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I. RECAP FROM PREVIOUS LECTURE

• Reflection and transmission coefficients

ΓV =
Zl − Z0

Zl + Z0

= −Γl (1)

• Average power delivered to the load

Pℓ =
1
2
Re[V (ℓ)I∗(ℓ)], where the 1/2 comes from the fact that the field is harmonic.

Pℓ =
1

2Z0

· |V +e−γℓ|2(1− |ΓV |2) . (2)

• VSWR

V SWR =
1 + |ΓV |
1− |ΓV |

. (3)

• Input impedance

Zin = Z0 ·
Zℓ + Z0 tanh γℓ

Z0 + Zℓ tanh γℓ
. (4)
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II. EXAMPLES OF LOADS (TERMINATIONS)

1. Matched Load

Zℓ = Z0 =⇒ ΓV ≡ Zℓ−Z0

Zℓ+Z0
= 0 No reflection!

VSWR = 1, Zin = Z0, Pℓ = 1
2Z0

|V +|2e−2αℓ — power delivered is maximum.

This is only obtained if α ̸= 0.

2. Open-Circuit Zℓ = ∞ =⇒ ΓV = Zℓ−Z0

Zℓ+Z0
= 1

VSWR = ∞, Zin = Z0 coth γℓ, Pℓ = 0 — Compare this with the DC-case

where all the input power is delivered!

For α = 0 (lossless), Zin = −iZ0 cot
2πℓ
λ

if ℓ = λ
4
, Zin = 0, so the open line will look as

a shortcut!

3. Short-circuit Zℓ = 0 =⇒ ΓV = Zℓ−Z0

Zℓ+Z0
= −1,
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VSWR = ∞, Zin = Z0 tanh γℓ, Pℓ = 0.

For α = 0 (lossless), β = 2π
λ

quad Zin = iZ0 tan
2πℓ
λ

— If ℓ = λ
4
, Zin = ∞, so the

shorted line looks like an infinite impedance to a source! (even if the resistance of the

wire is zero!)
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III. RESONATORS FROM TRANSMISSION LINES

It is possible to make resonators from transmission lines, 3D cavities, etc. – The most

usual case is the short-circuited transmission-line resonator.

Zℓ = 0, Zin = Z0 tanh(αℓ+ iβℓ) = Z0
tanhαℓ+i tanβℓ
1+i tanβℓ tanhαℓ

.

If losses are not too large, αℓ ≪ 1, we have tanαℓ ≈ αℓ, so

Zin = Z0
αℓ+ i tan βℓ

1 + iαℓ tan βℓ
. (5)

Now, recall from the previous lecture that β = ω/vp = ω
√
L′C ′, vp = 1/

√
L′C ′, Z0 =√

L′/C ′,

α = R′

2

√
C ′/L′. We also take G′ = 0.

We will consider β0ℓ = π, or ℓ = λ0/2 as the resonance condition, leading to a resonance

frequency ω0.

We can find this frequency from ω0

vp
ℓ = ω0

√
L′C ′ℓ = π, so ω0 = π

ℓ
√
L′C′ . Let’s check that

everything is O.K.: so we get ω0 = 2π × ν0, where ν0 = vp/λ0 = vp/(2l) = frequency of

oscillation = inverse of period of oscillation.

We can expand this around this point: tan βℓ ≃ tan
(
π + π ω−ω0

ω0

)
= tanπ ω−ω0

ω0
≃ π ω−ω0

ω0
,

if |ω − ω0| ≪ ω0.

So, Zin = Z0

αℓ+iπ
ω−ω0
ω0

1+αℓπ
ω−ω0
ω0

≃ Z0(αℓ+ iπ ω−ω0

ω0
)

=
√

L′/C ′( ℓ
2
R′
√
C ′/L′ + iℓ

√
L′C ′(ω − ω0)) =

1
2
R′ℓ+ iL′ℓ(ω − ω0).

Suppose now that we look back at the series RLC circuit

Z = R + iL
ω
(ω2 − ω2

0) ≃ R + 2iL(ω − ω0) near resonance, ω ≃ ω0.

Therefore, we can identify R = 1
2
R′ℓ and L = 1

2
L′ℓ.

Quality Factor Q =
ω0L

R
=

ω0L
′

R′ =
β0

2α
. (6)
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Interesting question to think about: Why do we get the factor 1/2 in the RLC

equivalent above?

–Answer: Because the current in the short-circuited line is half a sinusoid , therefore we

obtain only half of the total resistance and inductance of the full length ℓ.

To see this explicitly, let us write the solutionV (x) ≃ V +e−iβx + V −eiβx — here we neglect α.

I(x) ≃ − β
ωL

(−V +e−iβx + V −eiβx)
(7)

Since I(0) = 0 =⇒ V + ≡ V − at this point (also you can see that ΓV ≡ V −

V + e
2iβ0ℓ = −1 and

β0ℓ = π).

So V (x) = 2V + cos β0x

I(x) = −2iβ
ωL

V + sin β0x = I+ sin β0x .
(8)

Therefore the magnetic-field energy:

WL′ =

ˆ λ0/2

0

dx · 1
4
L

′|I(x)|2 = 1

4
|I+|2L′

ˆ λ0/2

0

sin2 β0xdx =
λ0

16
· |I+|2L′. (9)

At resonance: WC′ = WL′ , so

W = WC′ +WL′ =
λ0

8
L′|I+|2 . (10)
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P = 1
2

´ λ0

0
dx ·R′|I(x)|2 = R′

2
|I+|2

´ λ0

0
sin2 β0xdx,

so

P =
λ0

8
R′|I+|2 . (11)

Therefore,

Q =
ω0W

P
=

ωL
′

R′ , (12)

or: Q = π
ℓR′

√
L
′

C′ =
πZ0

ℓR′ = π
2ℓα

, where we used α ≃ R
2Z0

, ω0 =
π

ℓ
√

L′C′
.
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