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The Value Function

The problems we solve in economics often have two types of
variables
» Endogenous variables - The variables economic agents
determine (e.g. the controls of the maximization problem)
» Exogenous variables - Parameters that are not determined by
decision makers

Understanding how the endogenous variables change when
exogenous variables change is a crucial part of economic analysis



Consumer Theory
Recall the standard consumer problem

t p-x<
;relﬂaéu(x)s p-x<m

» The x's are endogenous.
» The p's and m are exogenous.

We'd like to understand the properties of

» The value function V/(p, m), which gives the value of the
objective at the maximum.

» In the consumer problem, this is called indirect utility.



Consumer Theory
Recall the standard consumer problem

t p-x<
)Eréﬂaéu(x)s p-x<m

» The x's are endogenous.
» The p's and m are exogenous.

We'd like to understand the properties of
» The value function V/(p, m), which gives the value of the
objective at the maximum.
» In the consumer problem, this is called indirect utility.
» The policy function x(p, m), which gives the values of the
endogenous variables that solve the maximization problem.

» In the consumer problem, this is called demand.
» This is not necessarily a function. We'll talk about that more
in math camp.



Continuity

In general, the value and policy functions are well-behaved. Recall:

Definition
A set X C R" is (sequentially) compact if if every sequence in X
has a convergent subsequence.

Definition
A function is continuous at x at x if for every sequence (x,) — X,
limp_o00 F(Xn) = F(x).



Theorem of the Maximum

Theorem (A baby theorem of the maximum)

Suppose f : X x © — R is strictly concave in X and continuous,
X C R" is non-empty, compact and convex and g : X x © — R
is quasiconvex in each component, continuous and

{x : g(x;6) <0} is compact for all 0. Then the value and policy
functions for the maximization problem

max f(x;0) s.t. g(x;0) <0
xeX

are continuous.



Concavity - Maximum theorem proof

Since f is continuous and the constraint is compact we know a
max exists for each 6.



Concavity - Maximum theorem proof

Since f is continuous and the constraint is compact we know a
max exists for each 6.

Since f(x; 0) is strictly concave, we know there is a unique
maximum at each 6. A natural conjecture would be that the limit
of any sequence of maximizers is a maximum, which would give us
continuity.



Proof

Fix a sequence 6, — 6. We want to show that V(6,) — V(0) and
#(0n) — ¢(0) where V, ¢ are the value and policy functions.

» Let x, be the arg max at 6,,.

» Take any convergent subsequence x,,, let x* = lim xp,



Proof

Fix a sequence 6, — 6. We want to show that V(6,) — V(0) and
#(0n) — ¢(0) where V, ¢ are the value and policy functions.

» Let x, be the arg max at 6,,.
» Take any convergent subsequence x,,, let x* = lim xp,
» Note that x* must be feasible at §. So V/(6) > f(x*;6).



Proof

We have that V(0) > f(x*;0). We want to show V/(0) = f(x*; 6).



Proof

We have that V(0) > f(x*;0). We want to show V/(0) = f(x*; 6).

Suppose not
> If f(x*) < V/(0) then there exists x s.t. f(x;6) > f(x*,0).



Proof

We have that V(0) > f(x*;0). We want to show V/(0) = f(x*; 6).
Suppose not
> If f(x*) < V/(0) then there exists x s.t. f(x;6) > f(x*,0).
» But then there exists an €, > 0 s.t. if |[(x/,0") — (x,0)]| < e
then f(x', @) — f(x*,0) > 6.
> But, then lim f(xn,,0n,) > f(x*,0) + 6



Proof

We have that V(0) > f(x*;0). We want to show V/(0) = f(x*; 6).

Suppose not

>
>

>

If f(x*) < V() then there exists x s.t. f(x;0) > f(x*,0).
But then there exists an €,0 > 0 s.t. if [|(x/,0) — (x,0)|| <€
then f(x/,0") — f(x*,0) > 4.

But, then lim f(xp,,6pn,) > f(x*,0) + 6

Thus, x* must be the maximum. Since the maximum is
unique x, — x* and thus V and ¢ are continuous.



Maximum theorem

Note that the convexity assumptions play almost no role. They
make the arg max unique, and that’s it.

One may conjecture this holds much more generally.

» In fact, if the objective is continuous, the constraints are
compact and vary “continuously” then the value and policy
functions are continuous.

» This is Berge's Theorem of the Maximum.

P We need a theory of multivalued functions to deal with the continuity of
the constraints and policy functions that | don’'t want to spend time on in

this course.



Concavity

We can say a number of things about the concavity of the value
function

» Suppose f(x, ) is (quasi)concave and the other assumptions
for the maximum theorem hold. Then V() is (quasi)concave.

» Suppose we're solving max,cx f(x; 6) for convex © and f is
linear (or affine) in 6. Then V() is convex.



The Envelope Theorem

Characterizing the derivative of the value function is surprisingly
useful.

Let x; solve maxyex f(x,0) at 61 with value function V/(6). Then
61 must solve

in V(6) — f(x..0
min (0) — f(x1,0)

so, V(0) and f(x1,0) must be tangent



The Envelope Theorem

We can do the same trick for constrained maximization problems,
max f(x;0) s.t. g(x;0) <0
then 607 solves

inV(0)—f 1. 0) <
min (0) — f(x,0) s.t. g(x1;6) <0



The Envelope Theorem

min V(0) — f(xq,0) s.t. g(x1;60) <0
0cO©

has KKT conditions

Vip(01) = fy(x1,01) — Ago(x1,01)



Envelope Theorem

We can say a little more. Under constraint qualification, we
“know"” that 81 solves

re‘neig V(0) — f(x1,0) + \(0)g(x1,0)

where A\(6) is the A from the KKT conditions. Applying the
envelope theorem and KKT conditions gives

Vo(61) = fo(x1,01) — A(01)go(x1, 01)

This again gives us the intuition that the multiplier is the shadow
price of the constraint.



The Envelope Theorem

We're cheating a bit here.

» We need the KKT conditions to hold at a max for this to
make any sense.

» It's not obvious that V/(#) is differentiable. In fact, it's easy to
draw a picture where it isn't.

Theorem

Let V(0) be the value function and ¢(6) be the policy function. If
f,g, and ¢ are continuously differentiable and Dg(4(0),6) has full
rank then V is differentiable and

DV(0) = —X'Dsg(¢(6),0) + Dof (£(6),0)



Envelope Theorem

Asking for the policy function to be differentiable sucks.

» If the FOCs are necessary and sufficient, we could apply the
implicit function theorem to them to get this.
> Alternatively, properties like monotonicity or concavity almost
imply differentiability.
» |If, for instance, we can show the value function is concave,
then the envelope theorem basically holds.



Producer Theory

Consider a cost minimization problem:

C(ryw,y) = kr/neiﬂ& rk + wl

st. f(k,1) >y

Intuitively, it seems like observing a firm's costs should give us a
lot of information about it's inputs. From the envelope theorem

oC  Olrk +wl] _
ow . ow = I(r,w,y)

So changes in costs identify input demands. We can also see that

oc _
oY

the multiplier identifies the marginal cost of increasing output.

A(r? W?,)_/)



Consumer Theory

What about the consumer problem
max u(x
x€R" ( )

st. p-x<m

Applying the envelope theorem to the indirect utility function

and

SO



Comparative Statics

Consider the unconstrained maximization problem

max f(x; ).

xeX

This has first order conditions
Vxf(x;0) =0.

We can use this to describe Vyx(0)



Comparative Statics

From the implicit function theorem
Dox = —(DZ . f) D2 of

Moreover, we know that Df’xf is negative semi-definite, from the
first order conditions. So signing the cross-partial tells us a lot
about the policy function.



Profit Maximization

Consider the firm problem
max qgP(q; 0)

where 6 € R is parameterizes inverse demand so that dP/d6 > 0.
From the previous logic,

dq .
sign <d9> = sign (Py + qPqp)

Whether a shift in demand increases or decreases output depends
on Pgy.



Risk Comparative Statics

Consider the problem of an individual with in initial wealth W
trying to decide how much to invest in a risky asset with return
r~f(r), E(r) >0, ie.

Wo — 1 f(r)d

Assume u is strictly concave, so this has a unique solution.



Risk
This has first order condition

g(x, Wp) = /ru'(Wo +rx)f(r)dr=0

» Clearly x = 0 doesn't solve this. A risk averse consumer is
willing to take on some risk.

P A natural assumption would be that risk aversion is decreasing
in wealth. A natural measure of risk aversion is

Aw) = -2,

assume this is decreasing is w. Would a richer consumer be
more willing to take on risk?



Risk

Assuming we're at an interior x, we can use the implicit function
theorem to calculate dx(Wp)/dWjp.

dW, = —8x 8wy
where
gX:/rzu”(W0+rx)f(r)dr
and

g, = / Al (Wo + r)F(r) dr



Risk

We have to sign guyy,.



Risk

We have to sign guyy,.

- —/°° "(Wo + m)f(r) dr

—ru' (Wo + m<)A(Wo + rx)f(r) dr

+

0
/ —rd' (Wo + mx)A(Wo + rx)f(r) dr
/ —ru' (Wo + m<)A(Wo + rx)f(r) dr

0

0
/ —ru' (W + rx)A(Wp)f(r) dr

+/Oo—ru (Wo + m)A(Wo)f(r) dr

= —A(Wo) (X, Wo)
=0

o



