
MEC-E8003 Beam, plate and shell models, examples 3

1. The elasticity matrices for an isotropic material are the same no matter the orthonormal
coordinate systems. Consider the elasticity tensor of plane stress in Cartesian ( . )x y   and polar
( , )r   coordinate systems and show that
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Solution Discussed during the calculation examples session

2. External shear stress   is acting on a layer of elastic
isotropic material. Young’s modulus E  and Poisson’s ratio
  of the material are constants. Determine stress and
displacement in the layer. Assume that stress and
displacement components depend on y  only and that the
external volume force is negligible. Use the component
forms of plane stress
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3.  Let us consider the principle of virtual work without ‘a priori’ symmetry assumption c   ,
when the displacement gradient is expressed as the sum of its symmetric and antisymmetric parts
so that u    

   in which c  
 

. Show that
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implies e.g. the balance laws of continuum mechanics 0f  


 and c   in V .

Solution Discussed during the calculation examples session

x

y

h

U



4. Derive the component forms of the thin slab equilibrium equation 0N b  


 in the polar
coordinate system.
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5. Derive the component form of the thin slab model constitutive equation ( , ) 0f N u 
   in the polar

coordinate system starting from the stress resultant definition, stress-strain relationship, and
elasticity tensor of the plane stress

, :E u  
  ,

T

[ ]
r r r r

r r r r

e e e e
E e e E e e

e e e e e e e e
    

   

   
          
          

   
    

       
,

Answer 1[ ] ( )

1 ( )

rr

r

u
rN

vN t E u
r

N v u v
r r

 






 
 

   
            
      

  
  

, r rN N  .

6. A thin slab of inner radius r R  and outer radius r R  is loaded
by tangential traction t e

   on the outer edge r R  (shear stress
  is constant). Assuming rotation symmetry i.e. that stress and
displacement components depend only on the distance r  from the
center point and 0ru u  , solve for the stress and displacement.
Material is linearly elastic and isotropic with material parameters E
and  . External distributed forces vanish. Use the component forms
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7. Virtual work expression of a linearly elastic bar supported by a spring at the right end x L  (
1n  )  is given by

0 0
( ) ( ) ( )

L L
x L

du d uW EA dx b u dx ku u
dx dx
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in which ( )EA EA x  and k ,b  are constants. Displacement vanishes at the left end 0x   (
1n   ) of the bar. Find the underlying boundary value problem starting from the principle of

virtual work 0W  u U  . Assume that functions of U have continuous derivatives up to the
second order and vanish at 0x  .

Answer ( ) 0d duEA b
dx dx

    in (0, )L , 0duEA ku
dx

   at x L ,  and 0u   at 0x 

8. Virtual work expression of a torsion bar is given by
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in which ( )c x  and T represent the given loading. Deduce in detail the differential equation for
the rotation ( )x and the boundary conditions implied by principle of virtual work and the
fundamental lemma of variation calculus. The unknown ( )x  and the given ( )GJ x , ( )k x  and

( )c x  are assumed to have continuous derivatives of all orders. In addition,   and   are
assumed to vanish at 0x  .
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9. Virtual work expression of a Bernoulli beam, clamped at the left end 0x   and loaded by force
F  and  moment R  at the right end x L  of solution domain (0, )L , is given by
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Use the principle of virtual work 0W  w U   to derive the beam equilibrium equation in
 , natural boundary conditions on x L , and essential boundary conditions on 0x  . Functions
of set U  have continuous derivatives up to the fourth order in  . In addition, a function of U
vanishes at 0x   as does also its first derivative.

Answer
2

2 0d M b
dx

   in (0, )L , 0dM F
dx

    and 0M R   at x L , 0dww
dx

   at 0x 

0 



10. When displacement is confined to the xz plane, the virtual work
expression of a slender Bernoulli beam (figure) is given by
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Deduce in detail the underlying differential equation and boundary
conditions implied by the principle of virtual work and the fundamental
lemma of variation calculus.
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The elasticity matrices for an isotropic material are the same no matter the orthonormal coordinate
systems. Consider the elasticity tensor of plane stress in Cartesian ( . )x y  and polar ( , )r  
coordinate systems and show that
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Solution
Let us start with the elasticity tensor in the polar coordinate system and the relationship between the
basis vectors of the Cartesian and polar coordinate systems
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gives the expression of the elasticity matrix in the Cartesian ( . )x y  coordinate system:
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What remains is showing that T[ ] [ ] [ ] [ ]T E T E  . See Mathematica notebook for the simplification
of the left-hand side.



External shear stress   is acting on a layer of elastic isotropic
material. Young’s modulus E  and Poisson’s ratio   of the
material are constants. Determine stress and displacement in the
layer. Assume that stress and displacement components depend
on y  only and that the external volume force is negligible. Use
the component forms of plane stress
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Solution
Solution to stress and displacement follows from the equilibrium equations, constitutive equations,
and boundary conditions. In the layer problem, ( )xu u y , ( )yu v y , 0x yf f  . At the lower edge

(0) 0u   and at the upper edge ( ) ( )yx xyh h     (stress is symmetric).

The two equilibrium equations and three constitutive equations simplify to

Equilibrium 0yxd
dy


  and 0yyd
dy




Constitutive 21
xx

E dv
dy







, 21
yy

E dv
dy







,
2(1 )xy yx

E du duG
dy dy

 


  


,

In this case, solution to stress and displacement follows by considering first the equilibrium equations
and using, after that, the constitutive equations. Boundary value problem for the stress components
are composed of the equilibrium equations and the boundary condition at the upper edge. Boundary
value problems and their solutions to the stress components are
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   in (0, )h   and ( )yx h   ( )yx y  . 
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Knowing the stress, boundary value problems for the displacement components are composed of the
constitutive equations and the boundary condition on the lower edge. Boundary value problems and
their solutions to the displacement components are
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Finally, the third constitutive equation, not used above, gives
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Let us consider the principle of virtual work without ‘a priori’ symmetry assumption c   , when
the displacement gradient is expressed as the sum of its symmetric and antisymmetric parts so that

u    
   in which c  

 
. Show that
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Implies, e.g., the balance laws of continuum mechanics 0f  


 and c   in V .

Solution
Symmetry of stress is just the local form of moment of momentum balance law. The condition is
often satisfied ‘a priori’ but it can also be embedded in the virtual work expression form. Also now,
the fundamental theorem of calculus (integration by parts) and the fundamental lemma of variation
calculus are the tools for deriving a boundary value problem starting from a given virtual work
expression. In addition, division of displacement gradient into its symmetric and antisymmetric parts
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is needed. According to principle of virtual work without the assumption of stress symmetry (generic
form)
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Use of the divergence theorem, also known as Gauss's theorem, in the second term on the right-hand
side gives first
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The purpose of the manipulation above was just to obtain a representation that allows the use of
fundamental lemma of variation calculus. Selection 0u 

  on tA  vanishing and 0 


, and
thereafter 0u 

  (everywhere) imply

0f  
    in V

c 0  
    in V .

It is noteworthy that the latter selections implies that c    due to the restriction c  
 

.
Knowing the conditions above, virtual work expression simplifies to

( ) 0
tA

W n t udA       
   ,u 



which implies 0n t  
    on tA . Taking into account the restriction on u   on uA , boundary value

problem takes the form

0f  
    in V ,

c 0  
    in V ,


0n t  

    on tA ,

0u u 
    on uA .

The first three equations are the local balance laws for momentum and moment of momentum.



Derive the component forms of the thin slab equilibrium equation 0N b  


 in the polar
coordinate system.

Solution
The component forms of stress, external force, and gradient operator of the polar coordinate system
are
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Let us start with the terms of stress resultant divergence
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First term of the gradient simplifies to
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Then the same manipulation for the second term of the displacement gradient
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Finally, by combining the terms of the divergence and external loading



T
1 ( )

0
1 ( )

rrr
rr r

r

r
r r

NN N N be r r
N b e N N

N N b
r r




  
  





 
                           


 . 



Derive the component form of the thin slab model constitutive equation ( , ) 0f N u 
   in the polar

coordinate system starting from the stress resultant definition, stress-strain relationship, and elasticity
tensor of the plane stress

N dn 
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.

Solution
Polar coordinate system representations of the gradient expression, planar displacement, and the basis
vector derivatives are
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Substitution into the displacement gradient gives
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The double inner product with the basis vector combinations of the elasticity tensor gives the stress
expression
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According to the definition, stress resultant is integral of stress over the thickness
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or in the component form
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A thin slab of inner radius r R  and outer radius r R  is loaded by
tangential traction t e

   on the outer edge r R  (shear stress   is
constant). Assuming rotation symmetry i.e. that stress and displacement
components depend only on the distance r  from the center point and

0ru u  , solve for the stress and displacement. Material is linearly
elastic and isotropic with material parameters E  and  . External
distributed forces vanish. Use the component forms
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.

Solution
As stress resultants and displacement components depend only on r , equilibrium equations and the
constitutive equations simplify to (notice that the derivatives are ordinary ones as the quantities are
known to depend on r  only)

1 1 0rr
rr

dN N N
dr r r    , 2

2
2 1 ( ) 0r

r r
dN dN r N

dr r drr


      and

2 ( )
1

rr
tE du uN

dr r



 


, 2 ( )

1
tE u duN

r dr 


 
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dv v d vN tG tGr
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Solution to the shear stress resultant rN   follows from boundary value problem composed of the
equilibrium equation and boundary condition on the outer edge
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  ( , )r R R   and rN t    at r R 
2

2r
RN t
r  . 

After that, solution to displacement component ( )u v r   follows from boundary value problem
composed of the constitutive equation and boundary condition on the inner edge
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2
1( )d RtGr v t

dr r r
 ( , )r R R   and 0v    at r R 
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
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Displacement component ( ) 0ru u r   by assumption which implies that

0rrN N  . 

The same solution follows also without the assumption ( ) 0ru u r  . Eliminating the stress
resultants from the second equilibrium equation gives the boundary value problem (on the outer edge

0rrN  )
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    ( , )r R R ,

0u    at r R    and 0du u
dr r

   at r R  ( ) 0ru u r  .



Virtual work expression of a linearly elastic bar supported by a spring at the right end x L  ( 1n  )
is given by

0 0
( ) ( ) ( )

L L
x L

d u duW EA dx ub dx uku
dx dx
        ,

in which ( )EA EA x  and k , b  are constants. Displacement vanishes at the left end 0x   ( 1n   )
of the bar. Find the underlying boundary value problem starting from the principle of virtual work

0W  u U  . Assume that functions of U have continuous derivatives up to the second order
and vanish at 0x  .

Solution
Fundamental theorem of calculus (integration by parts) and the fundamental lemma of variation
calculus are the tools for deriving a boundary value problem starting from a virtual work expression.
In the one-dimensional case, for any continuous functions a  and b (or values at some point), it holds

( )db daa dx nab bdx
dx dx 

   (where 1n   ),

, :a b 0ab  b  0a  ,

0, ( ) :a b C  0abdx


 b  0a     in  .

In the present case (0, )L   and {0, }L  . Displacement has continuous derivatives up to and
including second order i.e. 2 ( )u C  . The constraint on the function set 0u   at 0x   implies that

0u   at 0x  . Integration by parts gives equivalent forms (the aim is to remove the derivatives
from variations in the integral over the domain)
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       .    (as 0u   at 0x  )

The purpose of the manipulation above was to obtain a representation which allows the use of
fundamental lemma of variation calculus. According to principle of virtual work, 0W  u U  .
Let us consider first a subset 0U U  for which 0u   at x L  so that the boundary term vanishes.
Then
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and the fundamental lemma of variation calculus implies that
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dx dx

    in (0, )L .



Knowing this and considering the full set U , the variational equation simplifies into
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duW EA ku u
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      .

Then, the fundamental lemma of variation calculus implies that

0duEA ku
dx

    at x L .

Finally combining the equations to form a boundary value problem (notice that the definition of the
function set implies also a boundary condition):

( ) 0d duEA b
dx dx
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0duEA ku
dx

    at x L , 
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Virtual work expression of a torsion bar is given by
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in which ( )c x  and T represent the given loading. Deduce in detail the differential equation for the
rotation ( )x and boundary conditions implied by principle of virtual work and the fundamental
lemma of variation calculus. The unknown ( )x  and the given ( )GJ x , ( )k x  and ( )c x  are assumed
to have continuous derivatives of all orders. In addition,   and   are assumed to vanish at 0x  .

Solution
Here (0, )L   and {0, }L  . Rotation has continuous derivatives up to and including second
order, i.e., 2 ( )U C    . Function set U  is constrained by 0   at 0x  , which implies that

0   at 0x  . Integration by parts gives equivalent forms
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              as 0   at 0x  .

The purpose of the manipulation is to obtain a representation that allows the use of fundamental
lemma of variation calculus.

According to principle of virtual work 0W   . Let us consider first a subset for which 0 
at x L  so that the boundary term vanishes. Then
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        satisfying 0   at x L

and the fundamental lemma of variation calculus implies that

( ) 0d dGJ k c
dx dx

      in (0, )L .

Knowing this and considering the function set without the additional constraint

[( ) ] 0x L
dW GJ T
dx
       .

The fundamental lemma of variation calculus implies now

0dGJ T
dx

    at x L  .



Finally combining the equations to form a boundary value problem (notice that the constraint 0 
at 0x   implies a boundary condition) :

( ) 0d dGJ k c
dx dx

      in (0, )L , 

0dGJ T
dx

    at x L , 

0    at 0x  . 



Virtual work expression of a Bernoulli beam, clamped at the left end 0x   and loaded by force F
and  moment R  at the right end x L  of solution domain (0, )L  , is given by

2

20
( ) ( )

L
x L

d w d wW M wb dx F w R
dxdx

        .

Use the principle of virtual work 0W  w U   to derive the beam equilibrium equation in  ,
natural boundary conditions on x L , and essential boundary conditions on 0x  . Functions of set
U  have continuous derivatives up to the fourth order in  . In addition, a function of U vanishes at

0x   as does also its first derivative.

Solution
In MEC-E8003, principle of virtual work is used to derive the equilibrium equation(s) in terms of the
stress resultants (like shear forces and bending moments). The constitutive equation, giving the
relationship between the stress resultants and kinetic quantities (like displacements and rotations), is
a separate story. The mathematical tools needed in the derivation are (one-dimensional case   )

0, ( )a b C 

( )d ab dx nab
dx 

 , where 1n    is the unit outward normal to   (on  )

0abdx


 b  0a    in  .

Integration by parts once in the first term gives an equivalent form (notice that w U  and therefore
/ 0w d w dx    at 0x 

2

20
( ) ( )

L
x L

d w d wW M b w dx F w R
dxdx

        

0
( ) [( ) ] ( )

L
x L x L

dM d w d wW b w dx M R F w
dx dx dx

          .

Integration by parts second time in the first term gives also an equivalent form

2

20
( ) [( ) ] [( ) ]

L
x L x L

d M dM d wW b wdx F w M R
dx dxdx

           .

According to the principle of virtual work 0W  w U  . Let us first consider a subset 0U U
for which / 0w d w dx    at x L so that the boundary terms vanish. The equilibrium equation
follows from the fundamental lemma of variation calculus:

2

20
( ) 0

L d MW b wdx
dx

    0w U  
2

2 0d M b
dx

      in (0, )L .



Let us next consider a subset 0U U  for which only / 0d w dx   at 0x   so that the last boundary
term of the virtual work expression vanishes. Also, the first term can be omitted due to the equilibrium
equation. The natural boundary condition follows from the fundamental lemma of variation calculus:

[( ) ] 0x L
dMW F w
dx

      0w U   0dM F
dx

      at x L .

Finally, let us consider a subset 0U U  for which only 0w   at x L  and use the equations
already obtained to simplify the virtual work expression. The natural boundary condition follows
from the fundamental lemma of variation calculus:

[( ) ] 0x L
d wW M R
dx
    0w U   0M R     at x L .

As the last step, the essential boundary conditions follow from the problem definition (clamped).
They can also partly be deduced from the definition of U . Vanishing of variation /d w dx  and w
at 0x   imply that /dw dx  and w  are given at 0x  .

A beam boundary value problem is composed of the equations implied by the principle of virtual
work

2

2 0d M b
dx

     in (0, )L . 

0dM F
dx

      and 0M R    at x L . 

0w   and 0dw
dx

    at 0x  . 

Definition of stress resultant, stress-strain relationship, and elasticity tensor for the beam problem
gives the constitutive equation

2

2
d wM EI
dx

 

which is needed for a closed system.



When displacement is confined to the xz plane, the virtual work expression
of a slender Bernoulli beam (figure) is given by

2 2

2 20 0
( ) ( )

L Ld w d w d w dwW EI dx P dx
dx dxdx dx

      .

Deduce in detail the underlying differential equation and boundary conditions
implied by the principle of virtual work and the fundamental lemma of
variation calculus. Assume that have continuous derivatives up to (and
including) fourth order.

Solution
Integration by parts gives an equivalent but a more convenient form (assuming continuity up to and
including second derivatives)

2 2

2 20 0
( ) ( )

L Ld w d w d w dwW EI dx P dx
dx dxdx dx

          (P is a constant)

4 2 3 2

{0, } {0, }4 2 3 20
( ) ( ) ( )

L
L L

d w d w d w dw d w d wW w EI P dx n w EI P n EI
dx dxdx dx dx dx

         .

According to principle of virtual work 0W  w . Let us consider first the subset of variations for
which 0w   and / 0d w dx   on {0, }L . The fundamental lemma of variation calculus implies

4 2

4 2 0d w d wEI P
dx dx

   in (0, )L .

Let us consider then the subset of variations for which / 0d w dx   on {0, }L . Knowing the condition
above, the fundamental lemma of variation calculus implies

3

3 0d w dwEI P
dxdx

     or 0w w     on {0, }L .

Finally, let us consider the subset of variations for which 0w   on {0, }L . Knowing the previous
results, the fundamental lemma of variation calculus implies

2

2 0d wEI
dx

     or 0dw
dx

     on {0, }L .

For the problem of the figure, one obtains

4 2

4 2 0d w d wEI P
dx dx

   in (0, )L , 

L

P

z
x



3

3 0d w dwEI P
dxdx

     and
2

2 0d wEI
dx

    at x L , 

0w    and 0dw
dx

   at 0x  . 


