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I. RECAP FROM PREVIOUS LECTURE
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e Reflection and transmission coeflicients
L= Zy B
W=2Z72 """ 0

e Average power delivered to the load

P, = Re[V (€)I*({)], where the 1/2 comes from the fact that the field is harmonic.
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e VSWR
1+ Ty
VSWR = . 3
1 -y )

e Input impedance

Z. =7 Zy+ Zy tanhvﬁ.
Zo + Zytanh v/

2



II. EXAMPLES OF LOADS (TERMINATIONS)

1. Matched Load

.
2o i Zy = Zy
.

Zo=ly — 'y = % =0 No reflection!

VSWR = 17 ZZ = Zo, Pg = ‘V+|2€_2aé

= — power delivered is maximum.
270

This is only obtained if a # 0.

2. Open-Circuit Z, =00 = I'y = Z;gg -1

Inductive

Capacitive

VSWR = oo, Z;,, = Zycothyl, P, = 0 — Compare this with the DC-case

where all the input power is delivered!
For o« = 0 (lossless), Z;, = —iZ cot % if ¢ = %, Zin = 0, so the open line will look as
a shortcut!

3. Short-circuit Z, = 0 = I'y = 2=2 =

Ze+Zo ’
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2.27”(" = tan(8¢)
Inductive
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Capacitive

VSWR = o0, Z;, = Zgtanh~y¢, P, =0.
For a = 0 (lossless), f = 27” quad Z;, = iZytan % — Il = %, Zin = 00, SO the
shorted line looks like an infinite impedance to a source! (even if the resistance of the

wire is zero!)



III. RESONATORS FROM TRANSMISSION LINES

It is possible to make resonators from transmission lines, 3D cavities, etc. — The most

usual case is the short-circuited transmission-line resonator.

Zin

Zy =0, Ziy = Zytanh(al +iBl) = Z, —;jﬁa‘f@;@g‘hﬁjg.

If losses are not too large, af < 1, we have tan alf ~ a/, so

Z. = 7, af—i.—ztanﬁﬁ '
1 4 tal tan pL

(5)

Now, recall from the previous lecture that § = w/v, = WV L'C', v, =1/VL'C'", Z,=

a= %/\/W We also take G' = 0.

We will consider Syf = 7, or £ = A/2 as the resonance condition, leading to a resonance
frequency wy.

We can find this frequency from %’6 = woVL'C'l = T, 80 wy = N%C’ Let’s check that
everything is O.K.: so we get wy = 27 X vy, where vy = v,/A\g = v,/(2l) = frequency of
oscillation = inverse of period of oscillation.

w—wo

We can expand this around this point: tan ¢ ~ tan <7T + W%) = tan T ~ ,
0 wo wo

if |w — wo| <K wp.

w—w

al+im
So, Z; ZD1+a£7r“;“0 ~ Zo(al +im = )

0
= /L' /C'(YR\/C'/L' + itN/L'C'(w — wp)) = R0+ iL(w — wp).

Suppose now that we look back at the series RLC circuit
Z =R+ iL(w? —wi) ~ R+ 2iL(w — wy) near resonance, w =~ wy.

Therefore, we can identify R = 1R'¢ and L = %L’ l.
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Interesting question to think about: Why do we get the factor 1/2 in the RLC
equivalent above?

—Answer: Because the current in the short-circuited line is half a sinusoid , therefore we
obtain only half of the total resistance and inductance of the full length ¢.

To see this explicitly, let us write the solution

V(z) ~ VTe # 4 V=€ — here we neglect a. 0

I(z) ~ =2 (=VHe #hr 4 V=¢ifr)
Since I(0) =0 = V* =V~ at this point (also you can see that I'y = {—e*%* = —1 and

BOE = 7T>.

So
V(z) =2V cos Box

I(z) = —22V*sin Byz = I sin Byx .

Therefore the magnetic-field energy:

L Xo/2 1., 1 Xo/2 Ao
Wy = / de - ZL'|I(z)]> = Z|T7]PL! / sin® foxde = =2 - [IT°L, (9)
0 4 4 0 16

At resonance: Wegr = Wy, so

o
W =We + Wy = §°L’|I+|2 . (10)
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or:

= 5 o de RII@)? = BT 3 sin® oda,
— A
P =R
8
Therefore, o
woW — wL'
Q="21"= -,
P R
Q= 7\ & = 53 = 555, where we used a =~ 57wy =
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