Circular economy and systems change

Managing circular economy – session #3

Samuli Patala

Outline

Basics of systems thinking Systems thinking and circular economy Sustainability transitions

Definitions

- System: An interconnected set of elements that is coherently organized in a way that achieves something.
- Systems consist of elements (system structure), interconnections (system dynamics), and a function or purpose.
- A system is more than the sum of its parts. It may exhibit adaptive, dynamic, goal-seeking, self-preserving, and sometimes evolutionary behavior (Meadows, 2008; Sterman, 2000).

https://www.youtube.com/watch?v=Miy9uQcwo3U

Why utilize systems thinking?

- Avoiding unwanted (unituitive) consequences
- Finding root causes and leverage points
- Understanding the structure of systems and system archetypes

Forest as a system

- 1. Different elements of the forest are interconnected
- 2. A forest includes many complex subsystems
- 3. A forest is self-organized and has emergent behavior

Reductionist thinking vs systems thinking

A?

Reductionist thinking vs systems thinking

Time

Iceberg model of systems thinking

Aalto University School of Business

Tools of systems thinking – system dynamics

Figure 3 Reinforcing feedback loops Engine of Growth and Consumption Rebound Effect

Key concepts

- Interconnectedness
- Feedbacks
- Adaptive capacity/resilience
- **Self-organization**
- Emergence

(Williams et al. 2017)

Interconnectedness

Feedback loops

Positive (reinforcing) feedback loops

Negative (balancing) feedback loops

Adaptive capacity

Ensures survival of the system when actors learn from experience and act accordingly

Resilience is an important adaptive feature of sustainable systems Harvard Business Review

Competitive Strategy

The High Price of Efficiency

Eliminating waste is the holy grail of management science—but veremphasizing it leads to a host of problems. Companies should pay just as much attention to resilience. **by Roger L. Martin**

From the Magazine (January-February 2019)

Aalto University School of Business

Self-Organization and emergence

Aalto University School of Business

Examples

SYSTEMIC CHALLENGES OF THE TEXTILE INDUSTRY

Closed Plastic Circle

Center: the main goal of the project

Outer circle: Subprojects contributing to each objective

Outside the circle:
 Involved actors

School of Business

Lab log #20: What are innovation ecosystems and what to they have to do with wicked problems? - Sitra

Sustainability transitions

Sustainability transitions as a research field

 Originated in the late 1990s as an interdisciplinary social science research field, with an aim to tackle fundamental *environmental* sustainability challenges

- Tries to understand socio-technical system change through
 - (a) creation and diffusion of innovations (niches, technological innovation systems)
 - (b) path dependencies, lock-ins and the processes of destabilising socio-technical regimes/systems
 - (c) influence of broader landscape changes
 Aalto University School of Business

Key concept: a socio-technical system

- E.g. energy supply, water supply, transportation, food supply
- "consists of (networks of) actors (individuals, firms, and other organizations, collective actors) and institutions (societal and technical norms, regulations, standards of good practice), as well as material artefacts and knowledge"
- Different elements of the system interact providing services for the society

Socio-technical transition

- "set of processes that lead to a fundamental shift in sociotechnical systems"
 - Contains extensive changes along different dimensions: not just technological, but also organisational, institutional, political, economic, and socio-cultural
 - Include a large variety of actors
 - typically take a very long time (> 50 years).
 - During a transition, new products, services, business models, and organisations emerge
 - Technological and institutional structures undergo fundamental

Markard et al. 2012

Different approaches

Markard et al. 2012

Multi-level perspective on sustainability transitions

Geels & Schot (2007)

Technological innovation systems (TIS)

- TIS adopts a systemic perspective to analyse the links between different actors, networks and the institutional contexts around a specific emerging technology (Bergek et al. 2008).
- A well-functioning TIS is regarded as a requirement for the development and diffusion of a technology
- Seven functions and 'motors of innovation'

Technological innovation systems

Seven core functions of technological innovation systems:

- Knowledge development and diffusion
- Entrerpreneurial experimentation
- Influencing the direction of the search
- Market formation
- Development of positive environmental economies
- Legitimation
- Resource mobilization

Aalto University School of Business (Bergek et al.2008)