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LEARNING OUTCOMES

Students can solve the weekly lecture problems, home problems, and exercise problems on
Kinetics:

O Quantities and equations of classical elasticity
O Constitutive equation of linearly elastic isotropic material

O Derivation of engineering models by using the principle of virtual work, integration by

parts, and the fundamental lemma of variation calculus
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DERIVATION OF ENGINEERING MODELS
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3.1 CLASSICAL LINEAR ELASTICITY

Balance of mass (def. of a body or a material volume) Mass of a body is constant. €

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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LOCAL FORMS

Application of the first principles to a material element inside the body or from its boundary
gives the coordinate system invariant local forms:
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Assuming an equilibrium setting (geometry, stress, loading etc.) the local forms can be used

to find a new equilibrium setting (actually, displacements of the particles) when, e.g.,
external given forces are changed in some manner.
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TRACTION AND STRESS

Material elements of a body interact with a surface force (force per unit area) called as the
traction vector. Stress & describes the surface forces acting on (all edges of) a material

element. In a Cartesian (X, Yy, z) —coordinate system, the second order stress tensor
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Traction acting on an edge of unit outward normal fi is given by 6 =fi- & and the force
(element) dF = 5dA=rfi-&5dA=dA-& where the last form uses the directed area concept
dA = fidA. The representation in («, 3, 7) —coordinate system follows by changing the basis

vectors and indices of the components.
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LINEAR STRAIN

Shape deformation measure of material element is the symmetric part of displacement
gradient, i.e., & =[VU +(VU).]/2. In a Cartesian (X, Y, z)—coordinate system, the second

order linear strain tensor

CNTT o e T v e Ty (=T
i Exx  Exy  Exz ||| I Exx J Exy J Eyx
§=43]¢ Eyx Eyy Eyz SIv=211+ <5W>+<]IZ> ngz>+<ﬁ> 1€z 1 Where
\E, Ex €1y b \E, JZE (22 \Eiﬁ) L E2x \ﬂzj  Exz )
(e | [0u, 10X EMEEN QU [ Ox+0uy | oy’
1€y =10Uy [0y pand § &y, r =1 &yy >:%< ou, 1oy +ouy /0z ;.
&) |OU;l0z) ) | Exz) | Ouy [0z +0u, [ ox

The representation in («, £, 7) —coordinate system follows from the definition.
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LINEARLY ELASTIC MATERIAL

The generalized Hooke’s law for an isotropic (properties do not depend on direction) and

homogeneous (properties do not depend on position) can be expressed in tensor form

«>
«>

E:Vi. Ina Cartesian (X,Y,z)—coordinate system, the fourth order elasticity tensor
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depends on the 3x3 elasticity matrices [E| and [G] given material experiments.
Representation in a («,/f,y)—coordinate system follows by replacing the Cartesian
(X,Y,z)—coordinate system basis vectors by their representations in terms of the basis

vectors of the («, £, 7) —coordinate system.
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The generalized Hooke’s law in its component form and linear strain components (not

engineering strains) according to, e.g., literature is given by

- =[E]: Ey (+ 10yz (= 2[C]i&y; p» aNd <oy ¢ =2[G]{ &y (-

(O 7z €7z ) Oz L €7x  Oxz L €xz

Starting with the stress representation

r__,__,\Tr 3 f.—».-»‘Tr 3 f—.-rﬂTr A
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Using the component forms of the generalized Hooke’s law (and symmetry of strain to get

rid of the multiplier 2)
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CONSTITUTIVE EQUATION VARIANTS

Stress-displacement relationship of linearly elastic material model can be expressed in
various equivalent forms depending on the symmetry conditions imposed on the fourth order

elasticity tensor E:

(@) &=I§:%[VU+(VU)C] and & =36, —
(b) &= E Vi and & =6, and E - EC « Last index pair conjugate!
) &6=E:vi and E=E,=E,=E, €

Also, other kinetic conditions like o,, =0 can be satisfied ‘a priori’ by the selection of

elasticity tensor. The conditions of (c) are called as the minor and major symmetries.
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ISOTROPIC MATERIAL

The generalized Hooke’s law for an isotropic material follows with the elasticity matrices

_ --1 _ _

1 v —v . 1-v v 1%
[E]=E|—v 1 —v| = v 1-v v |,
1+v)1-2v)

-V -V l_ v 1% l—v_
(G 0 0] = (1 0 O]
[G]: 0 G 0|= 010

2(1+v)

_0 0 G_ _O 0 1_

In which the material parameters E and v are the Young’s modulus and the Poisson’s ratio,
respectively, and G=E/(2+2v) the shear modulus. Using these, one may deduce the

elasticity matrices for the engineering models.
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In the coordinate system invariant form 6 = E : € = E : Vi, the elasticity tensor (satisfying

the major and minor symmetries) is given by

_.’._’\T

Tl T1 - 7Y [§+0) [6 o o7ffi+ii]
E-Jjit El=v 1 —v| Jjit+ljk+Kt |0 G ol|ljk+K L.
) Lvoov 1] k) (ke | L0 0 G |k+ik
Elasticity tensor of plate model (o,, =0)
)T v o) [I+0) [ o o)[+F
E:<]j7> E2 v 1 0 Jjr+{Jk+kit |0 G 0 {jk+kj!.
) Lo o o)) |ki+ik| L0 0 GJ[ki+ik,

Elasticity tensor of the beam model (o, =05, =0)
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Representation in some other system can be obtained from the Cartesian (X, Y, z) —system

representation by using the relationships between the basis vectors. For example, in the

cylindrical (r,¢,z)—coordinate system

r_>_>\T r_>_>\ (— — _,_,\T (= — = )

€€ €€, €€s + €4Er €€y +E4€
E =188, [E] 88 1 +16,8, +8,6, [G]I6,8, +&E;

&8, | 6,6 ] |&6 +&§ 6,6 +&E,
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EXAMPLE The cross section of the column is square of side length h. Density p, Young’s
modulus E, and Poisson’s ratio v are constants. The column is loaded by a constant traction
of magnitude P /h? at its free end. Determine stress & and displacement G starting from

the generic equations for linear elasticity. Assume that the transverse (to the axis)

|

displacement is not constrained by the support.

Answer U =——(=Xi +vyj+vzk), &=——1ii L
) 2 =
Eh h
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The component forms of the equilibrium equations and constitutive equations of a linearly

elastic isotropic material in a Cartesian (X, Y, z) —coordinate system

(004 | 0X+ 00y, | 8y + 005, [ 02+ Ty
00yy | OX+ 00y 1Oy + 0o,y [ 02+ Ty, + =0,
00y, | OX+ 00y, 10y + 00, 102+ 1,

\

(0u/ox) , (1 v v oy oy ]| [ow|  [(éu/dy+év/ex)
<8V/8y>:E v 1 —vijoywand you, =10, 1 =Gq0ov/0z+0ow/dy .
| ow/ oz | v v 1]lc, Gy Gy | OW/dx +0u/oz |

Let us assume that the only non-zero stress component o,,(x) and displacement
components u, =u(x), Uy =Vv(y) and u, =w(z). The axial stress follows from the

equilibrium equation and traction is known at the free end X = L. Therefore
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d(‘j’xxzo 0<x<L and o(L)=— = on()=—"
X

h2 h2

Generalized Hooke’s law written for the uniaxial stress implies that

du oy P dv Vv P dw v P
= == =~ =0y =V =~ " O0Oxw=V——>

dx E ER2  dy E ER?2 dz E Eh?

Axial displacement vanishes at the support and the transverse displacement at the axis:

du P P

= O<x<L and u(0)=0 ux) =———x, €
VR (0) = U(X) -
dv P 1 1 P
dy VEh2 5 <y<2 () — (y) VEth
d—W:—VL —1h<z<£h and w(0)=0 = W(Z)=VLZ. €
dz Eh?2 2 Eh?
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3.2 PRINCIPLE OF VIRTUAL WORK

Principle of virtual work oW =W '™ +sW®' =0 vsi U is just one representation of

the balance laws of continuum mechanics. It is important due to its wide applicability and

physical meanings of the terms.
/ virtual work density

aw‘”t:j W\,”tdv_—jv (G :58.)dV

SWEX = j swXtdy = j (f-su)dV

SWEXt j swetdA = j (T - 5U)dA

The details of the expressions vary case by case, but the principle itself does not!
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In what follows, we skip some of the technical details and assume that displacement
boundary conditions are satisfied ‘a priori’. The local and variational forms of elasticity
problem are equivalent, i.e., the local form implies the variational form and the other way

around. Let us consider first the derivation of the variational form:

. local form

Multiplication of the momentum equation by virtual displacement o, integration over the
solution domain, and integration by parts with (V-é)-B:V-(é-B)—é:(VB)C (selections
d=¢& and b =450), and division of the displacement gradient into its symmetric and anti-

symmetric parts according to Vi = & + ¢ give
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jv (V-6+1)-8UdV =0 VéieU =
[, Corogyav [ (F-omav+[ —(f-6-6U)dA=0 VsieU.

The boundary conditions of the local form imply that either 5G =0 or i-& =t at all points

of oV . Therefore, one ends up with
variational

W =, (-6:68)dV +[, (f-omav+| —(-6U0)dA=0 VsieU.  form

The derivation assumes that & =&, (where exactly?). In practice, symmetry of stress is

satisfied ‘a priori’ by the form of the constitutive equation.

-

In derivation to the reverse direction (with the assumption & =&, for consistency), the

starting point is the variational form. One substitutes first division & = Vi — ¢ to get
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SW = jv [-6:(VSU), JdV + jv (f -50)dV + jav (T-50)dA=0 V&0 .

Integration by parts with (V-&)-b=V-(4-b)—4&:(Vb). (selections &=6 and b =50)

gives an equivalent but more convenient form

(svvzjv (V-o-+f)-5udV+_[aV (-fi-6+F)-60dA=0 Vo0 .

The variational form, together with the assumed symmetry of stress and the conditions for

the function set U , implies equations

\

-

V-6+f=0 and 6-6,=0 in V, . .
. Thestarting point

f-c—-t=0 or U-0=0 onoV.
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BOUNDARY VALUE PROBLEM

Principle of virtual work is one of the variational forms of equations of mechanics. Given a

variational form, the underlying boundary value problems follows with the steps:

First, use integration by parts in the integral over the mathematical solution domain to

remove the derivatives acting on the variations of displacement components.

Second, use the fundamental lemma of variation calculus to deduce the differential
equation(s) and boundary (natural) conditions. Consider convenient subsets of possible
displacement variations to deduce first the equilibrium equation and thereafter the

conditions at the boundaries.

Third, deduce the additional (essential) boundary conditions using the set of displacement

variations (for example, if variation of a quantity vanishes, the quantity is given).
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GAUSS’S THEOREM

Divergence theorem is needed in transforming between the local and variational forms of a

boundary value problem. For a continuous function a CO(Q) , the fundamental theorem of

calculus implies, e.g.,

2D: jQ (V-éi)clA:jaQ 5 fids.

3D: jQ (v-a’)clvzjQ 5 -fidA.

The generic theorem implies useful integral identities for various purposes. For example, In
derivation of a boundary value problem from its variational form, one uses different

selections for a or & with generic vector identities like (V-&)-b=V-(4-b)-4&: (Vb)..
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In the one-dimensional case, the summing on the right-hand side is over the boundary points

and the unit normal to the boundary n =+1. The integration by parts identity

Qad—dx > . (nab)- j b—dx . .

X

follows with selection ab of the function. Assumption of continuity is essential, and the
simple form of integration by parts formula above requires modifications for, e.g., a

discontinuity inside Q. A useful integration by parts identity for several dimension

jQ é:(VB)CdV:jaQ (ﬁ-a-ﬁ)dA—jQ (V-4)-bdV

follows with selection &-b and use of vector identity V-(d-b)=&:(Vb). +(V-&)-b. The
various versions of integration by parts identities will be used to move derivatives to act on

certain parts of integrand.
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FUNDAMENTAL LEMMA OF VARIATION CALCULUS

O abelR - ab=0 Vb < a=0
o {a},{bleR" : {a}'{b}=0 v{b} < a=0
O 4beRS - d-b=0 Vb & d4=0

o abec?Q) : jQ abdQ=0 vb < a=0 inQ
O a,beCZ(Q):fQ Va-vbdQ=0vb < V?a=0in (Q,a=aorf-Va=0on oQ

In connection with principle of virtual work, b is taken to be kinematically admissible

variation ou of displacement U (vanishes whenever G is known).
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EXAMPLE Principle of virtual work for a Bernoulli beam problem is given by: find we U
such that VoweU

: 2 2
é\N:é\Nlnt‘Fé\NeXt:.[Q (_d 5WEId W

+owb)dx =0
dx? dx?

in which Q=(0,L), U ={weC*(Q):w=dw/dx=0 at x =0} and the bending stiffness
ElI(x) and b(x) are given. Deduce the underlying boundary value problem by using

Integration by parts and the fundamental lemma of variation calculus.

2
Answer _d2( d* W)+b 0 in(O,L), —(Eld—W) 0 at x=1L,
dx dx? dx dx?
—Eld—Wzo at X=1L, d—Wzo at Xx=0,and w=0 at x=0
dx? dx
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Integration by parts twice in the first term gives an equivalent form (notice that oéweU and
therefore sw=dow/dx=0 at x=0)

d2sw _. dw
OW = (— El +owb)dx <
jQ dx? dx?
W= [Wﬂi(ai) Swh]dx —[@(El 2"")] o
dx dx dx? dx? x=L
d? _ d°w dow . d°w d . d°w
OW = | [-— (El—) + b]swadx —[—(EI—) ow— (El —)]
IQ dx* " dx? dx’ dx dx2

According to principle of virtual work oW =0 VoweU. Let us first consider a subset
Uy cU for which sw=dow/dx=0 at X=L so that the boundary terms vanish. The

equilibrium equation follows from the fundamental lemma of variation calculus:

3-27



2 2 2 2
oW = | [—d—Z(EI d—\év)+b]5wdx: 0 = —d—Z(EI d—‘;")+b ~0 in(0,L). €
2" dx dx dx dx
After that, let us consider U with restriction dow/ dx =0 first and then with ow=0at x=L
and simplify the virtual work expression by using the equilibrium equation already obtained.

The natural boundary conditions follow from the fundamental lemma of variation calculus

d _ d%w d _ d%w
SW =[sw— (El —2)],_, =0 El —0 at x=L, €
[ dX ( dX2 )]X—L = dX( dX2 )
&N——[@(Elﬂ)] 0 = e axoL . €
dx dx2 x=L dx2 |

Boundary conditions w=dw/dx=0 at x=0 follow from assumption weU.
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3.3 DERIVATION OF ENGINEERING MODELS

First, write the virtual work expression by using the virtual work densities of an engineering
model. If not available, start with the generic virtual work expression, kinematical and

Kinetic assumptions of the model, and integrate over the small dimensions.

Second, use the principle of virtual work, integration by parts, and the fundamental lemma
of variation calculus to deduce the field equation(s) and (natural) boundary conditions in
terms of stress resultants. Consider suitable subset of function space U to deduce first the

equilibrium equation and thereafter the conditions at the boundaries.

Third, use the definitions of the stress resultants to derive the constitutive equations

corresponding to the material model required.
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DENSITY EXPRESSIONS

Virtual work densities (virtual work per unit volume or area) of the internal forces, external

volume forces, and external surface forces. In a Cartesian (X, Y, z) —coordinate system

e N T ( N (58 N T fG N f§g N T fG N
Oy O xx Xy Xy yX yX

SWM = 58, : 6 =—1 ¢

0627 ) |0zz) (98] 0] |96xz) O]
e \T e N e \T e N
OUy fy ouy | |ty
owgt =ou-f=:0u, ¢+ {f,tand owx' =ou-t=4<0u, r <t .
ou; ) (T, ouz )tz

The terms of the expressions consist of work conjugate pairs of kinematic and Kinetic

>

quantities. As stress is symmetric & = &, one may write (6VU). : 6 =&, :

_0.1
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THIN BODY ASSUMPTIONS
Bar: U(X,Y,z)=Up(X) and oy, =04, =0y =0y; =0, =0
String: U(s,n,b)=Uy(s) and o,y = Opp =05y =y =0 =0
Straight beam: U(x,y,z) =Ug(X)+6(x)x 5(y,z) and oy =05, =0
Curved beam: {(s,n,b) =ly(s)+6(s)x 5(n,b) and oy =0}, =0
Thinslab: U(X,Y,z)=Uy(X,Y) and o, = Oy =02 =0
Membrane: U(e, B,n) =Uy(e, B) and op, =0 py =0p, =0
Plate: @(x,y,z)=U(X Y)+80(x y)xp(z) and o, =0

Shell: Gi(z,s,n) =Uy(z,5)+6(z,5)x5(n) and oy, =0
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BAR EQUATIONS

Bar is one of the loading modes of the beam model and it can be considered also as the
elasticity problem in one dimension. The model assumes that displacement and stress have

just axial components depending on the axial coordinate only. In a Cartesian (X,Y,z)—

coordinate system, the bar boundary value problem is given by

Z_Ner:O in Q and NN—-F =0 or u—u=0o0n 0Q,
X

where

N = [ oxdA, b= fdA, and F =] t,dA.

For a closed equation system (number of equations and unknown functions should match)

a material model is also needed (Hooke’s law).
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The physical domain of the bar model is V occupied by a body althought the solution

domain of the equations is the mid-line Q. The starting point is the virtual work expression

written for the physical domain.

Let us consider the steps in the Cartesian (X, Y, z)—coordinate system for clarity. The bar
model assumes that displacement and stress have just axial components depending on the
axial coordinate only. Representations of stress, displacement and gradient operator are

& =0yl and G(X)=u(X)i, V=i0/dx+]oloy+koléz.
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d5u dou

éw"“z—jv (V5U)C:&dV=—_[ (j o-XXdA)dx_—_[ ——Ndx.
oWt = [ su-fav+ [ ou-TdA= [ subdx+ . SUF

In which (integrals over the cross-sectional area)

N = oxdA, b=] f,dA, and F = t,dA.

According to the principle of virtual work sW =0 Vv Su €U . Integration by parts is used

first to obtain a more convenient form for deducing the bar equations.

-] (N d5”)dx+j (bsuydx+ Y (FSu)=0 <

dN : :
oW = _[Q (a+ b)5udx+zm(—nN +F)ou=0 inwhich n=+1.
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After that, by considering a subset of variations ou € U with restriction ou =0 on 9Q and

using the fundamental lemma of variational calculus

éWz_[ (d—N+b)5udx=O Vouel < d—N+b=O in Q.
Q " dx dx

By considering next ou e U without restrictions on the boundary (and using the equilibrium

equation to get rid of the first term of the virtual work expression)

W =% (-NN+F)du=0 vsueU < nN-F=0 on sQ.

The boundary term vanishes also if ou=0 on €2 which implies that u is given on Q.
Therefore, on the boundary either u—u =0 or nN —F =0 but not both. In solid mechanics,

one may specify the force or displacement, but not both. The constitutive equation for an
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elastic material follows from the generalized Hooke’s law for the bar model o, = Edu / dx

and the definition of stress resultant

du
N = dA = EA—.
I O dx

The bar model boundary value problem combines the equations

dx dx Local form

NN—-F=0 or u—u=0 on 0.

For an unique solution, the displacement boundary condition should be given at least on one

boundary point.
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THIN SLAB EQUATIONS

Thin slab model assumes that the transverse displacement (perpendicular to the mid-plane)
and stress components vanish and that the quantitities do not depend on the transverse

coordinate. Principle of virtual work gives

V-N+b=0 in Q,

A-N-F=0 or G-i=0 on 8Q,

“=J‘ &dn, sz fdn, and Ifzj fdn.

Constitutive equation f(N,d) =0, which is needed for a closed system of equations,
follows form a material model and the stress resultant definition. Writing a boundary value

problem in detail, requires specification of the coordinate system.
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The physical domain of the thin-slab model is a prismatic body althought the solution
domain of the equations is the mid plane. The starting point is virtual work expression

written for the physical domain.

If the external forces on the top and bottom surfaces vanish and stress is symmetric “a priori’,
virtual work expressions of the internal and external forces simplify to (volume element

dV = dndA and area element on the boundary dA = dnds)
own =—[ &:8(Vi),av :-jQ (J &dn):a(VU)CdAz—jQ N : S(VT) dA,

3-38



évv\,ethj f-éﬁdejQ (j Fdn)-&UdAzjg b - SUdA,
WX = j f.SUdA= jaQ (j fdn) - stds = jaQ F . suds

In which the stress resultants

sz &dn, Ezj fdn, and If:j fdn. integrals over the thickness!

Integration by parts with the vector identity &:(Vb), =V-(&-b)—(V-&)-b in the virtual

work expression gives an equivalent but more convenient form for the next step

awz—jQ N :5(VU)CdA+_[Q b-5UdA+jaQ F.sids <
awsz (V-N+b)-5udA+_[aQ (—ii-N +F)-suds.
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Principle of virtual work and the fundamental lemma of variation calculus imply the local

forms. By considering first a subset of variations 64 €U with restriction 5§t =0 on 6Q
SW :jQ (V-N+b)-50dA=0 VéieU < V-N+b=0 in Q.

According to the equilibrium equation, the first term of the virtual work expression vanishes.

Next, by considering U < U without restrictions on the boundary
SW :jagz (-i-N+F)-8lds=0 = —A-N+F=0 or 6i=0 on Q.

Vanishing of variation st =0 on 0Q implies that displacement is given, i.e., G =0U. To be
precise, one may specify a force component or the corresponding displacement component
but not both. Constitutive equation f(N,d)=0 follows from the definition
N =j &dn
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when the stress-displacement relationship for plane-stress is subsitituted there. Altogether,

the boundary value problem in its coordinate system invariant form

V-N+b=0 and f(N,0)=0in Q, |

«> —

NA-N—-F=0 or i—uU=0 0Q.

/

Integration by parts step of derivation uses the Gauss theorem for a flat geometry which
may exclude domains of non-vanishing curvature (it turns out later that the form is valid

also in curved geometry).
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THIN SLAB EQUATIONS IN (X, y)-COORDINATES

Component representation follows when the tensors of the equilibrium and constitutive
equations are expressed in the Cartesian (i, J) —basis. Assuming a linearly elastic isotropic

material, equilibrium and constitutive equations take the forms,

-

( ON ) u
alglxx_i_ a;;y_'_bx (Nxx\ OX
X oV
) -=0, where Ny, >=t[E]G< — .

N, ON oy

2+ — L+ Ny ou v

\ ay ax y) ) ’ EU'FG_

X

Boundary conditions define usually either displacement or traction in the normal and

tangential directions to the boundary.
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Representations in the Cartesian system (notice that the second form of the gradient is valid

NE

only when basis vectors are constants)

T T 0 OX 0 [ OX T r _ r T Nxx ny r -
V= 3} =  N=4_ . b
j] (9loy] (oloy] |] i) | Nyx Nyy[1]
. O | OX T r TT Nxx ny T bx ! T
V-N+b= R ot =0
oloy) i) L) [Ny Ny L) (by) L]
o (alax) T[N Ny T (b’ (T
V-N+b=( + ) =0. €
0/dy) | Ny« Ny | by ]

A constitutive equation is needed for a closed system of equations (here the number of

unknown stress components is 3, whereas the number of equations is 2. Assuming that the
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thin slab is made of isotropic homogeneous and linearly elastic material of thickness t (steel,

aluminum etc.), stress-displacement relationship, kinematic assumption of the model, and

elasticity tensor of the plane-stress case give (NyX =N Xy)

N:I odn =+

I
I

- t[E]

i+

o
OX
v
oy

ou

| Oy

> S0

oV

OX |
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THIN SLAB EQUATIONS IN (r,$)-COORDINATES

Component representation follows when the tensors of the equilibrium and constitutive

equations are expressed in the polar (ér,§¢)—basis. Assuming a linearly elastic isotropic

material, equilibrium and constitutive equations take the forms,

>=0, where -

V-

Boundary conditions define usually either displacement or traction in the normal and

tangential directions to the boundary.
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EXAMPLE Consider a disk r e[¢R,R] which is loaded by traction t =—pg, on the outer
edge r = R (p Is constant). Assuming rotation symmetry i.e. that all quantities depend only
on the distance r from the center point, find the displacement components u, = u(r) and

Uy =v(r) for a linearly elastic material when Young’s modulus E and Poisson’s ratio v

are constants.

(gR)Z—I‘2 P 1-v?
r El+v+e2(l-v)

Answer U=
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If the displacement and stress resultant components depend only on the radial coordinate,

the equilibrium equations and the constitutive equations of the polar coordinate system

simplify to (here b, =bj =0)

dr”+F(Nrr—N¢¢)=?[a(rNrr)_N¢¢]:0’ or "¢ 26r( Nr¢) ¥
and
tE du u tE u du dv v
N, = +v—), Nyy= +v—), Npy=tG(=-—-) =tGr—
" 1—V2(dr r) - r dr) ( ) dr(r)

On the inner edge r = ¢R displacement vanishes, i.e., u, =u =0. On the outer edge r =R,

M=6,d -N-F =0,and F =—pté,. These conditions give the boundary value problem,

tE ,du u tEu

2 (e V) N =
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V—) in (¢R,R),

1_d
?[a(rNrr)—Nw]:O’ Npr =



u=0 at r=¢R and N, =-pt at r=R.

Elimination of the stress resultants from the equilibrium equation and boundary conditions

gives the boundary value problem for the radial displacement component

d 1d(ru)

=0 in (eR,R),

drr dr ] ( )

u=0 at r=¢R and (e (du+vﬂ)=—pt at r=R.
1—y2dr r

The generic solution to the differential equation is u=a/r +br. Thereafter, the boundary

conditions give the values of the integration constants and solution,

_ (gR)Z—r2£ 1-12

5 . €
r Elrv+e (1-v)

u
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The boundary value problem for the displacement component in the angular direction (in

terms of displacement component and stress resultant) is given by

1 d, o d v, .
r—za(r Nrg) =0 and Ny, =tGr—-() in (¢R,R).

v=0 at r=¢R and Nyy=0 at r=R.

Equilibrium equation and the condition on the outer edge imply first N 4(r) =0. After that,

the constitutive equation, and the displacement boundary condition result into

v=0. €
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