Lecture 3

Lecturer: G. S. Paraoanu
Department of Applied Physics, School of Science, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland

I. TRANSMISSION LINES

- Electromagnetic waves can propagate in free space (Review this! Based on Maxwell's equations!). But also they can be guided by conducting or dielectric boundaries.
- Transmission line behavior: occurs when $\lambda \ll$ length of transmission line.
$-\underline{\text { Transmission lines }}=$ guiding devices for the electromagnetic field.
- The electromagnetic fields are TEM (transverse electromagnetic mode) if the conductors are ideal (zero-resistance); otherwise there will be a small axial component of the electromagnetic field.

EXAMPLE: The coaxial line

* How to calculate the \vec{E}, \vec{H} fields inside?

$$
\begin{equation*}
\text { Electric Field: } \quad \vec{E}=\frac{V_{0}}{\ln \frac{b}{a}} \frac{\hat{\vec{r}}}{r} \tag{1}
\end{equation*}
$$

Proof:
$\vec{\nabla} \cdot \vec{D}=\rho \Longrightarrow \int d \vec{S} \cdot \vec{E}=\int \frac{\rho}{2} d V \Longrightarrow 2 \pi r \cdot(\Delta z) \cdot E=\frac{1}{\epsilon}(\Delta z) \cdot \rho \cdot \pi a^{2} \quad \therefore E=\frac{1}{r} \cdot \frac{\rho a^{2}}{2 \epsilon}$ Also $V_{0}=\int_{a}^{b} d r \cdot E=\int_{a}^{b} \frac{d r}{r} \cdot \rho \frac{a^{2}}{2 \epsilon} \ln \frac{b}{a} \rightarrow \rho \frac{a^{2}}{2 \epsilon}=\frac{V_{0}}{\ln \frac{b}{a}}$, so $\vec{E}=\frac{V_{0}}{\ln \frac{b}{a}} \frac{\hat{\vec{r}}}{r}$.

Magnetic Field: $\quad \vec{H}=\frac{I_{0}}{2 \pi r} \cdot \hat{\overrightarrow{e_{\theta}}}$
Proof:
$\vec{\nabla} \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t} \Longrightarrow \int_{\mathcal{C}} \vec{H} \cdot d \vec{\ell}=\int \vec{J} \cdot d \vec{S}=I_{0}$, or $2 \pi r \cdot H=I_{0} \Longrightarrow \vec{H}=\frac{I_{0}}{2 \pi r} \cdot \hat{e_{\theta}}$.

II. TOWARDS A DISTRIBUTED MODEL OF INDUCTORS, CAPACITANCES, RESISTANCES, CONDUCTANCES

Problem: How to connect the electric and magnetic fields to circuit elements.

Answer: Via stored or dissipated energy.

1. Inductance per unit length

Magnetic energy $=\frac{\mu}{4} \int d s \cdot(\Delta z) \vec{H}^{2}=\frac{\left(L^{\prime} \Delta t\right) I_{0}^{2}}{4} \Longrightarrow L^{\prime}=\frac{\mu}{I_{0}^{2}} \int d s \vec{H}^{2}$
$L^{\prime}=\frac{\mu}{I_{0}^{2}} \int d s H^{2}=\frac{\mu}{I_{0}^{2}} \cdot I_{0}^{2} \int_{0}^{2 \pi} d \theta \int_{a}^{b} d r \cdot r \cdot \frac{1}{(2 \pi r)^{2}}=\frac{\mu}{2 \pi} \ln \frac{b}{a}$.

Therefore,

$$
\begin{equation*}
L^{\prime}=\frac{\mu}{2 \pi} \ln \frac{b}{a} \quad(\text { measured in units of } \mathrm{H} / \mathrm{m}) . \tag{3}
\end{equation*}
$$

2. Capacitance per unit length

Electrostatic energy $=\frac{\epsilon}{4} \int d s \cdot(\Delta z) \cdot E^{2}=\frac{\left(C^{\prime} \Delta z\right) V_{0}^{2}}{4} \Longrightarrow C^{\prime}=\frac{\epsilon}{V_{0}^{2}} \cdot \int d s \cdot E^{2}$
$C^{\prime}=\frac{\epsilon}{V_{0}^{2}} \int d s E^{2}=\frac{\epsilon}{V_{0}^{2}} \cdot V_{0}^{2} \cdot \frac{1}{\ln ^{2} \frac{b}{a}} \int_{0}^{2 \pi} d \theta \int_{0}^{b} d r \cdot r \cdot \frac{1}{r^{2}}$

$$
\begin{equation*}
\Longrightarrow \quad C^{\prime}=\frac{2 \pi \epsilon}{\ln \frac{b}{a}} \quad(\text { measured in units of } \mathrm{F} / \mathrm{m}) . \tag{4}
\end{equation*}
$$

3. Resistance per unit length

Power dissipated in the lossy conductors $=\frac{R_{s}}{2} \int_{\mathcal{C}_{a}+\mathcal{C}_{b}} d \ell \cdot \Delta z \cdot \mathcal{J}_{s}^{2}=\frac{R_{s}}{2} \Delta z \cdot \int_{\mathcal{C}_{a}+\mathcal{C}_{b}} d \ell \cdot H^{2}=$ $\frac{R^{\prime} \Delta z}{2} I_{0}^{2}$. Here $R_{s}=$ surface resistance, $\overrightarrow{\mathcal{J}}_{s}=\hat{\vec{n}} \times \vec{H}=$ surface current, $\hat{\vec{n}}=$ vector unit
pointing outwards (normal to the conducting surface), and $R^{\prime}=\frac{R_{s}}{I_{0}^{2}} \int_{\mathcal{C}_{a}+\mathcal{C}_{b}} d \ell \cdot \vec{H}^{2}$.

$$
\begin{gather*}
R^{\prime}=\frac{R_{s}}{I_{0}^{2}} \int_{\mathcal{C}_{a}+\mathcal{C}_{b}} d \ell \cdot H^{2}=\frac{R_{s}}{(2 \pi)^{2}}\left[\int_{0}^{2 \pi} d \theta \cdot a \cdot \frac{1}{a^{2}}+\int_{0}^{2 \pi} d \theta \cdot b \cdot \frac{1}{b^{2}}\right]=\frac{R_{s}}{2 \pi}\left(\frac{1}{a}+\frac{1}{b}\right) \\
R^{\prime}=\frac{R_{s}}{2 \pi}\left(\frac{1}{a}+\frac{1}{b}\right) \quad(\text { measured in units of } \Omega / \mathrm{m}) . \tag{5}
\end{gather*}
$$

4. Conductance (radial) per unit length

$$
\begin{aligned}
& \epsilon=\epsilon^{\prime}-i \epsilon^{\prime \prime}=\epsilon_{0} \epsilon_{r}(1-i \tan \delta) \\
& \epsilon^{\prime}=\epsilon_{0} \epsilon_{r}
\end{aligned}
$$

$\underline{\epsilon^{\prime \prime}=\epsilon \tan \delta} \rightarrow$ dissipation in the dielectric between the core metal and the outside shield.

Power dissipated $=\frac{\omega \epsilon^{\prime \prime}}{2} \int d s \cdot \Delta z \cdot E^{2}=\frac{G^{\prime} V_{0}^{2}}{2} \rightarrow G^{\prime \prime}=\frac{\omega \epsilon^{\prime \prime}}{V_{0}^{2}} \int d s \cdot E^{2}$

$$
\begin{gather*}
\Longrightarrow G^{\prime}=\frac{\omega \epsilon^{\prime \prime}}{V_{0}^{2}} \int d s \cdot E^{2}=\frac{\omega \epsilon^{\prime \prime}}{V_{0}^{2}} \cdot \int_{0}^{2 \pi} d \theta \int_{a}^{b} d r \cdot r \cdot \frac{V_{0}^{2}}{r^{2} \ln \frac{b}{a}} \\
\left.\Longrightarrow \quad G^{\prime}=\frac{2 \pi \omega \epsilon^{\prime \prime}}{\ln \frac{b}{a}} \quad \text { (measured in units of } \mathrm{S} / \mathrm{m}\right) . \tag{6}
\end{gather*}
$$

NOTE: In the calculation 3. resistance per unit length we used the surface resistance R_{s} and the surface current $\overrightarrow{\mathcal{J}}_{s}$. Note that these concepts are different from "just" resistance and from the current density \mathcal{J} which appears in Maxwell's equation (see Lecture 1) or when we write Ohm's law in the form $\overrightarrow{\mathcal{J}}=\sigma \vec{E}$ (see Lecture 2).

Consider a slab of metal, like in the next figure. The current density is defined as $\mathcal{J}=\frac{d I}{d s}$,

so it represents the current per unit area that flows through the wires. It has dimension of
(charge/unit time)/(unit area), so it is measured in $\mathrm{A} / \mathrm{m}^{2}$. But for a thin sheet of metal a sensible quantity to define is

$$
\begin{equation*}
\mathcal{J}_{s}=\frac{d I}{d l} \tag{7}
\end{equation*}
$$

which means (charge/unit time)/(unit length across the sheet). It is called surface current density and it is measured in A / m.

We can then consider the quantity $U /(\Delta z)$, which is the drop of voltage per unit lenght in the direction of the current, and define

$$
\begin{equation*}
R_{s}=\frac{U /(\Delta z)}{\mathcal{J}_{s}} \tag{8}
\end{equation*}
$$

This quantity has units of Ohms, so we can call it resistance. As a result, the power dissipated is

$$
\begin{equation*}
\frac{1}{2} \int d I \cdot U=\frac{1}{2} \Delta z \int_{\mathcal{C}} d l\left(R_{s} \mathcal{J}_{s}\right) \mathcal{J}_{s}=\frac{1}{2} \Delta z \int_{\mathcal{C}} d l R_{s} \mathcal{J}_{s}^{2} \tag{9}
\end{equation*}
$$

where \mathcal{C} is a contour containing the element $d l$.
To obtain the connection between the surface current density and the magnetic field, consider the contour \mathcal{C} in the figure below. We also take for simplicity the vector \vec{H} as shown in the figure, which reflect the way it is in a small lenght W around the coaxial cable.

So we have from the Maxwell-Ampére law $\nabla \times \vec{H}=\overrightarrow{\mathcal{J}}+\frac{\partial \vec{D}}{\partial t}$ and therefore applying Stokes' theorem we get

$$
\begin{align*}
\int_{\mathcal{C}} d \vec{l} \vec{H} & =H W \tag{10}\\
& =\int_{S} d \vec{s}\left(\overrightarrow{\mathcal{J}}+\frac{\partial \vec{D}}{\partial t}\right)=\mathcal{J} \delta W=\mathcal{J}_{s} W \tag{11}
\end{align*}
$$

where you can see using the definitions above that $\mathcal{J}_{s}=\mathcal{J} \delta$. So in the end $\mathcal{J}_{s}=H$. It is easy to generalize this relation to $\overrightarrow{\mathcal{J}_{s}}=\hat{\vec{n}} \times \vec{H}$.

- Examples of materials used in coaxes:

Conductor	Copper Cu	Aluminum Al	Silver Ag	Gold Au
Resistivity $\rho[\mathrm{n} \Omega \cdot \mathrm{m}]$	16.9	26.7	16.3	22.0

Dielectric	Dry Air	Polyethylene	PTFE	PVC
$\epsilon_{\mathbf{r}}$	1.0006	2.2	2.1	3.2
$\tan \delta$	low	0.0002	0.0002	0.001
Resistivity $(\Omega \cdot \mathrm{m})$	high	10^{15}	10^{15}	10^{15}
Breakdown voltage $(\mathrm{mV} / \mathrm{m})$	3	47	59	34

Other transmission lines:

$$
\begin{align*}
L^{\prime} & =\frac{\mu d}{w} \tag{12}\\
C^{\prime} & =\frac{\epsilon^{\prime} w}{d} \tag{13}\\
R^{\prime} & =\frac{2 R_{s}}{w} \tag{14}\\
G^{\prime} & =\frac{\omega \epsilon^{\prime \prime} w}{d} \tag{15}
\end{align*}
$$

$$
\begin{array}{r}
L^{\prime}=\frac{\mu}{\pi} \cosh ^{-1} \frac{D}{2 a} \\
C^{\prime}=\frac{\pi \epsilon^{\prime}}{\cosh ^{-1} \frac{D}{2 a}} \\
R^{\prime}=\frac{R_{s}}{\pi a} \\
G^{\prime}=\frac{\pi \omega \epsilon^{\prime \prime}}{\cosh ^{-1} \frac{D}{2 a}} \tag{19}
\end{array}
$$

III. TRANSMISSION LINES: GENERAL MODELS

- If the length of a circuit is $\gtrsim \lambda$ we have to use either a simulator of Maxwell's equations or a distributed model of lumped elements.
- Transmission lines: Two parallel conductors that guide the electromagnetic field. Examples: two-wire lines, striplines, microstrip lines.

FIG. 1. Schematic of the distributed model of a transmission line, with lumped circuit elements defined per unit lenght $L^{\prime}, C^{\prime}, R^{\prime}, G^{\prime}$. Here we denote the coordinate along the line by x (instead of z as in the previous section), in order to avoid any notational confusion with the Z of impedances.
$R^{\prime}, L^{\prime}, G^{\prime}, C^{\prime}=$ resistance, inductance, conductance, capacitance per unit length.
Kirchoff says:

$$
\begin{array}{r}
\left\{\begin{array}{l}
V(x, t)=I(x, t) R^{\prime} \Delta x+L^{\prime} \Delta x \cdot \frac{\partial I(x, t)}{\partial t}+V(x+\Delta x, t) \\
I(x, t)= \\
\Delta x(x+\Delta x, t) G^{\prime} \Delta x+C^{\prime} \Delta x \frac{\partial V(x+\Delta x, t)}{\partial t}+I(x+\Delta x, t)
\end{array}\right. \\
\Delta x \longrightarrow 0\left\{\begin{array}{l}
-\frac{\partial V(x, t)}{\partial x}=R^{\prime} I(x, t)+L^{\prime} \frac{d I(x, t)}{d t} \\
-\frac{\partial I(x, t)}{\partial x}=G^{\prime} V(x, t)+C^{\prime} \frac{\partial V(x, t)}{\partial t}
\end{array}\right. \tag{21}
\end{array}
$$

Therefore,

$$
\left\{\begin{array}{l}
-\frac{\partial^{2} V(x, t)}{\partial x^{2}}=-R^{\prime}\left(G^{\prime} V(x, t)+C^{\prime} \frac{\partial V(x, t)}{\partial t}\right)-L^{\prime}\left(G^{\prime} \frac{\partial V(x, t)}{\partial t}+C^{\prime} \frac{\partial^{2} V(x, t)}{\partial t^{2}}\right) \tag{22}\\
-\frac{\partial^{2} I(x, t)}{\partial x^{2}}=-G^{\prime}\left(R^{\prime} I(x, t)+L^{\prime} \frac{\partial I(x, t)}{\partial t}\right)-C^{\prime}\left(R^{\prime} \frac{\partial I(x, t)}{\partial t}+L^{\prime} \frac{\partial^{2} I(x, t)}{\partial t^{2}}\right)
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\frac{\partial^{2} V(x, t)}{\partial x^{2}}=L^{\prime} C^{\prime} \frac{\partial^{2} V(x, t)}{\partial t^{2}}+\left(R^{\prime} C^{\prime}+L^{\prime} G^{\prime}\right) \frac{\partial V(x, t)}{\partial t}+R^{\prime} G^{\prime} V(x, t) \tag{23}\\
\frac{\partial^{2} I(x, t)}{\partial x^{2}}=L^{\prime} C^{\prime} \frac{\partial^{2} I(x, t)}{\partial t^{2}}+\left(R^{\prime} C^{\prime}+L^{\prime} G^{\prime}\right) \frac{\partial I(x, t)}{\partial t}+R^{\prime} G^{\prime} I(x, t)
\end{array}\right.
$$

$\underline{\text { Harmonic signals: }}$
$V(x, t)=V(x) e^{i \omega t}, \quad V(x), I(x)=$ phasors,$\quad I(x, t)=I(x) e^{i \omega t}$
$\Longrightarrow\left\{\begin{array}{l}\frac{d^{2} V(x)}{d x^{2}}-\gamma^{2} V(x)=0, \quad \text { where } \quad \gamma=\alpha+i \beta=\sqrt{\left(R^{\prime}+i \omega L^{\prime}\right)\left(G^{\prime}+i \omega C^{\prime}\right)} \\ \frac{d^{2} I(x)}{d x^{2}}-\gamma^{2} I(x)=0, \quad \gamma=\text { propagation constant, } \alpha=\text { attenuation constant, } \beta=\text { phase constant }\end{array}\right.$

$$
\begin{equation*}
\text { General Solution: } \quad V(x)=V^{\dagger} e^{-\gamma x}+V^{-} e^{\gamma x} \tag{24}
\end{equation*}
$$

From $-\frac{\partial V(x, t)}{\partial x}=R^{\prime} I(x, t)+L^{\prime} \frac{\partial I(x, t)}{\partial t}$, we get $I(x)=-\frac{1}{R^{\prime}+i \omega L^{\prime}} \frac{d V(x)}{d x}$ or $I(x)=\frac{1}{Z_{0}} V^{\dagger} e^{\gamma x}-\frac{1}{Z_{0}} V^{-} e^{\gamma x}=I^{+} e^{-\gamma x}+I^{-} e^{\gamma x}$, where
$Z_{0}=\sqrt{\frac{R^{\prime}+i \omega L^{\prime}}{G^{\prime}+i \omega C^{\prime}}}=$ characteristic impedance of the transmission line,
and where $I^{ \pm}= \pm \frac{V^{ \pm}}{Z_{0}}$.
Lossless transmission case: $R^{\prime}=G^{\prime}=0$
$\gamma=i \beta=i \omega \sqrt{L^{\prime} C^{\prime}}$
$Z_{0}=\frac{1}{Y_{0}}=\sqrt{\frac{L^{\prime}}{C^{\prime}}} \longrightarrow$ now independent of frequency!
Note: Free-space impedance $=377 \Omega$
$v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L^{\prime} C^{\prime}}}=$ phase velocity.

Exercise: Show that for the loss-less case $R^{\prime} \ll \omega L^{\prime}, G^{\prime} \ll \omega C^{\prime}$, we have $\beta \simeq \omega \sqrt{L^{\prime} C^{\prime}}$ and $\alpha \simeq \frac{1}{2} \sqrt{L^{\prime} C^{\prime}}\left(\frac{R^{\prime}}{L^{\prime}}+\frac{G^{\prime}}{C^{\prime}}\right)$.
TABLE I. Some standardized values of Z_{0}.

Z_{0} Application $^{250 \Omega}$| Instrumentation, communication |
| :---: |
| 75Ω |

NOTE:

Let's contemplate a bit what is the meaning of the quantities $V^{+} e^{-\gamma x}$ and $V^{-} e^{\gamma x}$. These are the phasors of the waves propagating in the positive and negative direction of the x-axis, respectively.

How do you see this?
Let's take first the "+" wave. We have
$V^{+} e^{-\gamma x} e^{i \omega t}=V^{+} e^{-\alpha x} e^{i \omega\left(t-\frac{x}{v_{p}}\right)}$, where $\gamma=\alpha+i \beta$ and the phase velocity $v_{p}=\frac{\omega}{\beta}$. Now let's look at what happens of we follow a constant phase $t-\frac{x}{v_{p}}=\varphi$. We get $x=v_{p} t-\varphi$. So this means propagation in the positive x-direction.

In contrast, the "-" wave
$V^{-} e^{\gamma x} e^{i \omega t}=V^{-} e^{-\alpha x} e^{i \omega\left(t+\frac{x}{v_{p}}\right)}$, where also here $\gamma=\alpha+i \beta$ and the phase velocity $v_{p}=\frac{\omega}{\beta}$. Again we follow a constant phase but now that phase is $t+\frac{x}{v_{p}}=\varphi$. We get $x=-v_{p} t-\varphi$. So this means propagation in the negative x-direction.

IV. INCIDENT AND REFLECTED WAVES ALONG A LOADED TRANSMISSION LINE

$$
\begin{align*}
& V(x)=V^{+} e^{-\gamma x}+V^{-} e^{\gamma x} \\
& I(x)=I^{+} e^{-\gamma x}+I^{-} e^{\gamma x}, \quad I^{ \pm}= \pm \frac{V^{ \pm}}{Z_{0}} \\
& \qquad\left\{\begin{array}{l}
V(0)=V_{s}-Z_{s} I_{0}-\text { Kirchoff's law } \\
V(\ell)=Z_{\ell} I(\ell),
\end{array}\right. \tag{25}
\end{align*}
$$

or

$$
\left\{\begin{array}{l}
V^{+}+V^{-}=V_{s}-\frac{Z_{s}}{Z_{0}}\left(V^{+}+V^{-}\right) \tag{26}\\
V^{+} e^{-\gamma \ell}+V^{-} e^{\gamma \ell}=\frac{Z_{\ell}}{Z_{0}}\left(V^{+} e^{-\gamma \ell}-V^{-} e^{\gamma \ell}\right)
\end{array}\right.
$$

- Reflection and transmission coefficients

Define a reflection coefficient of the load at $x=\ell: \Gamma_{V}=\frac{V^{-} e^{\gamma \ell}}{V^{+} e^{-\gamma \ell}}$.
$\rightarrow 1+\Gamma_{V}=\frac{Z_{\ell}}{Z_{0}}\left(1-\Gamma_{V}\right)$.

$$
\begin{equation*}
\Longrightarrow \quad \Gamma_{V}=\frac{Z_{\ell}-Z_{0}}{Z_{\ell}+Z_{0}} \tag{27}
\end{equation*}
$$

We can also define a current reflection coefficient at the load

$$
\begin{equation*}
\Gamma_{I}=\frac{I^{-} e^{\gamma \ell}}{I^{+} e^{-\gamma \ell}}=-\Gamma_{V} \tag{28}
\end{equation*}
$$

Define a transmission coefficient at the load $x=\ell: T_{V}=\frac{V^{+} e^{+\ell}+V^{-} e^{\gamma \ell}}{V^{+} e^{-\gamma \ell}}$.

$$
\begin{equation*}
\therefore \quad T_{V}=1+\Gamma_{V}, \tag{29}
\end{equation*}
$$

and for the current

$$
\begin{equation*}
T_{I}=\frac{I^{+} e^{-\gamma \ell}+I^{-} e^{\gamma \ell}}{I^{+} e^{-\gamma \ell}}=1+\Gamma_{I} \tag{30}
\end{equation*}
$$

- Average power delivered to the load
$\overline{P_{\ell}}=\frac{1}{2} \operatorname{Re}\left[V(\ell) I^{*}(\ell)\right]$, where the $1 / 2$ comes from the fact that the field is harmonic.
Now,

$$
\begin{align*}
& \qquad\left\{\begin{array}{l}
1-\Gamma_{V}=\frac{I^{-} e^{\gamma \ell}+I^{+} e^{-\gamma \ell}}{I^{+} e^{-\gamma \ell}}=\frac{I(\ell)}{I^{+} e^{-\gamma \ell}} \\
1+\Gamma_{V}=\frac{V^{+} e^{-\gamma \ell}+V^{-}-e^{-\gamma \ell}}{V^{+} e^{\gamma \ell}}=\frac{V(\ell)}{V^{+} e^{-\gamma \ell}} .
\end{array}\right. \tag{31}\\
& \therefore \quad\left(1+\Gamma_{V}^{*}\right)\left(1+\Gamma_{V}\right)=\frac{V(\ell) I^{*}(\ell)}{I^{+*} V^{+} e^{-\gamma \ell}\left(e^{-\gamma \ell}\right)^{*}}, \text { but } I^{+}=\frac{V^{+}}{Z_{0}}
\end{align*}
$$

$V(\ell) I^{*}(\ell)=\frac{1}{Z_{0}}\left|V^{+} e^{-\gamma \ell}\right|^{2} \cdot\left(1-\Gamma_{V}^{*}\right)\left(1+\Gamma_{V}\right) \equiv 1-\Gamma_{V}^{*}+\Gamma_{V}-\left|\Gamma_{V}\right|^{2}$, where $\Gamma_{V}^{*}+\Gamma_{V}=$ Imaginary!.

$$
\begin{equation*}
\overline{P_{\ell}}=\frac{1}{2 Z_{0}} \cdot\left|V^{+} e^{-\gamma \ell}\right|^{2}\left(1-\left|\Gamma_{V}\right|^{2}\right) \tag{32}
\end{equation*}
$$

- VSWR (Voltage standing-wave ratio)
$V(x)=V^{+} e^{-\gamma x}+V^{-} e^{\gamma x}=V^{+} e^{-\gamma x}\left[1+\Gamma_{V} e^{-2 \gamma(\ell-x)}\right] \quad$ (Remember that $\left.\Gamma_{V} \equiv \frac{V^{-} e^{\gamma \ell}}{V^{+} e^{-\gamma \ell}}.\right)$
Let's consider a lossless line $\alpha=0, \quad \gamma=i \beta=\frac{2 \pi i}{\lambda}$
$|V(x)|=\left|V^{+}\right| \cdot\left|1+\Gamma_{V} e^{-2 i \beta(\ell-x)}\right|$ - oscillates, min. and max. separated by $\frac{\pi}{\beta}=\frac{\lambda}{2}$.
$V S W R=\frac{1+\left|\Gamma_{V}\right|}{1-\left|\Gamma_{V}\right|}=$ ratio between the max. line voltage and min. line voltage.
- Impedance along the line
$Z(x)=\frac{V(x)}{I(x)}=Z_{0} \frac{V^{+} e^{-\gamma x}+V^{-} e^{\gamma x}}{V^{+} e^{-\gamma x}-V^{-} e^{\gamma x}}=\frac{1+\Gamma_{V} e^{-2 \gamma(\ell-x)}}{1-\Gamma_{V} e^{-2 \gamma(\ell-x)}}$.

Take $x=0 \rightarrow$ we get $Z(0) \equiv Z_{\text {in }}=$ input impedance of the line, i.e., the impedance seen when looking toward the load.

$$
\begin{equation*}
Z_{i n}=Z_{0} \cdot \frac{Z_{\ell}+Z_{0} \tanh \gamma \ell}{Z_{0}+Z_{\ell} \tanh \gamma \ell} \tag{33}
\end{equation*}
$$

Note that this can be verified immediately by recalling that $\Gamma_{V}=\frac{Z_{\ell}-Z_{0}}{Z_{\ell}+Z_{0}}$, and that in general, $Z_{i n} \neq Z_{0}$, so the termination matters! Also, $Z_{i n}$ is frequency-dependent.

V. FURTHER READING

- David M. Pozar - Microwave Engineering.
- R.E. Collin - Foundations for Microwave Engineering.

