Some More Math for Economists:
 The Value Function

Spring 2023

The Value Function

The problems we solve in economics often have two types of variables

- Endogenous variables - The variables economic agents determine (e.g. the controls of the maximization problem)
- Exogenous variables - Parameters that are not determined by decision makers
Understanding how the endogenous variables change when exogenous variables change is a crucial part of economic analysis

Consumer Theory

Recall the standard consumer problem

$$
\max _{x \in \mathbb{R}_{+}^{n}} u(x) \text { s.t. } p \cdot x \leq m
$$

- The x 's are endogenous.
- The p 's and m are exogenous.

We'd like to understand the properties of

- The value function $V(p, m)$, which gives the value of the objective at the maximum.
- In the consumer problem, this is called indirect utility.

Consumer Theory

Recall the standard consumer problem

$$
\max _{x \in \mathbb{R}_{+}^{n}} u(x) \text { s.t. } p \cdot x \leq m
$$

- The x 's are endogenous.
- The p 's and m are exogenous.

We'd like to understand the properties of

- The value function $V(p, m)$, which gives the value of the objective at the maximum.
- In the consumer problem, this is called indirect utility.
- The policy function $x(p, m)$, which gives the values of the endogenous variables that solve the maximization problem.
- In the consumer problem, this is called demand.
- This is not necessarily a function. We'll talk about that more in math camp.

Continuity

In general, the value and policy functions are well-behaved. Recall:
Definition
A set $X \subseteq \mathbb{R}^{n}$ is (sequentially) compact if if every sequence in X has a convergent subsequence.

Definition

A function is continuous at x at x if for every sequence $\left(x_{n}\right) \rightarrow x$, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$.

Theorem of the Maximum

Theorem (A baby theorem of the maximum)
Suppose $f: X \times \Theta \rightarrow \mathbb{R}$ is strictly concave in X and continuous, $X \subseteq \mathbb{R}^{n}$ is non-empty, compact and convex and $g: X \times \Theta \rightarrow \mathbb{R}^{m}$ is quasiconvex in each component, continuous and $\{x: g(x ; \theta) \leq 0\}$ is compact for all θ. Then the value and policy functions for the maximization problem

$$
\max _{x \in X} f(x ; \theta) \text { s.t. } g(x ; \theta) \leq 0
$$

are continuous.

Concavity - Maximum theorem proof

Since f is continuous and the constraint is compact we know a max exists for each θ.

Concavity - Maximum theorem proof

Since f is continuous and the constraint is compact we know a max exists for each θ.

Since $f(x ; \theta)$ is strictly concave, we know there is a unique maximum at each θ. A natural conjecture would be that the limit of any sequence of maximizers is a maximum, which would give us continuity.

Proof

Fix a sequence $\theta_{n} \rightarrow \theta$. We want to show that $V\left(\theta_{n}\right) \rightarrow V(\theta)$ and $\phi\left(\theta_{n}\right) \rightarrow \phi(\theta)$ where V, ϕ are the value and policy functions.

- Let x_{n} be the arg max at θ_{n}.
- Take any convergent subsequence $x_{n_{k}}$, let $x^{*}=\lim x_{n_{k}}$

Proof

Fix a sequence $\theta_{n} \rightarrow \theta$. We want to show that $V\left(\theta_{n}\right) \rightarrow V(\theta)$ and $\phi\left(\theta_{n}\right) \rightarrow \phi(\theta)$ where V, ϕ are the value and policy functions.

- Let x_{n} be the arg max at θ_{n}.
- Take any convergent subsequence $x_{n_{k}}$, let $x^{*}=\lim x_{n_{k}}$
- Note that x^{*} must be feasible at θ. So $V(\theta) \geq f\left(x^{*} ; \theta\right)$.

Proof

We have that $V(\theta) \geq f\left(x^{*} ; \theta\right)$. We want to show $V(\theta)=f\left(x^{*} ; \theta\right)$.

Proof

We have that $V(\theta) \geq f\left(x^{*} ; \theta\right)$. We want to show $V(\theta)=f\left(x^{*} ; \theta\right)$.
Suppose not

- If $f\left(x^{*}\right)<V(\theta)$ then there exists x s.t. $f(x ; \theta)>f\left(x^{*}, \theta\right)$.

Proof

We have that $V(\theta) \geq f\left(x^{*} ; \theta\right)$. We want to show $V(\theta)=f\left(x^{*} ; \theta\right)$.
Suppose not

- If $f\left(x^{*}\right)<V(\theta)$ then there exists x s.t. $f(x ; \theta)>f\left(x^{*}, \theta\right)$.
- But then there exists an $\epsilon, \delta>0$ s.t. if $\left\|\left(x^{\prime}, \theta^{\prime}\right)-(x, \theta)\right\|<\epsilon$ then $f\left(x^{\prime}, \theta^{\prime}\right)-f\left(x^{*}, \theta\right)>\delta$.
- But, then $\lim f\left(x_{n_{k}}, \theta_{n_{k}}\right) \geq f\left(x^{*}, \theta\right)+\delta$

Proof

We have that $V(\theta) \geq f\left(x^{*} ; \theta\right)$. We want to show $V(\theta)=f\left(x^{*} ; \theta\right)$.
Suppose not

- If $f\left(x^{*}\right)<V(\theta)$ then there exists x s.t. $f(x ; \theta)>f\left(x^{*}, \theta\right)$.
- But then there exists an $\epsilon, \delta>0$ s.t. if $\left\|\left(x^{\prime}, \theta^{\prime}\right)-(x, \theta)\right\|<\epsilon$ then $f\left(x^{\prime}, \theta^{\prime}\right)-f\left(x^{*}, \theta\right)>\delta$.
- But, then $\lim f\left(x_{n_{k}}, \theta_{n_{k}}\right) \geq f\left(x^{*}, \theta\right)+\delta$
- Thus, x^{*} must be the maximum. Since the maximum is unique $x_{n} \rightarrow x^{*}$ and thus V and ϕ are continuous.

Maximum theorem

Note that the convexity assumptions play almost no role. They make the arg max unique, and that's it.

One may conjecture this holds much more generally.

- In fact, if the objective is continuous, the constraints are compact and vary "continuously" then the value and policy functions are continuous.
- This is Berge's Theorem of the Maximum.
- We need a theory of multivalued functions to deal with the continuity of the constraints and policy functions that I don't want to spend time on in this course.

Concavity

We can say a number of things about the concavity of the value function

- Suppose $f(x, \theta)$ is (quasi)concave and the other assumptions for the maximum theorem hold. Then $V(\theta)$ is (quasi)concave.
- Suppose we're solving $\max _{x \in X} f(x ; \theta)$ for convex Θ and f is linear (or affine) in θ. Then $V(\theta)$ is convex.

The Envelope Theorem

Characterizing the derivative of the value function is surprisingly useful.

Let x_{1} solve $\max _{x \in X} f(x, \theta)$ at θ_{1} with value function $V(\theta)$. Then θ_{1} must solve

$$
\min _{\theta \in \Theta} V(\theta)-f\left(x_{1}, \theta\right)
$$

so, $V(\theta)$ and $f\left(x_{1}, \theta\right)$ must be tangent

The Envelope Theorem

We can do the same trick for constrained maximization problems,

$$
\max f(x ; \theta) \text { s.t. } g(x ; \theta) \leq 0
$$

then θ_{1} solves

$$
\min _{\theta \in \Theta} V(\theta)-f(x, \theta) \text { s.t. } g\left(x_{1} ; \theta\right) \leq 0
$$

The Envelope Theorem

$$
\min _{\theta \in \Theta} V(\theta)-f\left(x_{1}, \theta\right) \text { s.t. } g\left(x_{1} ; \theta\right) \leq 0
$$

has KKT conditions

$$
V_{\theta}\left(\theta_{1}\right)=f_{\theta}\left(x_{1}, \theta_{1}\right)-\lambda g_{\theta}\left(x_{1}, \theta_{1}\right)
$$

Envelope Theorem

We can say a little more. Under constraint qualification, we "know" that θ_{1} solves

$$
\min _{\theta \in \Theta} V(\theta)-f\left(x_{1}, \theta\right)+\lambda(\theta) g\left(x_{1}, \theta\right)
$$

where $\lambda(\theta)$ is the λ from the KKT conditions. Applying the envelope theorem and KKT conditions gives

$$
V_{\theta}\left(\theta_{1}\right)=f_{\theta}\left(x_{1}, \theta_{1}\right)-\lambda\left(\theta_{1}\right) g_{\theta}\left(x_{1}, \theta_{1}\right)
$$

This again gives us the intuition that the multiplier is the shadow price of the constraint.

The Envelope Theorem

We're cheating a bit here.

- We need the KKT conditions to hold at a max for this to make any sense.
- It's not obvious that $V(\theta)$ is differentiable. In fact, it's easy to draw a picture where it isn't.

Theorem
Let $V(\theta)$ be the value function and $\phi(\theta)$ be the policy function. If f, g, and ϕ are continuously differentiable and $\operatorname{Dg}(\phi(\theta), \theta)$ has full rank then V is differentiable and

$$
D V(\theta)=-\lambda^{\prime} D_{\theta} g(\phi(\theta), \theta)+D_{\theta} f(\phi(\theta), \theta)
$$

Envelope Theorem

Asking for the policy function to be differentiable sucks.

- If the FOCs are necessary and sufficient, we could apply the implicit function theorem to them to get this.
- Alternatively, properties like monotonicity or concavity almost imply differentiability.
- If, for instance, we can show the value function is concave, then the envelope theorem basically holds.

Producer Theory

Consider a cost minimization problem:

$$
\begin{aligned}
C(r, w, \bar{y})= & \min _{k, l \in \mathbb{R}_{+}} r k+w l \\
& \text { s.t. } f(k, l) \geq \bar{y}
\end{aligned}
$$

Intuitively, it seems like observing a firm's costs should give us a lot of information about it's inputs. From the envelope theorem

$$
\frac{\partial C}{\partial w}=\frac{\partial[r k+w l]}{\partial w}=I(r, w, \bar{y})
$$

So changes in costs identify input demands. We can also see that

$$
\frac{\partial C}{\partial \bar{Y}}=\lambda(r, w, \bar{y})
$$

the multiplier identifies the marginal cost of increasing output.

Consumer Theory

What about the consumer problem

$$
\begin{aligned}
& \max _{x \in \mathbb{R}_{+}^{n}} u(x) \\
& \text { s.t. } p \cdot x \leq m
\end{aligned}
$$

Applying the envelope theorem to the indirect utility function

$$
\frac{\partial v}{\partial p_{i}}=\lambda x_{i}(p, m)
$$

and

$$
\frac{\partial v}{\partial m}=-\lambda
$$

so

$$
x(p, m)=\frac{-\nabla_{p} v(p, m)}{\frac{\partial v}{\partial m}(p, m)}
$$

Comparative Statics

Consider the unconstrained maximization problem

$$
\max _{x \in X} f(x ; \theta)
$$

This has first order conditions

$$
\nabla_{x} f(x ; \theta)=0
$$

We can use this to describe $\nabla_{\theta} x(\theta)$

Comparative Statics

From the implicit function theorem

$$
D_{\theta} x=-\left(D_{x, x}^{2} f\right)^{-1} D_{x, \theta}^{2} f
$$

Moreover, we know that $D_{x, x}^{2} f$ is negative semi-definite, from the first order conditions. So signing the cross-partial tells us a lot about the policy function.

Profit Maximization

Consider the firm problem

$$
\max q P(q ; \theta)
$$

where $\theta \in \mathbb{R}$ is parameterizes inverse demand so that $d P / d \theta>0$. From the previous logic,

$$
\operatorname{sign}\left(\frac{d q}{d \theta}\right)=\operatorname{sign}\left(P_{\theta}+q P_{q \theta}\right)
$$

Whether a shift in demand increases or decreases output depends on $P_{q \theta}$.

Risk Comparative Statics

Consider the problem of an individual with in initial wealth W_{0} trying to decide how much to invest in a risky asset with return $r \sim f(r), E(r)>0$, i.e.

$$
\max _{x \in\left[0, W_{0}\right]} \int_{-\infty}^{\infty} u\left(W_{0}-x+x(1+r)\right) f(r) d r
$$

Assume u is strictly concave, so this has a unique solution.

Risk

This has first order condition

$$
g\left(x, W_{0}\right):=\int r u^{\prime}\left(W_{0}+r x\right) f(r) d r=0
$$

- Clearly $x=0$ doesn't solve this. A risk averse consumer is willing to take on some risk.
- A natural assumption would be that risk aversion is decreasing in wealth. A natural measure of risk aversion is

$$
A(w)=-\frac{u^{\prime \prime}(w)}{u^{\prime}(w)}
$$

assume this is decreasing is w. Would a richer consumer be more willing to take on risk?

Risk

Assuming we're at an interior x, we can use the implicit function theorem to calculate $d x\left(W_{0}\right) / d W_{0}$.

$$
\frac{d x\left(W_{0}\right)}{d W_{0}}=-g_{x}^{-1} g_{W_{0}}
$$

where

$$
g_{x}=\int r^{2} u^{\prime \prime}\left(W_{0}+r x\right) f(r) d r
$$

and

$$
g_{W_{0}}=\int r u^{\prime \prime}\left(W_{0}+r x\right) f(r) d r
$$

Risk
We have to sign $g_{W_{0}}$.

Risk

We have to sign $g_{W_{0}}$.

$$
\begin{aligned}
g W_{0} & =\int_{-\infty}^{\infty} r u^{\prime \prime}\left(W_{0}+r x\right) f(r) d r \\
& =\int_{-\infty}^{\infty}-r u^{\prime}\left(W_{0}+r x\right) A\left(W_{0}+r x\right) f(r) d r \\
& =\int_{-\infty}^{0}-r u^{\prime}\left(W_{0}+r x\right) A\left(W_{0}+r x\right) f(r) d r \\
& +\int_{0}^{\infty}-r u^{\prime}\left(W_{0}+r x\right) A\left(W_{0}+r x\right) f(r) d r \\
& \geq \int_{-\infty}^{0}-r u^{\prime}\left(W_{0}+r x\right) A\left(W_{0}\right) f(r) d r \\
& +\int_{0}^{\infty}-r u^{\prime}\left(W_{0}+r x\right) A\left(W_{0}\right) f(r) d r \\
& =-A\left(W_{0}\right) g\left(x, W_{0}\right) \\
& =0
\end{aligned}
$$

