
# Macroeconomic Equilibrium in the Short-Run (Chapter 11) Part II

How interest rates affect GDP? How monetary policy affects the economy?

#### Recap: Short-Run Model



## Summary of Short-Run Model

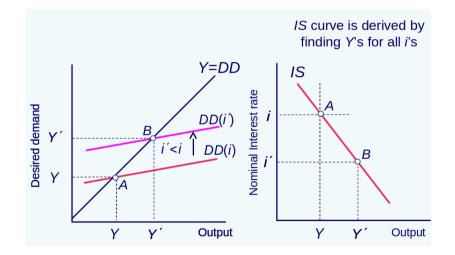
Desired demand DD(Y)

- $\blacktriangleright$  components C, I, G, NX
- the link between real economy and asset & money markets is Tobin's q (recall I(q)); market value of capital/replacement value

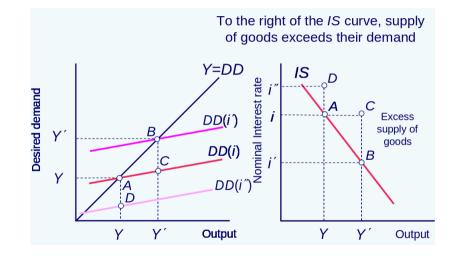
Short-run equilibrium Y = DD(Y)

- supply adjusts to demand
- describes the real-side of the economy

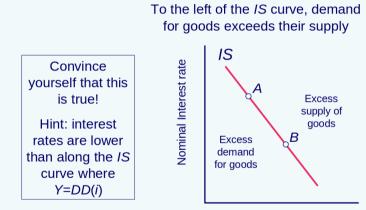
What next: formulating a model with both real and monetary sectors


- monetary sector involves interest rate and money demand
- real sector build upon desired demand

# IS Curve


What happens to the equilibrium output when interest rate i is changed?

- because prices are constant, real interest rate changes as much as nominal interest rate
- Tobin's q is affected; i decreases, q increases (i affects the discount rate of investments, higher the rate the higher the required returns)
- change of q affects investments and hence output
- If i increases, equilibrium Y decreases
  - negative relationship between interest rate and output, described by the IS-curve
- Example, ECB interest rates
  - $\blacktriangleright$  rate on main refinancing operations  $\rightarrow$  Euribor rates  $\rightarrow$  loan rates  $\rightarrow$  investments/savings


### Deriving the IS Curve



#### Deriving the IS Curve



### Deriving the IS Curve



Output

# Example

$$\begin{array}{l} C(Y-T) = a + b(Y-T), \ I(i) = c - di \\ \bullet \ a, c, d > 0, \ b \in (0, 1) \\ \\ \mbox{Desired demand: } DD(Y;i) = a + b(Y-T) + c - di + G \\ \bullet \ \mbox{here } NX = 0 \\ \\ \mbox{Equilibrium: } Y = DD(Y;i) \\ \bullet \ Y = a + b(Y-T) + c - di + G \ \mbox{which yields } Y = (a + c - di - bT + G)/(1 - b) \\ (\mbox{IS-Curve}) \\ \bullet \ \mbox{or } i = [a + (b - 1)Y + c + G]/d \end{array}$$

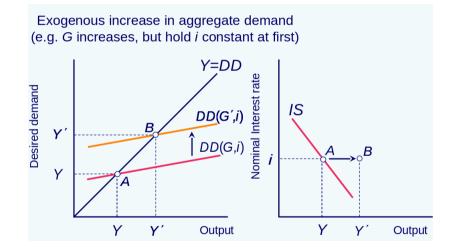
### Why the Name?

- $\mathsf{IS} = \mathsf{investment} \ \mathsf{saving}$ 
  - investment=saving
  - Y = C + I + G + X Z can be written as Y C G + (Z X) = I
  - ▶ adding and subtracting taxes: (Y T C) + (T G) + (Z X) = I reads as "private saving"+"govt saving"+"foreign saving"= investments

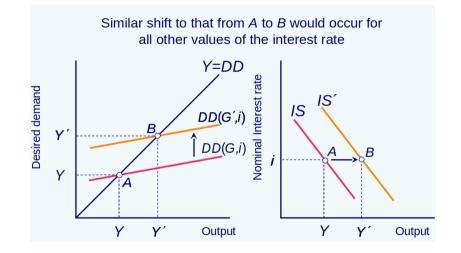
Origins

▶ Harrod, Hicks, Meade 1936 in an effort to summarize Keynes' work

When exogenous variables change, the IS curve shifts


Examples

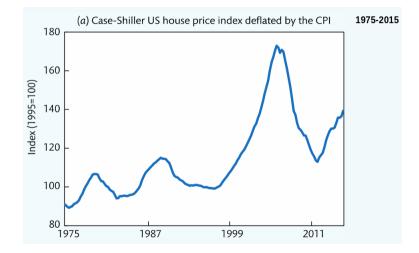
- foreign demand increases, demand increases, short run equilibrium demand is higher for all levels of interest rate
- expectations change (Tobin's q)
- collapse of wealth level (crisis, e.g. housing crisis)


Note:

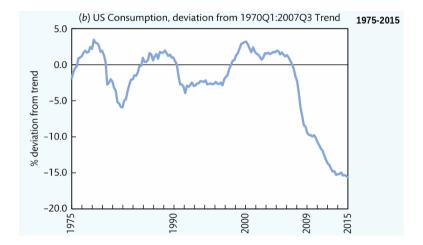
changing the interest rate does NOT shift the curve!

Shifts of the IS Curve




Shifts of the IS Curve




Low interest rates in early 2000's

- excessive borrowing  $\rightarrow$  housing bubble
- when the bubble bursted, prices decreased and lending freezed (wealth shock)
- $\rightarrow\,$  demand decreased
- $\rightarrow~$  IS curve shifted

## Financial Crisis in US



### Financial Crisis in US



### Taylor Rule

Central bank decision rule for setting the interest rate

describes the behavior of a modern central bank

Money markets

- $\blacktriangleright$  in equilibrium money demand equals its supply;  $M=M^d,$  where demand is  $M^d=k(i)\,Y$
- old fashioned alternative to TR curve is the LM (liquidity preference money supply) curve, central bank that does not directly set the rate but controls the rate through money supply

#### Recap on Money Demand

Desired holdings of money = money demand

 $\blacktriangleright$  transaction motive and precautionary motive Real money demand  $L(i,\,Y)$ 

- also known as liquidity preference function
- nominal demand is  $P \cdot L(i, Y)$

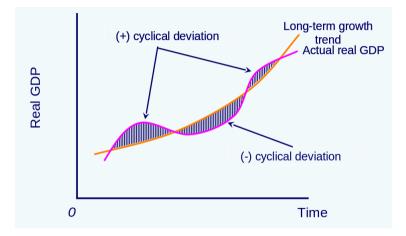
Quantity theory of money: L(i, Y) = Y/V(i)

- V(i) = 1/k(i) is the velocity of money
- higher i, higher velocity (lower demand)

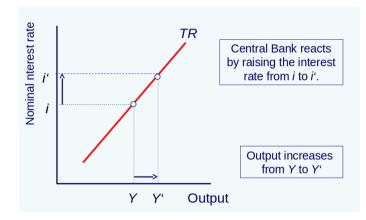
#### Taylor Rule

Interest rate reacts to inflation and output gap

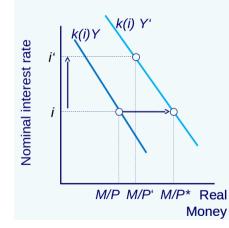
$$i = \bar{i} + a \quad (\pi - \bar{\pi}) \\ \text{inflation gap} + b \left( \frac{Y - \bar{Y}}{\bar{Y}} \right) \\ \text{output gap}$$


*π̄* is the target inflation rate, *a* > 0 weight of the inflation target
*Ȳ* is the trend GDP, *b* > 0 weight of the output gap target

Short-run TR curve


$$i = \overline{i} + b\left(\frac{Y - \overline{Y}}{\overline{Y}}\right)$$

- the objective is stable growth
- there is inflation pressure if  $Y > \bar{Y}$
- $\blacktriangleright$  note: estimating  $\bar{Y}$  can be hard, e.g. affected by productivity


### Output Gap and Cyclical Deviations

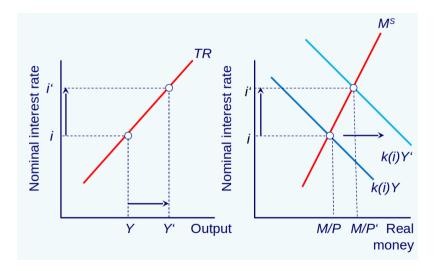


# Taylor Rule

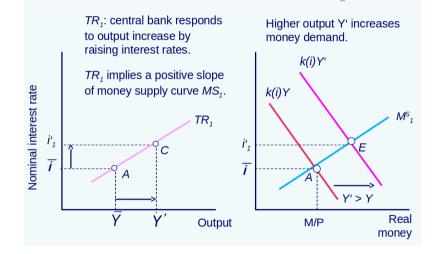


#### Money Market Equilibrium

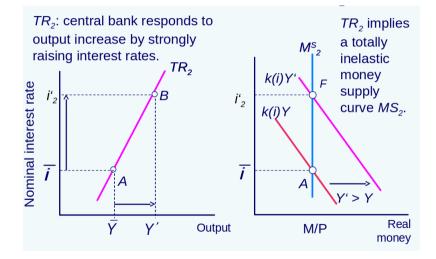



Output increase from *Y* to *Y*' increases money demand from *k*(*i*)*Y* to *k*(*i*)*Y*'

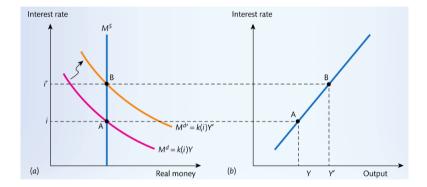
At interest rate *i*, money market equilibrium holds if the central bank supplies (*M*/*P*)\*


The central bank raises the interest rate from *i* to *i*<sup>*t*</sup> in reaction to the output increase

The higher interest rate *i*<sup>'</sup> reduces money demand. Money market equilibrium holds for money supply (*M/P*)<sup>'</sup>


#### Taylor Rule and Money Markets




### Slope of the Taylor Rule



### Slope of the Taylor Rule



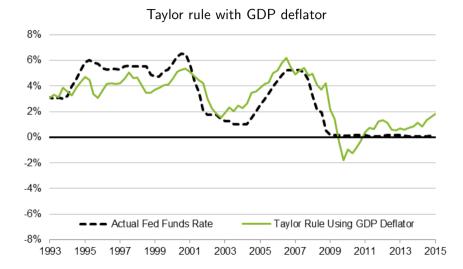
## LM Curve



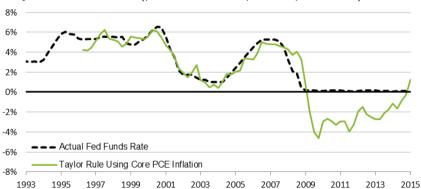
Money demand 
$$M^d/P = Y - 20i$$
,  $P = 2$   
Money supply:  $M^s/P = 600$   
What is the LM curve?

• 
$$Y - 20i = 600$$
, which gives  $i = Y/20 - 30$ 

### Background of Taylor Rule


Debate: policy rules versus discretion

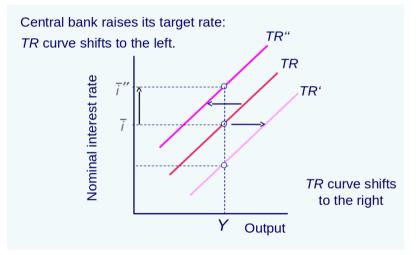
- CB policy should guarantee long-term price stability
- from money targets to inflation targets
- Taylor rule proposed in 1993 by John Taylor


Do CBs follow mechanistic policy rules?

- ▶ in their own words no, but they utilize different policy rules
- policy rules are oversimplifications but for macroeconomic analysis they provide good approximations
- in estimated TR's parameter b is typically about 0.5
- it has been observed that CBs conduct interest rate smoothing

#### FED Funds Rate vs. Taylor Rule

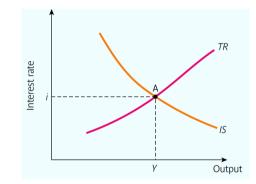



#### FED Funds Rate vs. Taylor Rule

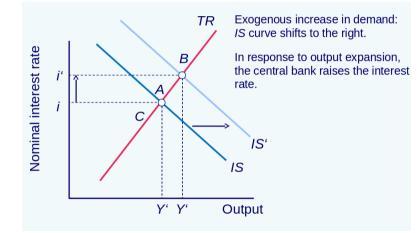


Taylor rule with PCE (personal consumption expenditures) deflator

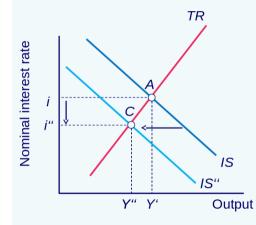
Source: Ben Bernanke's blog post from 2015


#### Shifts of TR Curve




IS-curve: the relationship between the interest rate and output through demand TR-curve: the relationship between interest rate and short run output through monetary policy

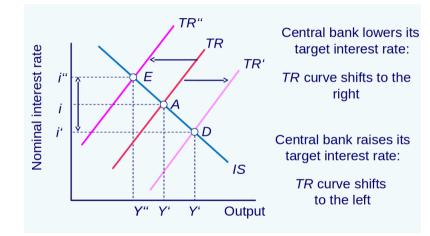
IS-TR-model: describes how changes in monetary policy and demand factors affect output and interest rate in the short-run


# IS-TR Model



## Real (IS) Shocks




# Real (IS) Shocks



Exogenous decrease in demand: *IS* curve shifts to the left.

In response to output contraction, the central bank lowers the interest rate.

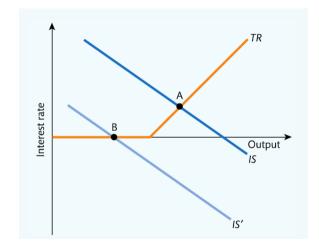
# Monetary Policy (TR) Shocks



#### Monetary Policy and Zero Lower Bound

Interest rates cannot be set (significantly) below zero

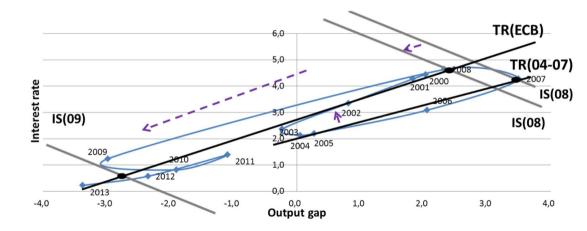
- ▶ when 0 is reached, CB cannot provide stimulus via interest rates (liquidity trap) → quantitative easing (asset purchases programs)
- J. Hicks: "So long as rates of interest are positive, the decision to hold money rather than lend it, or use it to pay off old debts, is apparently an unprofitable one"
- holding cash guarantees zero nominal interest rate


Taylor rule

$$i = \max\left\{ \bar{i} + a \begin{array}{c} (\pi - \bar{\pi}) \\ \text{inflation gap} \end{array} + b \left( \frac{Y - \bar{Y}}{\bar{Y}} \right), 0 \\ \text{output gap} \end{array} \right\}$$

Negative interest rates in Eurozone

since 2014


### Monetary Policy and Zero Lower Bound



### Monetary Policy and Zero Lower Bound



#### Example: IS-TR and Euro Area 2000–2013



#### Example: Finding the Equilibrium

TR curve: i = Y/20 - 30Consumption: C = 120 + 0.5(Y - T)Investment: I = 100 - 10i G = 100 and T = 40IS curve  $\blacktriangleright$  solve Y = 120 + 0.5(Y - 40) + 100 - 10i + 100 to obtain Y = 600 - 20iEquilibrium: i = Y/20 - 30 and Y = 600 - 20i $\blacktriangleright$  Y = 600 - Y + 600 and Y = 600 (and i = 0)

### Questions: Analyzing Macroeconomic Events

Explain the short-run effect of the following events on GDP, how the central bank should response to stabilize output?

- 1. The government offers a temporary investment tax credit: for each euro of investment that firms undertake, they get a credit that reduces the taxes they pay on corporate income.
- 2. A housing bubble bursts, so that housing prices fall by 20% and new home sales drop sharply.
- 3. A resurgence of growth in Japan leads to an unexpected increase in the demand by Japanese consumers for European goods.