Output, Employment, and Inflation (Chapter 13)

Inflation as Interpreted by AI

Inaflation Rembrandt style (by Dall-E)

Inflation, Money, Growth van Gogh style (by Dall-E)

Questions

How is GDP related to inflation and monetary policy? How to move from short-run sticky prices to medium-run with inflation?

Outline

From short run to medium run and to long run

inflation

The Phillips curve

▶ inflation and unemployment

Okun's law

unemployment and output

Foundations of the Phillips curve

Aggregate Supply Curve

What is Inflation?

Rate of increase in the price level

rate at which money loses its value

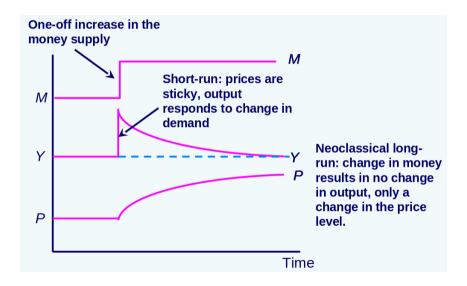
When the price level rises, nominal wages rise too

- wages chase prices (and in turn prices chase wages)
- at the same time there may also be productivity growth

Ultimate source

CBs ability to create money

What is Inflation?


Neoclassical assumption

- prices are fully flexible
- correct in the long run
- Keynesian assumption makes sense in the short run

Example: M=kPY and 10% an increase in the money supply M

- ightharpoonup short-run: real GDP (Y) increases by 10%
- ▶ long-run: price level (P) increases by 10%
- ▶ the process: first rise of output, then prices start to adjust, and output decreases

From the Short to the Long Run

Inflation

Inflation $\pi = \Delta P/P$

- ightharpoonup P = M/(kY), P price level, Y real income, PY nominal income
- \blacktriangleright k is the portion not used for transactions, 1/k is the velocity of money
- ightharpoonup kPY is money demand

Inflation when money supply and output change

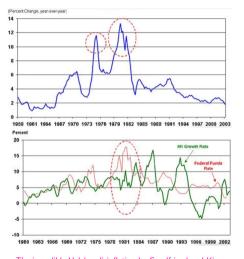
- reminder (logarithmic differential): if f(t) = g(t)h(t) then f'(t)/f(t) = g'(t)/g(t) + h'(t)/h(t)
- $ightharpoonup \mu$ is the growth rate of money
- ightharpoonup g is the growth of real GDP

Money Supply and Monetary Policy

Taylor rule
$$i=\bar{i}+a(\pi-\bar{\pi})+b\left(\frac{Y-\bar{Y}}{\bar{Y}}\right)$$

- ▶ in the long run $i = \bar{i}$; $M/P = k(\bar{i}) Y$ and $\Delta P/P = \bar{\pi}$
- ightharpoonup in the long run money is neutral; g does not depend on money growth
- it follows that $\mu = g + \bar{\pi}$

Money targeting


ightharpoonup central bank sets μ

Interest targeting

ightharpoonup central bank sets π

Does it matter which to target?

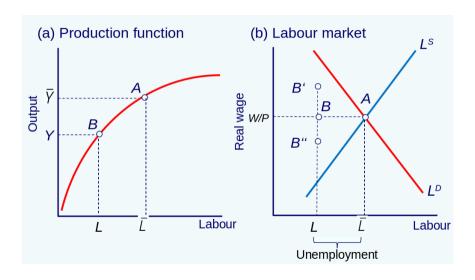
Money Targeting by Fed 1979–1982

The incredible Volcker disinflation by Goodfriend and King

Labor Markets

Pictures in the following slides

A equilirium in the labor market corresponding in the long run


Short run: demand shifts to $Y < \bar{Y}$, point B (sticky wages)

- ▶ involuntary unemployment BA
- profits are not maximized

Long run: nominal wages and prices adjust

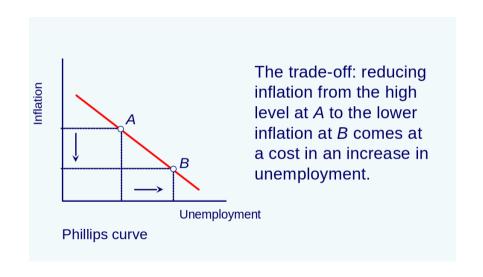
- return to point A; firms cut prices, real wages rise (B') but decline in the long run
- decline in prices increases demand
- flexible exchange rate: declining prices lowers interest rates (by Taylor rule), real depreciation, demand restores
- fixed exchange rate: declining prices imply real exchange rate depreciation (reduced demand for imports and higher foreign demand)

Output and the Labor Market in the Long Run

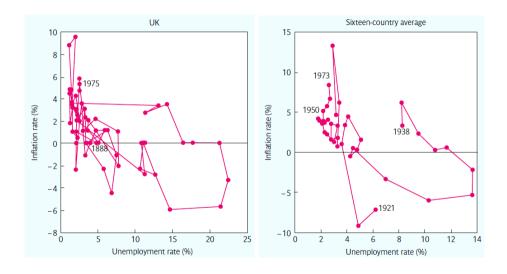
From the Short-Run to Long-Run

- ▶ Demand disturbances dominate in the short-run
- But are eliminated in the long run
- Price adjustments gradually substitute for quantity adjustments

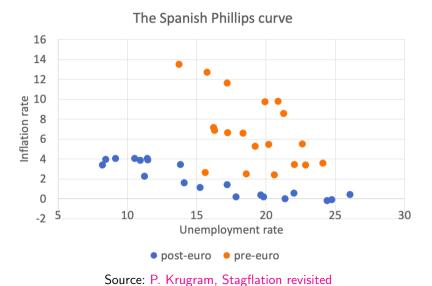
Inflation and Unemployment


A.W. Phillips observed negative correlation between unemployment and inflation

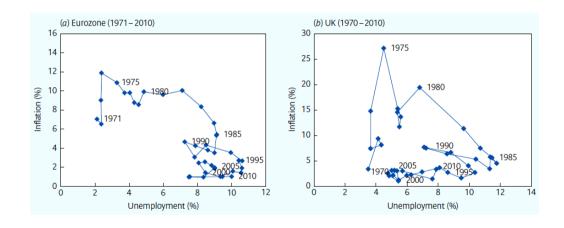
originally UK 1861–1957


Became popular because

- missing theoretical relationship for Keynesian framework
- practical tool for policy makers: the policy is to choose a point on the Phillips curve, use monetary and fiscal policy but either inflation is high or unemployment is high (Phillips trade-off)


Phillips Curve in Theory

The Phillips Curve in Reality

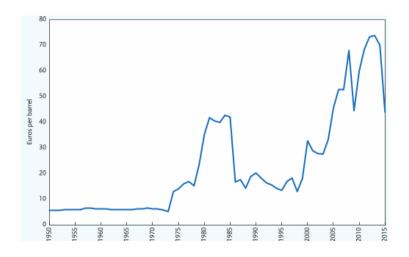


The Phillips Curve in Reality: Spain

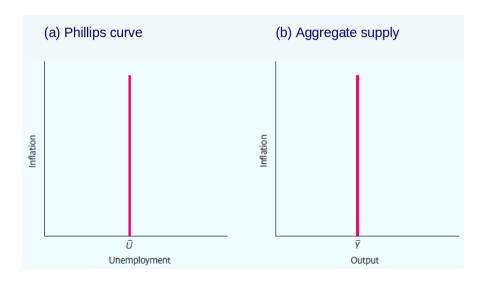
17/45

The Phillips Curve in Reality: Eurozone and UK

Challenges of the Phillips Curve

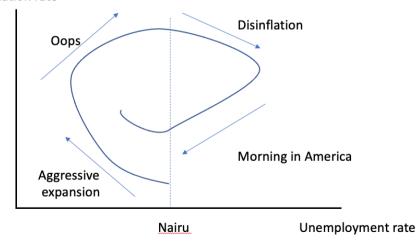

In 1970's Phillips curve seemed to disappear

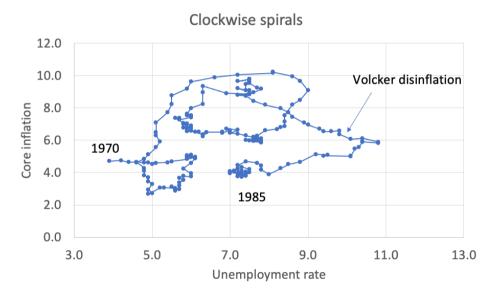
- inflation increased but unemployment stayed high
- stagflation: high inflation and high unemployment
- CBs started money targeting (FED 1979–1982)


Theoretical questions

- Phillips curve can be only a temporary phenomenon because in the long run money is neutral
- money illusion: firms and workers acting only on their own prices, ignoring the nominal price levels

Nominal Oil Price (Euro/barrel)


The Long Run

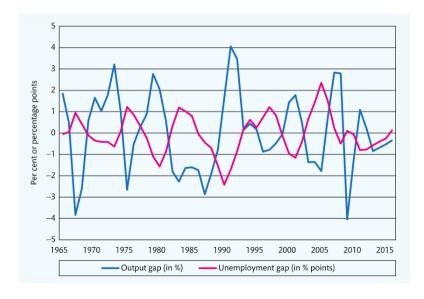

Friedman-Phelps Critique

Impossible to decrease unemployment in the long run without accelerating inflation

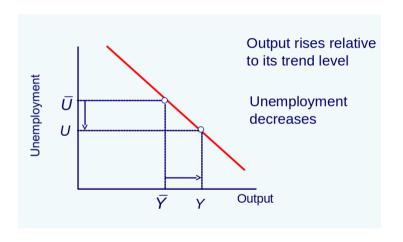
Inflation rate

Friedman-Phelps Critique

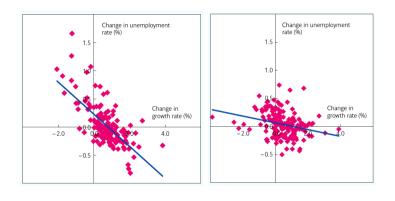
Okun's Law


Negative relationship between output and unemployment

- note: intuitively plausible that higher output leads to lower unemployment
- in recessions output decreases and unemployment increases


Stylized representation

- $lackbox{U}_{\mathrm{gap}} = U \bar{U}$, where \bar{U} is equilibrium unemployment
- ightharpoonup output gap $\bar{Y}_{\mathrm{gap}} = (Y \bar{Y})/\bar{Y}$
- ightharpoonup Okun's law $U_{
 m gap} = -h Y_{
 m gap}$
- ▶ in practice *h* about 0.1–0.3


Output Gap and Unemployment in Germany

Okun's Law in Theory

Okun's Law in Reality: USA and Germany

Costs

Unit costs

- cost per unit produced
- ▶ unit costs= unit labour costs + unit non-labor costs
- ▶ labor costs ranges from 50% to 70 %
- in the following focus on labour costs

Nominal unit labour costs WL/Y

- ightharpoonup average gross hourly labour costs W
- number of hours worked L

Real unit labour costs WL/(PY)

the share of GDP that goes to labor

Wage Share of Value Added

Country	Total	Manufacturing	Construction	Finance	Basic Metal	Wholesale
Belgium	57.1	63.5	50.5	44.4	80.2	56.3
Czech Rep.	44.4	45.9	40.6	33.3	53.1	51.5
Denmark	60.5	57.1	76.4	47.5	84.1	71.0
Germany	56.5	62.9	61.4	64.5	69.2	69.0
Italy	44.4	60.5	41.6	40.0	65.9	42.3
Japan	52.1	54.2	71.0	49.9	46.8	53.6
Netherlands	55.1	54.9	61.8	43.4	59.2	52.9
Poland	42.2	45.7	32.0	36.7	49.7	28.8
Spain	51.8	57.1	50.1	51.0	70.5	56.5
USA	55.2	46.9	63.5	57.2	62.1	62.0

Mark-Up Pricing

Firms have some market power

- prices exceed marginal costs, this difference is called mark up
- firms set their prices to $(1+\theta)MC$, where θ is the mark up

Optimality of mark up pricing

- monopolistic competition
- large number of firms selling differentiated products

$$P = (1 + \theta)[WL/Y]$$

Wage Setting

Bargaining over nominal wages

- ightharpoonup uncertainty related to inflation, expected price P^e
- wages fixed for a period of time
- workers aim at large wage share, limited by firms' labour demand

Wages determine unit labour costs as a mark-up γ over the expected price level

- $WL/Y = (1+\gamma)\bar{s}_L P^e$
- $ightharpoonup ar{s}_L$ normal share (division of income in normal times)
- $ightharpoonup \gamma$ may vary in different times, on average $\gamma=0$

$$P = (1+\theta)(1+\gamma)\bar{s}_L P^e$$

combine above equations

Cyclical Behavior of Mark-Ups

Behavior of θ

- ightharpoonup when competition increases, θ decreases
- in good times competition tends to increase
- in good times demand is high
- ightharpoonup effect on θ is ambiguous

Behavior of γ

- during booms employment increases, bargaining power of workers improves
- higher mark-ups in booms

Procyclical mark-up $(1+\theta)(1+\gamma)$

- in boom times actual price level increases above its expected level
- foundation of the Phillips curve
- ightharpoonup evidence: WL/(PY) increases in booms

Roots of Inflation

- 1. Change of mark-ups
- 2. Expected inflation

$$\pi = \Delta(mark - ups) + \pi^e$$

- procyclicality of mark-ups $\Delta\theta/(1+\theta) + \Delta\gamma/(1+\gamma) = aY_{\rm gap}, \ a>0$
- ▶ note: there is no single expected inflation, expectation may depend on the present
- ightarrow underlying inflation $ilde{\pi}$
- ightharpoonup hence $\pi = \tilde{\pi} + a Y_{\rm gap}$
- ightharpoonup by Okun's law $Y_{
 m gap} = -U_{
 m gap}/h$
- $\Rightarrow \pi = \tilde{\pi} bU_{\mathrm{gap}}$ (Phillips curve)

Underlying Inflation

Broader concept than inflation expectations

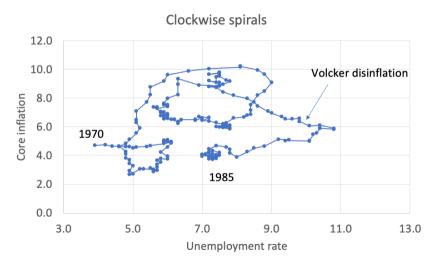
both backward and forward looking components

Example

- expected inflation 3% and 1% expected gain in labour productivity at the time when wage contract is signed (4% wage increase), realized inflation 5%, workers feel cheated!
- same setup but realized inflation 1% employers feel cheated!
- realized inflation impacts wage negotiations (leading to a backward looking component)

Expectations Augmented Phillips Curve

$$\pi = \tilde{\pi} - b U_{\text{gap}} + s$$


- inflation may be affected by supply shocks
- ightharpoonup $ilde{\pi}$ captures expectations
- lacktriangle note: $U_{
 m gap}$ contains $ar{U}$

Shifts of Phillips curve

- ightharpoonup supply shock s (e.g. oil crises)
- ightharpoonup shock may affect $\tilde{\pi}$
- lacktriangle $ar{U}$ may change

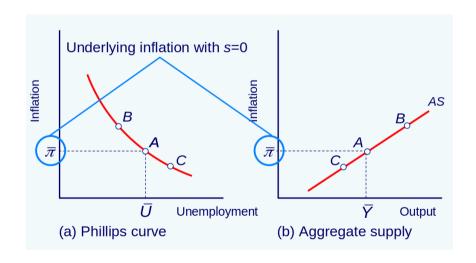
Reinterpretation of Cycles

Cycles observed after the oil crisis were due to shifting expectations and supply shocks

Aggregate Supply Curve

$$\pi = F(Y; \tilde{\pi}, s, \bar{Y}), \ \pi = \tilde{\pi} + aY_{\text{gap}} + s$$

- output gap increases inflation
- underlying inflation increases inflation
- ► GDP fluctuates around its trend but in the long run real forces determine the growth of GDP


Why positive slope?

▶ intuition: keep prices of inputs fixed, assume price of output to increase, then there is opportunity for additional profits by producing more

Aggregate supply is shifted by

ightharpoonup shifts in $\tilde{\pi}$, \bar{Y} , and s

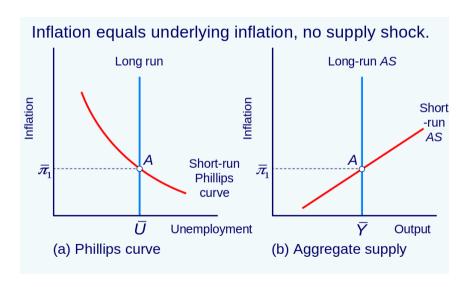
Augmented Phillips and Aggregate Supply Curve

Equilibrium Unemployment Rates

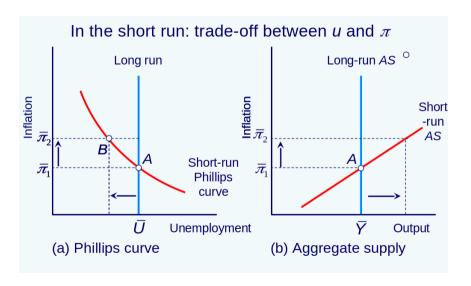
Country	1970	1980	1990	2000	2010	2015
Austria	2.1	2.5	3.7	4.1	4.4	4.5
Belgium	2.8	6.4	7.9	8.0	8.0	8.0
Denmark	2.0	5.5	6.7	5.5	6.0	6.3
Finland	3.6	4.9	7.4	10.2	8.0	7.4
France	2.1	5.4	8.2	8.6	8.7	9.2
Germany	0.9	4.3	7.2	7.6	6.7	4.9
Hungary				6.4	10.2	8.4
Ireland	5.8	9.9	13.8	8.4	10.0	10.7
Italy	5.8	6.0	8.9	9.3	8.0	9.1
Japan	1.6	1.8	2.4	3.9	4.1	3.8
Netherlands	2.9	5.9	7.5	4.9	5.2	5.9
Norway	1.6	2.1	4.3	3.6	3.3	3.3
Portugal	2.4	7.0	6.0	6.3	10.4	11.7
Spain	4.3	7.9	14.3	13.6	16.8	18.6
Sweden	2.8	3.2	5.1	7.0	7.5	7.5
Switzerland		0.6	1.7	3.2	3.9	4.0
United Kingdom	2.3	7.6	8.8	6.2	6.4	6.0
United States	4.9	7.3	5.9	5.6	5.6	5.4

Summary: Neoclassical Synthesis

Short-run expected augmented Phillips curve

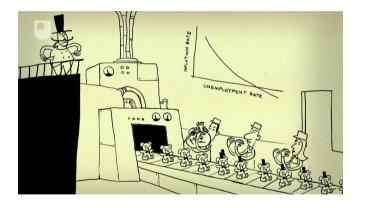

Phillips curve that can shift

Long-run Phillips curve


- vertical Phillips curve
- in the long run it is impossible to reduce unemployment by letting inflation increase
- example: increase in inflation, decrease in unemployment, increase in expected inflation, Phillips curve shifts, unemployment returns, in the end only inflation expectations have changed

Corresponding aggregate supply curves

From the Short Run to the Long Run


From the Short Run to the Long Run

From the Short Run to the Long Run

Phillips Curve in 60 Seconds

Click picture to open link in Youtube