = resistance units: € (Ohm) (1)

X = reactance

Y = admittance
1 .
Y = 7= G +iB § G = conductance units: S (Siemens) (2)
B = susceptance

e AC power and decibels
Suppose V (t) = Vj cos (wt + ¢y) = Re[Vpeve™!]  phasor: Voelpy =V
I(t) = Iycos (wt + ¢7) = Re[lpe'® e™!]  phasor: [e'®r = I.

Instantaneous power: P(t) = V(t)-I(t) = %IOVO cos (¢y — ¢I)+%IOVO cos (2wt + ¢y + ér)

Average power: P = %fOT P(t)dt = 11, V; cos (v — ¢)
P= %Re[v - 7]
Root mean square of a periodic signal:

I(t) = Iycoswt — 2 == foT 2(t)dt = g’ where we have used cos? wi — 1+cc;32wt.

1
™ ms T

Therefore,
Iy
[rms = = 3
NG (3)
The decibel:
Power in decibels: N(dB) = 10log,, %, where P = power and P,..; = a reference
power, usually 1 mW.

If P.ey =1 mW, then N(dBm) = 10log;, 1. Note that the units are “dBm”.

\%

Since P o< V%, we have 20 log,, Vs

(in dBV), as another way to express this.

Examples:

30 dB is an increase in power by 1000

20 dB is an increase in power by 100
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10 dB is an increase in power by 10
3 dB is an increase in power by 2
0 dB is an increase in power by 1
-3 dB is a decrease in power by 2

-10 dB is a decrease in power by 10

- etc.

III. CIRCUIT ELEMENTS

Note: An rf-circuit can be constructed from discrete (lumped) elements if the size of each

component < wavelength of the rf field.

e Resistor
Typically a film of conductive material evaporated on a chip.
V=V-V,= —fbaﬁ-dZ: f:gda where we have used E = —VV and J =& - E
(Ohm’s law), where ¢ = conductivity.
If the frequency is not too high, then J is uniform over the cross-section S of the

resistor, i.e. j = f/S

_|_

A
/N “
V a

S

Therefore, V =1 [ Ldl = IR, where R = X ["dl,  [’dl = ¢ = length of device.
R = % f: dl — R = p%, where p = % = resistivity,

&V =1IR.

G = % = conductance, where R = resistance, & Z(w) = R — real and frequency-

independent.

- Instantaneous dissipated power:

Pt)=V(t)-I(t)=R-I*(t)= G- V2(1).
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- Average dissipated power (for harmonic excitations: V' (t) = Vj coswt):
P = 1R|I]* = 5G|V *.

)

e Inductor

V=Vy=Vo-Vi=— [TE.-dl = [[ 05 = 4

where we have used the Maxwell-Faraday equation VxE= —%’? + Stoke’s theorem.

+ a
V 4 é%S
_ b

Here we assumed B is uniform over the surface area S.

From Ampere’s law for a solenoid we have B = %ﬁm — and there are N surfaces of
area S, where N = no. of turns of the solenoid, py = free-space magnetic permeability,

(- = relative permeability.

2
p= RS ()
l
SO
dl
V=L— D
= (5)
therefore
Zp(w) = iLw;, (6)
because Zp(w) = %
- Instantaneous energy stored:
Lo
Wi(t) = SLI(0) (7)

- Average energy stored in AC-harmonic fields:

1
W, = ZLfg : (8)



Note: The flux variable ¢ = [ B - dS can be used to define a flux at a mode with
potential V,

since V(t) = %&t).

e Capacitor

a—» — Q
- _ E. . dt == 1
V /b dr¢ C (10)

where C' = capacitance and C' = %

€p = free-space electric permittivity and €, = relative permittivity.

_|_

v El__& ]
M

\S

Proof: From Gauss’s law applied to the electric field between infinite plates

egersS *

dVv(t)
It)y=C-——= 11
=c = (1)
SO
av
I=C— 12
o (12
therefore
1
Zo(w) = Pal (13)
Again from Zg(w) = % and using the properties of phasors.
- Instantaneous energy stored:
L
We(t) = §CV (t) . (14)



- Average energy stored in AC-harmonic fields:

1

IV. MORE COMPLEX NETWORKS OF INDUCTORS, CAPACITORS, RESIS-
TORS - --

Kirchhoft’s voltage and current laws:

e Kirchoft’s voltage law
For any closed loop of a circuit, the algebraic sum of voltages of the individual branches

is zero, i.e.,
> Vi=0. (16)

How it works:

b c d a
—/E-dﬁ—/ﬁ-dé—/ E-dé—/ E-dl =0, (17)
a b c d

V., — RI(t) — dfi—(tt)_%/ drl(t)=0. (18)

or

-0
e Kirchhoff’s current law

The algebraic sum of all branch currents confluent in the same node is zero.

> L=0. (19)
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How it works:

L+L+13=0, (20)

i.e., no charge accumulates in the node!

A. Application: impedances in series and in parallel

Z series
« >
—] — —
Z, Z,
Z,
’—
Z,
< >
Z parallel

FIG. 3. Impedances in series and parallel.

The equivalent impedance of two impedances Z; and Z, placed in series is
Zseries = Zl + ZQ-

The equivalent impedance of two impedances Z; and Z, placed in parallel is

— 217y
Zparallel — Z1+Z9°

Convince yourself that this is the case by using Kirchhoff’s laws.
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B. Example: series-shunt circuits

4 .
\

'

FIG. 4. A generic series-shunt circuit

Simple equations for phasors: Vou = Z,fin~ Vin = (Rs + Z) Iin

Vour — _Zp  _ 543 ;
Vo = Wiz, — gamor attenuation
3 3 iQ 1 . Vou — Vou
It is convenient to express this in dB: |32t| (dB) = 20log; | 3 ‘
A few interesting cases:
a) Z, is a capacitor
R NN
S 3B
M
= slope =
= 6 dB/octave
—c &
|

— 1 ; %ut —_ 1
Zp T Vin =~ 14iwCRs*

Vout
Vin

—

(dB) = —101log,,[1 + w?C?*R2].

Works like a low-pass filter with cutoff ~ 1/R,C.

b) Z, is an inductor

— Vout __ 1
Z, = 1wl L = o
w
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3dB---——---——-
— % \:\ slope =
= | 6 dB/octave
=3 3
RJ/L w
2

2
-

¢) Z, is an LC-circuit

Ry

(dB)

Vout
Vin

LE=C

A i“-’L'i(jc _ iwl Vout iwl

P iwLt 25 T 1-w?LC Vin Rs(1-w2LC+iwl) "

wlL
2LC)2+(wL)?

Vout

in

(dB) = 201log;, T
V. RESONATORS BASED ON LUMPED CIRCUIT ELEMENTS

RLC components can be used to realize resonators.

A. RLC-series resonators

V.= Z(w) - I(w)

Z(w):R—i-iLw—i-ﬁ:R—l—%(wQ—wg),
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L C R

Ve %]

Vs

where wg = \/%—C, and at resonance w = wy.

Z(wg) = R = The impedance is real (resistive). The reactive part is zero, meaning
that the inductor and capacitor reactances cancel each other. Due to this, the energy os-
cillates between the capacitor and the inductor and the source has to provide only what is

lost through R.

Indeed
TLIIP?

M?\

(21)

WC — IC|VC|2 1

|_|I|
4

Cw’

so at resonance: w =wy = W = We.

Quality factor

Suppose we put some energy W (0) in the resonator. Due to the resistance R, this will
be dissipated.
W(t) = W(0)e«ot/Q

() = quality factor — it measures how well the resonator stores energy.

dw _ woW
Now —<- = OQ .
P = average loss in a period P = _T OT det where w—’; = T = period, or P =
50% f W (t)dt. But % fo = W = total energy averaged over a period.
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Since i—g =T = period, Q = “¥

P
But
W=We+W, =2 W, ="
(22)
P=R-UE

. _ wol __ 1 L
LR="F =r/e

Loading of the RLC-series resonant circuit:

L C R
_m_l I_ Load

/resistor
200 . R

In this case, Q = (}% + R%@) = loaded Q.

1|2
1 -1 1 -1 & _ (R+Rp)H5
or Q; = Q. +Q , simply because now @), = ol = ol

2
Also, Qert = R%\/g = external Q) & @) = %\/g = internal Q.

B. RLC parallel resonant circuit

I (b —C L R

e if(w?—wi) Y(w)’ (23)



where G = 1/R.

A similar idea: W =We + Wy = V|- C + LL|I,|?, where I}, =

Furthermore, at resonance (w = wo = 1), we have W = 1CV2.

LC

Quality factor

P=iGlV| = Q=" =<l = wRC = =R

Loading of the Parallel RLC Resonator:

=IQ

L3 —=c L R

Iy

1 1 [C
QL= (}—% + R_L> 7= loaded Q
Qext = RLL” % = external Q
Q= %1/% = internal Q

(24)
(25)

(26)

or Q;' = Q.4 + Q! — This relation is the same as for the series RLC resonator.
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