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The Value Function

The problems we solve in economics often have two types of
variables

▶ Endogenous variables - The variables economic agents
determine (e.g. the controls of the maximization problem)

▶ Exogenous variables - Parameters that are not determined by
decision makers

Understanding how the endogenous variables change when
exogenous variables change is a crucial part of economic analysis



Consumer Theory

Recall the standard consumer problem

max
x∈Rn

+

u(x) s.t. p · x ≤ m

▶ The x ’s are endogenous.

▶ The p’s and m are exogenous.

We’d like to understand the properties of
▶ The value function V (p,m), which gives the value of the

objective at the maximum.
▶ In the consumer problem, this is called indirect utility.

▶ The policy function x(p,m), which gives the values of the
endogenous variables that solve the maximization problem.
▶ In the consumer problem, this is called demand.
▶ This is not necessarily a function. We’ll talk about that more

in math camp.
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Continuity

In general, the value and policy functions are well-behaved. Recall:

Definition

A set X ⊆ Rn is (sequentially) compact if if every sequence in X
has a convergent subsequence.

Definition

A function is continuous at x at x if for every sequence (xn) → x ,
limn→∞ f (xn) = f (x).



Theorem of the Maximum

Theorem (A baby theorem of the maximum)

Suppose f : X ×Θ → R is strictly concave in X and continuous,
X ⊆ Rn is non-empty, compact and convex and g : X ×Θ → Rm

is quasiconvex in each component, continuous and
{x : g(x ; θ) ≤ 0} is compact for all θ. Then the value and policy
functions for the maximization problem

max
x∈X

f (x ; θ) s.t. g(x ; θ) ≤ 0

are continuous.



Concavity - Maximum theorem proof

Since f is continuous and the constraint is compact we know a
max exists for each θ.

Since f (x ; θ) is strictly concave, we know there is a unique
maximum at each θ. A natural conjecture would be that the limit
of any sequence of maximizers is a maximum, which would give us
continuity.
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Proof

Fix a sequence θn → θ. We want to show that V (θn) → V (θ) and
ϕ(θn) → ϕ(θ) where V , ϕ are the value and policy functions.

▶ Let xn be the argmax at θn.

▶ Take any convergent subsequence xnk , let x
∗ = lim xnk

▶ Note that x∗ must be feasible at θ. So V (θ) ≥ f (x∗; θ).
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Proof

We have that V (θ) ≥ f (x∗; θ). We want to show V (θ) = f (x∗; θ).

Suppose not

▶ If f (x∗) < V (θ) then there exists x s.t. f (x ; θ) > f (x∗, θ).

▶ But then there exists an ϵ, δ > 0 s.t. if ||(x ′, θ′)− (x , θ)|| < ϵ
then f (x ′, θ′)− f (x∗, θ) > δ.

▶ But, then lim f (xnk , θnk ) ≥ f (x∗, θ) + δ

▶ Thus, x∗ must be the maximum. Since the maximum is
unique xn → x∗ and thus V and ϕ are continuous.
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Maximum theorem

Note that the convexity assumptions play almost no role. They
make the argmax unique, and that’s it.

One may conjecture this holds much more generally.

▶ In fact, if the objective is continuous, the constraints are
compact and vary “continuously” then the value and policy
functions are continuous.

▶ This is Berge’s Theorem of the Maximum.

▶ We need a theory of multivalued functions to deal with the continuity of

the constraints and policy functions that I don’t want to spend time on in

this course.



Concavity

We can say a number of things about the concavity of the value
function

▶ Suppose f (x , θ) is (quasi)concave and the other assumptions
for the maximum theorem hold. Then V (θ) is (quasi)concave.

▶ Suppose we’re solving maxx∈X f (x ; θ) for convex Θ and f is
linear (or affine) in θ. Then V (θ) is convex.



The Envelope Theorem

Characterizing the derivative of the value function is surprisingly
useful.

Let x1 solve maxx∈X f (x , θ) at θ1 with value function V (θ). Then
θ1 must solve

min
θ∈Θ

V (θ)− f (x1, θ)

so, V (θ) and f (x1, θ) must be tangent



The Envelope Theorem

We can do the same trick for constrained maximization problems,

max f (x ; θ) s.t. g(x ; θ) ≤ 0

then θ1 solves

min
θ∈Θ

V (θ)− f (x , θ) s.t. g(x1; θ) ≤ 0



The Envelope Theorem

min
θ∈Θ

V (θ)− f (x1, θ) s.t. g(x1; θ) ≤ 0

has KKT conditions

Vθ(θ1) = fθ(x1, θ1)− λgθ(x1, θ1)



Envelope Theorem

We can say a little more. Under constraint qualification, we
“know” that θ1 solves

min
θ∈Θ

V (θ)− f (x1, θ) + λ(θ)g(x1, θ)

where λ(θ) is the λ from the KKT conditions. Applying the
envelope theorem and KKT conditions gives

Vθ(θ1) = fθ(x1, θ1)− λ(θ1)gθ(x1, θ1)

This again gives us the intuition that the multiplier is the shadow
price of the constraint.



The Envelope Theorem

We’re cheating a bit here.

▶ We need the KKT conditions to hold at a max for this to
make any sense.

▶ It’s not obvious that V (θ) is differentiable. In fact, it’s easy to
draw a picture where it isn’t.

Theorem

Let V (θ) be the value function and ϕ(θ) be the policy function. If
f , g , and ϕ are continuously differentiable and Dg(ϕ(θ), θ) has full
rank then V is differentiable and

DV (θ) = −λ′Dθg(ϕ(θ), θ) + Dθf (ϕ(θ), θ)



Envelope Theorem

Asking for the policy function to be differentiable sucks.

▶ If the FOCs are necessary and sufficient, we could apply the
implicit function theorem to them to get this.

▶ Alternatively, properties like monotonicity or concavity almost
imply differentiability.
▶ If, for instance, we can show the value function is concave,

then the envelope theorem basically holds.



Producer Theory

Consider a cost minimization problem:

C (r ,w , ȳ) = min
k,l∈R+

rk + wl

s.t. f (k, l) ≥ ȳ

Intuitively, it seems like observing a firm’s costs should give us a
lot of information about it’s inputs. From the envelope theorem

∂C

∂w
=

∂[rk + wl ]

∂w
= l(r ,w , ȳ)

So changes in costs identify input demands. We can also see that

∂C

∂Ȳ
= λ(r ,w , ȳ)

the multiplier identifies the marginal cost of increasing output.



Consumer Theory

What about the consumer problem

max
x∈Rn

+

u(x)

s.t. p · x ≤ m

Applying the envelope theorem to the indirect utility function

∂v

∂pi
= λxi (p,m)

and
∂v

∂m
= −λ

so

x(p,m) =
−∇pv(p,m)

∂v
∂m (p,m)



Comparative Statics

Consider the unconstrained maximization problem

max
x∈X

f (x ; θ).

This has first order conditions

∇x f (x ; θ) = 0.

We can use this to describe ∇θx(θ)



Comparative Statics

From the implicit function theorem

Dθx = −(D2
x ,x f )

−1D2
x ,θf

Moreover, we know that D2
x ,x f is negative semi-definite, from the

first order conditions. So signing the cross-partial tells us a lot
about the policy function.



Profit Maximization

Consider the firm problem

max qP(q; θ)

where θ ∈ R is parameterizes inverse demand so that dP/dθ > 0.
From the previous logic,

sign

(
dq

dθ

)
= sign (Pθ + qPqθ)

Whether a shift in demand increases or decreases output depends
on Pqθ.



Risk Comparative Statics

Consider the problem of an individual with in initial wealth W0

trying to decide how much to invest in a risky asset with return
r ∼ f (r), E (r) > 0, i.e.

max
x∈[0,W0]

∫ ∞

−∞
u(W0 − x + x(1 + r))f (r) dr

Assume u is strictly concave, so this has a unique solution.



Risk

This has first order condition

g(x ,W0) :=

∫
ru′(W0 + rx)f (r) dr = 0

▶ Clearly x = 0 doesn’t solve this. A risk averse consumer is
willing to take on some risk.

▶ A natural assumption would be that risk aversion is decreasing
in wealth. A natural measure of risk aversion is

A(w) = −u′′(w)

u′(w)
,

assume this is decreasing is w . Would a richer consumer be
more willing to take on risk?



Risk

Assuming we’re at an interior x , we can use the implicit function
theorem to calculate dx(W0)/dW0.

dx(W0)

dW0
= −g−1

x gW0

where

gx =

∫
r2u′′(W0 + rx)f (r) dr

and

gW0 =

∫
ru′′(W0 + rx)f (r) dr



Risk
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