MEC-E8003 Beam, plate and shell models, examples 2

1.

Use the definition V2 =V -V to derive the Laplacian operator in the polar coordinate system.
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Given the strain components &,y , &y, &y, and &y, ina Cartesian (x, y) —coordinate system,
derive the strain components &y, €44, &g, and &4 Of the polar (r,¢)— coordinate system (in
terms of the Cartesian components). Use the invariance of tensor quantities.

Answer Err €r¢ _ CO-S¢ Sin¢ Exx ng CF)S¢ _Sin¢
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Calculate Vi, V-r and Vxr inwhich T is the position vector. Use the representations of the
cylindrical coordinate system
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F=10p <€ =16 0p, V=18 o/(rog); and — €5 =1 (zeros otherwise).
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Answer Vi=1,V.r=3, Vxi=0

Use the definition V2=V .Vto derive the Laplacian operator in the cylindrical coordinate
system.
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Answer V?Z= 19 (r3)+i8_+6_
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Derive the expressions of V-0, Vxi, and v2u in the polar coordinate system. Vector
u(r,g) =u.g, +U4E and scalar u(r,¢) depend on the polar coordinates r and ¢. In the polar
coordinate system '
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10.

In the beam coordinate system and planar case, the displacement assumption of a curved
Timoshenko beam model is U=UO+§O><[), where Uy =Uu(S)& +V(S)&,, éozw(s)éb, and
p =né&, . Derive the small strain component expressions &g and &g, = &5 USING

& g €
E:E[VUJr(VU)C], Vzés#iﬂéni, 0 s _l n andi Sl=0.
2 1-n/R s on' s R € on €,

Assume that curvature x =1/R is constant.

R ’ ’ V l
Answer &g =ﬂ(u —wn—ﬁ), Esn = €ns :Er(_ ~y)

Mapping F(r,4,z)=rcosgi +rsing]j+zk defines the cylindrical (r,¢,z)— coordinate system.
Use (in detail) the generic formula
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to find the derivatives of the basis vectors.

Answer iér =€y, i% =—€, (zeros otherwise)
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Derive the gradient expression of the spherical (8, ¢,r)—coordinate system, when the mapping
defining the coordinate system is given by F(6,4,r) = r(sin@cosgi +sin@singj +cosk).

Answer V = 991i+§ 1 0,429
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Compute the derivatives of the basis vectors, gradient operator, and curvature for the cylindrical
shell geometry with the mid-surface representation 7y (¢, z) = R(Cosgi +singj)+ zk in terms of
coordinates (¢,z). Notice that the order of the coordinates differs from that of the lecture notes,
which affects, e.g., direction of &, .
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Consider the mid-surface mapping Tp(r,¢) = r? cos(2¢)i*+r2 sin(2¢)j of shell. Compute the
expression of the basis vector derivatives and gradient operator V. Is the mid-surface defined by
the mapping flat or curved?
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Use the definition V2 =V -V to derive the Laplacian operator in the polar coordinate system.

Solution
Gradient operator and the derivatives of the basis vectors of the polar (r,¢) — coordinate system are
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V=<_ and —<_ = _or.
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According to the definition
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Combining the results for the terms gives
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Given the strain components &y, , &yy, &y, and &y, ina Cartesian (X, y) — coordinate system, derive
the strain components &, £44, &r4, and &4 Of the polar (r,¢) —coordinate system (in terms of the
Cartesian components). Use the invariance of tensor quantities.

Solution

In mechanics tensors (vectors etc.) represent physical quantities which can be expressed in terms of
any basis vector set. Components depend on the selection of the basis vectors but the quantity itself
does not. With notation &, =i and ey = j , the relationship between the Cartesian and polar basis is

€| | cosg sing||€&| &y €| |cosg -sing||€& | ___ &
{%}{—sinqﬁ cos¢H§y}_[F]{§y} < {éy}{sinqﬁ COS¢H§¢}_[F] {%}

and invariance of & with respect to the coordinate system means that

& = ExxBxBy + &y BBy + &y B By + 6\ B By = Er B8, + 61468y + €488 + 544848 .

By substituting €, =cge, —sg€; and €, =s¢e +Cg€; into the representation in the Cartesian
(X, y)—system

&= Ex BBy +Ex By +E\E B +EWEEYy =
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and after collecting the components
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Comparison of the representations gives
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Alternatively, one may work with matrices (a more convenient way for vectors and second order
tensors)

g:{xﬂg“ EWH?X}{?“}T[F]TFXX gxy}[ﬂl{?“}{?yr” %H?}
y gyx gyy ey e¢ gyx gyy e¢ ey 6‘¢r 8¢¢ e¢

Therefore, components of the two systems are related by
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rrr grqﬁ:l:[F]l:gxx Exy}[F]T{co_sqﬁ sin;qrxx gxy:l{CfJS¢ —sin¢] <
Egr Egg Eyx  Eyy —SiNg COSP || £yy &y [ SING  COSY



Calculate Vr, V-r and Vxr in which 7 is the position vector. Use the representations of the
cylindrical coordinate system

T T #
N’ (e] (& (r &| [ oler S [E] [%

F=.0p <€ =16 0p, V=18 ol(rog), and — €5 =1 (zeros otherwise).
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Solution

In a term, gradient operator V acts on everything on its right-hand side. Otherwise, the operator is
treated like a vector (if the basis vectors are not constants, the derivative operators should be after the
basis vectors)
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Manipulation of a tensor expression consist of (I) substitution of the representations, (1) term by
term expansion, (111) evaluation of the terms, (IV) simplification and/or restructuring the outcome.
Gradient of the position vector is a second order tensor
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Use the definition V2 =V -V to derive the Laplacian operator in the cylindrical coordinate system.

Solution
Gradient operator and the derivatives of the basis vectors of the cylindrical (r,¢,z)— coordinate
system are (formula collection)
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According to the definition
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Derive the expressions of V-0, Vxu, and Vu in the polar coordinate system. Vector
U(r,¢)=urér+u¢é¢ and scalar u(r,¢) depend on the polar coordinates r and ¢. In the polar
coordinate system '

V=§r§+é¢i, i =€5, ——€;=—€, (and & x€; = k).

r rog 8¢ o¢p

Solution

In manipulation of vector expression containing vectors and dyads, it is important to remember that
tensor (®), cross (x), inner (-) products are non-commutative (order matters). The basis vectors of
a curvilinear coordinate system are not constants which should be taken into account if gradient
operator is part of the expression. Otherwise, simplifying an expression or finding a specific form in
a given coordinate system is a straightforward (sometimes tedious) exercise. Manipulation of a tensor
expression consist of (I) substitution of the representations, (1) term-by-term expansion, (1)
evaluation of the terms, (1V) simplification and/or restructuring the outcome.

Divergence of a vector
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In the beam coordinate system and planar case, the displacement assumption of a curved Timoshenko
beam model is G =ty + 6y x 5, where Ty =u(s)& +V(s)&,, 6, =w(s)&,, and p=ng,. Derive the
small strain component expressions &g and &g, = &, USING

€

1 9. .0 0 1) & 0 | &
— 48—, — =—4 _ ¢, and —< °+=0.
1-n/R s on 0s|€,] R|[-€ on (€,

Assume that curvature x =1/ R is constant.

g“zé[vm(vu)c], V =§

Solution

The curved beam coordinates are distance s measured along the mid-curve (identifying the particles
along the mid-curve), and n,b identifying the particles away from the mid-curve. The (s,n,b)—
system is orthonormal and right-handed. The gradient expression of the coordinate system

. R o0 _ 0
V=6——+6,—
R—-nos on
is available in the formula collection. When the expressions of the cross-section translation, cross-
section rotation and the relative position vector are substituted there, the displacement expression

takes the form
U = Uy + Gy x = U(S)& + V(S)&, + (S)&, x NE, = (U—wn)& +VE, .
Displacement gradient is given by (Lagrange’s notation for derivative with respect to s)
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In conjugate tensor, order of the basis vectors is changed
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Definition of the small (linear) strains & :%[VU-F (V)] gives first
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Hence as the components of strain are the multipliers of the basis vector pairs with the same order
of indices
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Mapping F(r,¢,z) =rcosgi +rsingj +zk defines the cylindrical (r,, z) — coordinate system. Use
(in detail) the generic formula

o || o o

2l b= (L FDIFT e , Where r,g,z

o % [ = (G, TFOIFT 8 ne{r.¢.z)
eZ eZ

to find the derivatives of the basis vectors.

Solution

Basis vectors of the (r,¢,z)—coordinate system are obtained as derivatives of the position vector
F(r,¢,z)=rcosgi +rsingj+zk with respect to (r,¢,z)— coordinates. As the position vector is
expressed in terms of the constants basis vectors of a Cartesian system, the outcome is a relationship
between the basis vectors of the spherical and Cartesian systems (i.e. the matrix [F] needed in the
generic expression for the basis vector derivatives)

a d - d a
—TF =C0Sa@l +SIn = |—r|=1,
or ¢ /] ‘ar

F=-rsingi +rcos¢j] =

o
o

2F:IZ = ri=1.
0z

g
0z

The relationship between the basis vectors can be written as

& | [(or/oryl|orior|] [ cosg sing O[T i
8 =1(0F/0g)I|oF I og| ¢ =| —sing cosg 0|1 r=[F]<]
& (oF 1 oz) /|or | o] 0 0 1]k K

z

in which the matrix satisfies [F]‘1 = [F]T . The generic formula for the partial derivatives of the basis
vectors gives now

5 € 0 O Ojjcosg —sing Of|€ 0
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, 0 0 0f O 0 1]\e, 0
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Derive the gradient expression of the spherical (€,¢,r)—coordinate system, when the mapping
defining the coordinate system is given by F(6,4,r) = r(sin@cosgi +sin@singj +cosok).

Solution
According to the generic recipe (formulae collection)

g, (or 1 oa)l |or | Ocx | i €, €,
n - ~ - o0 |- 0 1.
50 =1(0F 10p)l| o 10| =[F] it p &s =(%[F])[F] €3¢ nefa,pir},
g | L@rioy)iorioy]| k g, g,
T

g, 0l oa oryloa oryloa or,loa
V=18t [FIT[H] o108} where [H]=|an /0B or,10p ar, 1B,

g, ol oy orgloy orgléy or,loy

inwhich =6, f=¢,and y =r in the present case. Matrices [F] and [H] depend on the
mapping

F(0,¢,r) =r(sin@cos gi +sin@sing] +cosok) =, (0,4,1) +1,(0,4,1)] +1,(0,4, 1)K .

By definition

& :%/ % = c0sdcos @i +cosdsing] —sindk
& :2—;/ 2—; = —singi +cos¢],

& :%/ % =sindcosgi +sindsin ¢ +cosok

and therefore

clcy cls¢p -sO
so [F]=| -s¢ c¢ 0
sdcg sOs¢g cb

— =
— =

=| —s¢ co 0

€ cécyp cls¢p -sO
€
g sdcg sfOs¢ co

-[F]

=~
=~

€

According to the mapping, the relationship between the components of the position vector in the
Cartesian and cylindrical systems are r, =rsindcos¢,ry =rsingsing, and r, =rcosé

al’x /06 al’y /06 al’z /06 rcocg rclds¢g -rsé
[H]=|or /o¢ orylop or,10¢ |=|-rsfs¢ rsfcg O
orglor orylor  or,/or socyp sOsp ¢l



Gradient follows now from the generic recipe

AN a100) (g, 0106
V=1g, [F]T[H] " a/0¢t=18,t (H][F]) ™" a/04}.
& olor & olor

Let us calculate first the matrix inside the parenthesis

rcécg rclds¢g -rsé | cldcyg —s¢ sOcg r 0 O
[H][F]T: —rsfs¢p rsfcp 0 |[cOsg cg sOsp|=|0 rs@ 0| <
sdcg sOs¢gp co 1% 0 co 0 0 1

r o ol [ur o0 O
(H][F]")t=l0 rs6 0| =| 0 1/(rs6) 0.
0 0 1 0 0 1

Substituting into the gradient expression

.
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Compute the derivatives of the basis vectors, gradient operator, and curvature for the cylindrical shell
geometry with the mid-surface representation (¢, z) =R(cos@i +singj)+ zk in terms of
coordinates (¢, z) . Notice that the order of the coordinates differs from that of the lecture notes, which
affects, e.g., direction of €, .

Solution

Solution of the problems consists of two parts. The aim of the first part is to derive the derivatives of
the basis vectors and the gradient operator representation of a curvilinear system (by direct calculation
or from the formulae collection). The second part is just application of the curvature tensor definition

K= (Vén)c

describing in a concise manner the way the coordinate system deviates from being Cartesian. The
mid-surface curvature tensor corresponds to n=0. Measures of «, like Gaussian curvature or mean
curvature, describe the geometry of the mid-surface.

The relationship between the basis vectors of the Cartesian and cylindrical systems follows from
definition. Notice that two of the basis vectors follow from the mid-surface mapping. The third is
always normal to the surface and obtained as a vector product (see the coordinate system for shells)

s| |@T/og)l|ory/og|| [-sing cosg O[T i
§, p=1 (o loz)!|oFy /oz| p=| O 0 1[{Jt=[FIR]t.
€, €5 x&; cosg sing 0|k K

Derivatives of the basis vector follow from the generic formula

) &) [—cosg -sing O[-sing cosg 0] (€] [0 0 —-1][&
— 4§ t=| 0 0 1| o0 0 1] {&}=/0 0 0 |!g
ol _ :

€n —sing cosg Off cosg sing 0| |€, 1 0 0||g,

the remaining being zeros. Mapping for the mid-surface is kind of labelling system for the particles
(points) on that surface. To have a labelling system for all the particles (points) of a thin body, a
relative position vector is also needed, so

F(¢,z,n) =To(4.2) + €, (4, 2).

The relative position vector defines also the line segments perpendicular to the mid-surface (an
important concept in plate theory). The Hessian of the mapping between the Cartesian and thin-body
(¢, z,n) — coordinates takes the form

or log or,10¢ or,104| [—(n+R)sing (n+R)cosg O
[H]=|orc/oz orgloz orloz|= 0 0 1
org/on arylon or,/on cos ¢ sin ¢ 0



having the inverse

—sing/(n+R) 0 cos¢g
[H] ™" =| cosg/(n+R) 0 sing |.
0 1 0

The generic form of the gradient expression gives now (formulae collection)

sin g

T iR 0 cosg¢

€| |—-sing cosg O cos ¢ 0log¢
V=1§, 0 0 1 R 0 sing |sdloz; <

€, cosg sing O 0 1 0 olon

.1 o _ o0 _. 0
& —-
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Curvature is obtained from the gradient of the normal vector

c g 1 G g o _ . 1

=@ =€
THNR o Tz "on ??nsR

1

giving at the mid-surface (n=0) &« =88, R €



Consider the mid-surface mapping Ty(r,¢)= r? cos(2¢)i + r2 sin(2¢)] of shell. Compute the
expression of the basis vector derivatives and gradient operator V. Is the mid-surface defined by the
mapping flat or curved?

Solution

The relationship between the basis vectors of the Cartesian and cylindrical systems follows from
definition. Notice that two of the basis vectors follow from the mid-surface mapping. The third is
always normal to the surface and obtained as a vector product (see the coordinate system for shells).
With the present mid-surface (r,¢)— coordinates

-

& (oty / or) /ey / or|
o (r. §) =1 cos(2¢)T +r>sin(24)] and 1€, { =+ (F, / 0¢) /|oFy 1 og| | =[]

R

en §FX§¢

Expressions of the basis vectors of the curvilinear system are
0 . - : - ~ 0 .y, 0 . - -
gro =2r cos(2¢)1 +2rsin(2¢) j = & =(§r0)/|§r0 |=cos(2¢)i +sin(29) j ,

0 o sin2e) 427 c0s2)] = &= (L)Lt = —sin2a)T ;
a¢r0_ 2rsin(2¢)i +2r<cos(2¢)] = € (a¢r0)/|a¢r0| sin(2¢)1 +cos(29) J ,

€, = & x & =[cos(2¢)i +sin(2¢) J]x[-sin(2¢)i +cos(2¢) j]1 = k.

In a more compact form

& cos(2¢) sin(2¢) O] |i i
&1 =|—sin(2¢) cos(2¢) 0{jt=[F]{j inwhich [F]"=[F]".
g 0 0 1]k k

n

Direct use of the definition gives (just take the derivatives on both sides of the relationship above and
use inverse of the same relationship to replace the basis vectors of the Cartesian system by the basis
vectors of the (r, ¢, n) —system)

5 € 0 0 O}lcos(2¢) —sin(2¢) O||€, 0
r €r=|0 0 0 sin(2¢) cos(2) 0<€;r=40¢,
€, 0 0O 0 0 1]|e, 0
5 € —-2sin(2¢) 2cos(2¢) 0] cos(2¢) -—sin(2¢) O] |& 0 €
2% €4 =| —2c0s(2¢) -2sin(2¢) O | sin(2g) cos(2g) O0|€;,=|-2 O &t
¢ €, 0 0 0 0 0 1]|e, 0 0 6,



5 € 0 0 O}lcos(2¢) —sin(2¢) O||€, 0
P €¢=|0 0 0} sin(2¢) cos(2g) 0|65 =410.. €
g, 0 0O 0 0 1]\e, 0

Gradient in the (r,¢,n)— system follows from the mapping
F(r,,n) =Ty + B =r2cos(2¢) +r2sin(24) +nk
and the generic formula in terms of [F] and [H] with

oF | or 2rcos(2¢)  2rsin(2¢) O]
or 104! =| —2r?sin(2¢) 2r%cos(24) O
or / on 0 0 1

—_— =
U

=[H]

N =
=~

2rcos(2¢)  2rsin(2¢) 0 |Fcos(2¢) —sin(2g) 0] |[2F O

[HI[F]" =| -2r?sin(2¢) 2r®cos(24) 0| sin(2¢) cos(2¢) O|=| 0 2r?

0 0 1 0 0 1 0 O
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Curvature of the mid-surface (n=0)
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which indicates that the mid-surface is flat.
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