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Dynamics

Consider the consumption savings problem

max
s,c∈RN

+

∞∑
t=0

δtu(ct)

ct + st ≤ (1 + r)st−1 + w

with s−1 = 0. This seems like an especially difficult version of our
standard maximization problem. We now need to pick a infinite
vector of consumption/saving choices.

But the dynamics actually make this problem in some sense easier.



Dynamics

To see this, consider the finite horizon version of this problem

max
s,c∈RT

+

∞∑
t=0

δtu(ct)

ct + st ≤ (1 + r)st−1 + w

where T ∈ N. This is a particularly simple version of our standard
constrained optimization problem. Note that:

▶ The cost function is additively separable

▶ st shows up in at most 2 constraints, ct shows up in at most 1.

▶ We could try to solve this using multipliers (more on this in a
bit).

▶ Let’s try a different angle



Bellman Equations

Define a family of value functions

VT (s
′) = max

s,c∈RT
+

T∑
t=0

δtu(ct)

s.t. ct + st ≤ (1 + r)st−1 + w

s−1 = s ′

We can essentially solve this problem backwards. Clearly

VT (s
′) = max

s,c∈R+

u(c) + δVT−1(s)

s.t. c + s ≤ (1 + r)s ′ + w

If we knew VT this is an easy problem for babies.



Bellman Equations

The same should hold in our infinite horizon problem.

V (s ′) = max
s,c∈R+

u(c) + δV (s)

s.t. c + s ≤ (1 + r)s ′ + w

where V (s) is the value function for the infinite horizon problem.
These sorts of equations are called Bellman Equations.



Principle of Optimality

While this recursion is intuitive, it’s requires proof.

Theorem

If V (s−1) is the value function for

sup
s,c∈RT

+

∞∑
t=0

δtu(ct)

ct + st ≤ (1 + r)st−1 + w

then it is a bounded solution to the Bellman Equation

V (s ′) = sup
s,c∈R+

u(c) + δV (s)

s.t. c + s ≤ (1 + r)s ′ + w



Principle of Optimality
Note first that for we can define a function U that maps from any
fixed policy x = (ct , st)

∞
t=0 to payoffs and satisfies the equation

U(x) =
∞∑
t=0

δtu(ct) = u(c0) + δU(x ′)

where x ′ = (ct , st)
∞
t=1. For any ϵ > 0 we can find a policy x such

that U(x ′) ≥ V (s0)− ϵ, so

V (s−1) ≥ u(c0) + δU(x ′) ≥ u(c0) + δV (s0)− δϵ

So for all feasible s0, c0, s−1 we get

V (s−1) ≥ sup u(c0) + δV (s0)

Since V is a supremum, we also get for any ϵ > 0 there is some for
some feasible policy x s.t.

V (s−1) ≤ u(c0) + δV (s0) + ϵ ≤ sup u(c0) + δV (s0) + ϵ

Therefore, the V satisfies the Bellman Equation
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Bellman Equations

So know we know the value function satisfies the equation

V (s ′) = max
c,s

u(c) + δV (s) s.t. c + s ≤ (1 + r)s ′ + w

We’ll now show that:

▶ V is the unique (continuous, bounded) solution to this
problem.

▶ How to solve for V .



Sequences

Part of our maximization exercise is now solving for a function. It
would be helpful to have some analogues to tools we’ve developed
for real numbers here.

Recall in Rn we measure distance according to a norm ||x ||. This
satisfies

▶ ||0|| = 0.

▶ ||ax || = |a|||x || for any a ∈ R
▶ ||x + y || ≤ ||x ||+ ||y ||



Sequences

This norm gives us concepts like convergent sequences.

Definition

A sequence xn ∈ Rk converges to x if for any ϵ > 0, there exists an
N s.t. if n ≥ N then ||xn − x || < ϵ.

Definition

A sequence xn ∈ Rk is Cauchy if for any ϵ > 0 there exists a N s.t.
if n,m ≥ N then ||xn − xm|| < ϵ.

Theorem

A real valued sequence converges if and only if it is Cauchy.



A Function Space

What if we tried to do the same thing for functions.

▶ Let C (X ) be the set of bounded, continuous functions with
domain X .

▶ Define a norm
||f || = sup

x∈X
|f (x)|

Why do we call this a norm? It’s easy to verify that it satisfies
three important properties:
▶ ||0|| = 0.
▶ ||af || = |a|||f || for any a ∈ R
▶ ||f + g || ≤ ||f ||+ ||g ||



Sequences of Functions

We can define convergence of functions exactly like we did for
sequences

Definition

A sequence fn ∈ C (X ) converges to f if for any ϵ > 0, there exists
an N s.t. if n ≥ N then ||fn − f || < ϵ.

This is a concept called uniform convergence. Note that it is
asking for more then just fn(x) → f (x) at every x ∈ X .



Cauchy Sequences of Functions

Theorem

C (X ) with the norm ||f || = sup |f (x)| is complete, i.e. every
Cauchy sequence converges to a function in C (X ).

Take a Cauchy sequence (fn)
∞
n=1. We know that for any ϵ > 0

there exists an N s.t. if n,m ≥ N then ||fn − fm|| < ϵ.

Take f (x) = lim fn(x), which exists since fn(x) is a Cauchy
sequence in R. This is a continuous bounded function (try proving

this yourself).



Proof-Continued

We want to show that f is also the limit of fn under the sup norm.

▶ Now take any ϵ > 0. We want to show that there exists an N
s.t. if n ≥ N then ||f − fn|| < ϵ.

▶ Consider supx∈X |fn(x)− f (x)|. We know for any N and for
any m > N and for any x ∈ X

|fn(x)− f (x)| ≤ |fn(x)− fm(x)|+ |f (x)− fm(x)|

▶ Choose N so that for n,m ≥ N, ||fn − fm|| < ϵ/2. Take any
x ∈ X and choose m so that |f (x)− fm(x)| < ϵ/2

|fn(x)− f (x)| ≤ |fn(x)− fm(x)|+ |f (x)− fm(x)| ≤ ϵ

Note that our choice of N was independent of x , so we’re
done.
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Bellman Equations

We’ve shown that the value function satisfies the Bellman
Equation. Is any function that satisfies the Bellman equation a
value function?

▶ Can we find a function that satisfies this recursion.

▶ Recall(?) when you took differential equations, you showed
that a solution to a differential equation existed by writing
down an “algorithm” to find it.

▶ Can we do the same thing here?

We need one more concept

Definition

Let k ∈ (0, 1). A function T : X → X is a contraction of modulus
k if ||Tx − Ty || ≤ k ||x − y ||.



Bellman Equations

Theorem (Contraction Mapping Theorem)

If T : C (X ) → C (X ) is a contraction, then it has a unique fixed
point, a function f ∈ C (X ) s.t. Tf = f .

Moreover, this fixed point is the limit of T ng (where T n denotes
the n-fold composition of T ) for any g ∈ C (X ), i.e. for any ϵ > 0
there is an N s.t. if n ≥ N then ||T ng − f || < ϵ.



Proof

This is a theorem holds more broadly in complete metric spaces,
i.e. spaces where Cauchy sequences converge. The statement of
the theorem already gives a big hint for how to prove this.



Proof

▶ Consider the sequence fn = T nf0 for some arbitrary f0.

▶ This is a Cauchy sequence.

▶ So it has a limit f ∗. Since T is a contraction, it is continuous
and thus this is a fixed point
(Tf ∗ = limn→∞ T (T nf0) = limn→∞ T n+1f0 = f ∗).

▶ If there were two fixed points f ∗ and g∗ then
||f ∗ − g∗|| = ||Tf ∗ − Tg∗|| < k ||f ∗ − g∗||.
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Bellman Equations

Theorem (Blackwell’s Theorem)

Let T : C (X ) → C (X ) be an operator that satisfies

▶ Monotonicity: if f , g ,∈ C (X ) and f (x) ≤ g(x) for all x ∈ X
then (Tf )(x) ≤ (Tg)(x) for all x ∈ X .

▶ Discounting: There exists some δ ∈ (0, 1) such that

(T (f + a))(x) ≤ (Tf )(x) + δa

for all f ∈ C (X ), a ≥ 0 and x ∈ X .

then T is a contraction with modulus δ.



Blackwell’s Theorem

To see this, note that for any f , g and any x ∈ X

f (x) ≤ g(x) + ||f (x)− g(x)||

and then just apply T to both sides to get

Tf ≤ Tg + δ||f − g ||.

The same argument with f and g flipped gives

Tg ≤ Tf + δ||f − g ||.



Bellman Equation

In our consumption/savings problem, let

(TV )(s ′) = max
s,c∈R+

u(c) + δV (s)

s.t. c + s ≤ (1 + r)s ′ + w

This clearly satisfies both properties of Blackwell’s theorem, and
thus it has a fixed point.



Dynamic Programming

The key trick here was that the dynamic structure let us break this
up into a bunch of recursive subproblems.

▶ This is called the principal of optimality

▶ Uses the natural recursive structure implied by optimization
over time to simplify the maximization problem.

▶ In finite horizon problems we can work backwards.

▶ In infinite horizon problems, we have a difference equation
that V (·) must satisfy, and a numerical tool to solve for it.



Euler Equation

We can also use the Bellman equation to get a equation for
consumption:

We have

V (st) = max u(c) + δV (s) s.t. c + s ≤ (1 + r)st + w

If V is differentiable, then the first order condition is

u′(ct+1) = δV ′(st+1)

The envelope theorem gives us

V ′(st) = (1 + r)u′(ct+1)

Since this holds at all t, we get

u′(ct+1) = δ(1 + r)u′(ct)



Euler Equation

Hoping for closed form solutions to these is mostly a waste of time.
A notable exception are the class of CRRA utility functions:

u(c) =
c1−γ − 1

1− γ

which make the Euler equations satisfy a linear difference equation

ct+1 = (δ(1 + r))
1
γ ct .

So consumption grows/shrinks by a constant factor each period
until we hit the non-negativity constraint. We could in principle
use these consumption paths to then solve for the optimal c0.



Guess and Verify

An alternative approach would be to solve for V , usually by
guessing a functional form and verifying it.

▶ For instance w = 0 and u(c) = ln c , one could conjecture that
V (s ′) = A ln s ′ + K and solve for an A and K that make V
satisfy the Bellman equation.

▶ Sometimes (often) closed form solutions are just going to be
hopeless.

▶ But, even without a closed form solution, we have a lot to
work with.
▶ e.g. we can see from the Euler equation whether consumption

is growing or shrinking over time



Search

A worker is searching for a job.

▶ At each time t, if the worker is unemployed they draw a new
job with wage w , drawn from pdf f (w) with support W
contained in R+.

▶ Once they accept a job, they collect w from then on.

▶ The worker collects 0 in each period they are unemployed.

▶ There are T periods, discount rate δ.

▶ Bellman equations make this problem very easy to formulate
and solve



Search

If a worker accepts a wage of w at time t, they receive

T−t∑
0

δtw = w

(
1− δT−t

1− δ

)
so this problem has Bellman equation

Vt(w) = max

{
w

(
1− δT−t

1− δ

)
, δ

∫
W

Vt+1(x)f (x) dx

}
.

From this, it’s easy to see

▶ The optimal strategy is a cutoff strategy.

▶ The cutoffs are decreasing.



Search

What if we solved the infinite horizon version of this problem. This
has Bellman equation

V (w) = max

{
w

(1− δ)
, δ

∫
W

V (x)f (x) dx

}
What does equilibrium look like?



Search

Clearly the accept/reject decision is monotone. There must be an
w∗ where you accept if w > w∗.

Above the cutoff
V (w) = w/(1− δ)

below the cutoff
V (w) = δE (V (x))

If the value function is continuous then

V (w∗) =
w∗

1− δ
= δE (V (x))



Search

So at the optimal w∗ it must be that

w∗

1− δ
= δE (V (x))

= δ(

∫ w∗

0
V (w∗)f (x) dx +

∫ ∞

w∗

x

1− δ
f (x) dx)

= δF (w∗)
w∗

1− δ
+

δ

1− δ

∫ ∞

w∗
xf (x) dx

So w∗ solves

(1− δF (w∗))w∗ − δ

∫ ∞

w∗
xf (x) dx = 0

The LHS is strictly increasing over the support of the wage
distribution, continuous, and negative at 0, positive at ∞. So this
implicitly defines w∗.



Continuous Time

When you start looking at dynamic models, you often see them
formulated in continuous time. Your intuition may be that this
seems like a terrible idea; we’ve gone from solving for a sequence
of numbers to a function.

But, thinking about the Bellman equation makes it clear why this
can be a convenient modeling too.



Consumption/Savings

Consider the problem

max

∫ ∞

0
e−ρtu(ct) dt

s.t. ṡt = w + rst − ct

We can write the Bellman equation

V (st) = max

∫ t+∆

t
e−ρ(x−t)u(cx) dx + e−ρ∆V (st+∆)



HJB Equations

V (st) = max

∫ t+∆

t
e−ρ(x−t)u(cx) dx + e−ρ∆V (st+∆).

Assuming things are well behaved

V (st) = max

∫ t+∆

t
e−ρ(x−t)u(cx) dx + e−ρ∆(V (st) + V ′(st)ṡt∆+ o(∆)

(1− e−ρ∆)V (st) = max

∫ t+∆

t
e−ρ(x−t)u(cx)dx + e−ρ∆V ′(st)ṡt∆+ o(∆)

ρV (st) = max u(ct) + V ′(st)ṡt

ρV (st) = max u(ct) + V ′(st)(w + rst − ct)



HJB Equation
So we are left with the differential equation

ρV (s) = u(c) + V ′(s)(w + rs − c)

where c solves u′(c) = V ′(s). This is called the
Hamilton-Jacobi-Bellman Equation.

We can learn a bit more from this, by the envelope theorem

ρV ′(s) = V ′′(s)(w + rs − c) + rV ′(s)

Combining this with the FOC, we get

(ρ− r)u′(c) = u′′(c)
dc

ds

ds

dt

so ct solves the functional equation

ċt/ct
r − ρ

= − u′(ct)

ctu′′(ct)

This the continuous time version of our Euler equation. This tells
us the “elasticity of intertemporal substitution.”



HJB Equations

The HJB equation gives us a differential equation to solve. In
some cases, we can guess a solution. Assume u(c) = ln c , r > ρ
and guess V (s) = b ln(s + a) + k for some b, a, k . Then

1

c
=

b

s + a

And want to find b, a, k s.t.

ρV (s) = ln
s + a

b
+ V ′(s)(w + rs +

s + a

b
)

ρ(b ln(s + a) + k) = ln(s + a)− ln b +
b(w + rs)

s + a
− 1



HJB Equation

(b ln(s + a) + k) =
1

ρ
ln(s + a)− 1

ρ
ln b +

b(w + rs)

ρ(s + a)
− 1

ρ

So b = 1
ρ . We need to set a so that

1

ρ
ln ρ+

1

ρ2
w + rs

s + a
− 1

ρ

is independent of s, so a = w/r . Thus

V (s) =
1

ρ
ln(s + w/r) +

1

ρ
ln ρ+

r

ρ2
− 1

ρ

and
c = ρ

(
s +

w

r

)
so you consume a constant share ρ/r of your flow income.



Hamiltonians

Let’s go back to our discrete time consumption/savings problem
(with some modified time indices)

max
s,c∈RT

+

T∑
t=0

δtu(ct)

st+1 − st = rst + w − ct

What if we tried solving this with multipliers? We get FOCs

δtu′(ct) = −λt

and
λt − λt−1 = −rλt .

We can see how the recursive structure comes into play here.



Hamiltonians

Note that ct only appears in one constraint, while st links
consecutive constraints together. Maybe we can reformulate this
as a sequence of static problems?

Consider the following static problem

H(c , s, λ, t) = max
c

δtu(ct)− λt(rst + w − ct)

When we optimize with respect to c we get

u′(ct) = −λt .



Hamiltonians

We have the function

H∗(st , λt , t) = max
c

δtu(ct)− λt(rst + w − ct).

The objective is called a Hamiltonian. Observe that, by the
envelope theorem

Hst = −rλt

and
Hλt = −(st+1 − st)

Finally we know that, across problems

λt − λt−1 = −rλt



The Maximum Principle
This gives us the following maximum principle

Theorem (The Maximum Principle)

Consider a maximization problem,

max
T∑
t=0

F (xt , yt) s.t. yt+1 − yt = G (xt , yt)

With initial and terminal conditions yT = b, y0 = a. Let x∗t be the
solution to this. Define the Hamiltonian

H(xt , yt , λt , t) = F (xt , yt , t)− λtG (xt , yt , t)

For each t, x∗t maximizes H when λ and y satisfy

▶ λt − λt−1 = Fy (x
∗
t , yt , t)− λtGy (x

∗
t , yt , t)

▶ yt+1 − yt = G (x∗t , yt , t)

▶ yT = b, y0 = a



The Maximum Principle

Even though ct only appears in a single period, it impacts all
periods.

The Hamiltonian uses the multiplier to turn this into a static
problem, adjusting the objective using the shadow price of
consumption today. The shadow prices are exactly equal to the
rate of return from holding yt , so the condition on λ’s shuts down
“arbitrage”



Hamiltonians

Back to consumption/savings. We have

δtu′(ct) = −λt

λt − λt−1 = −rλt

st+1 − st = rst + w − ct

Note that
u′(ct−1) = δ(1 + r)u′(ct),

which is a discrete time Euler equation.

Unsurprisingly, there’s a connection between this approach and the
Bellman equation approach, the multiplier here is indirectly
capturing the marginal benefit of savings.



Hamiltonians

Consider for instance the simple version of our problem

max
T∑
t=0

δt ln(ct)

s.t. st+1 − st = −ct

s0 = Y

How do I optimally distribute Y units of consumption?



Hamiltonians
We have the Hamiltonian

δt ln(ct) + λtct

Which gives us

δt/ct = −λt

λt − λt−1 = 0

st+1 − st = −ct

sT+1 = 0

So
δct−1 = ct

and this problem becomes

T∑
t=0

δtc0 = Y ,

so c0 = (1− δ)Y /(1− δT ).



Hamiltonians

What if we wanted to use this to solve an infinite horizon problem?

The obvious thing to do is to replace sT = 0 with limt→∞ st = 0.

▶ This is called a transversality condition.

▶ We could incorporate the constraint that savings just have to
end above 0 by modifying this to lim stλt = 0.

▶ In general, figuring out these terminal conditions is beyond
the scope of this course.

In our previous problem, this gives us exactly what we’d get if we
took T → ∞.



Hamiltonians

We have a bunch of difference equations. Again, continuous time
is going to make our lives much easier. Consider

max

∫ T

t=0
e−ρt ln(ct)

s.t. ṡt = −ct

s0 = Y , ST = 0

and the continuous time analogues of our conditions are

e−ρt/ct = −λt

λ̇t = 0

ṡt = −ct .



The Maximum Principle

This gives us the following maximum principle

Theorem (The Maximum Principle)

Consider a maximization problem,

max

∫ T

t=0
F (xt , yt , t) s.t. ẏt = G (xt , yt , t)

With initial and terminal conditions yT = b, y0 = a. Let x∗t be the
solution to this. Define the Hamiltonian

H(xt , yt , λt , t) = F (xt , yt , t)− λtG (xt , yt , t)

For each t, x∗t maximizes H when λ and y satisfy

▶ λ̇t = Fy (x
∗
t , yt , t) + λtGy (x

∗
t , yt , t)

▶ ẏt = G (x∗t , yt , t)

▶ yT = b, y0 = a



Hamiltonians

e−ρt/ct = −λt

λ̇t = 0

ṡt = −ct

We can differentiate the first order condition to get

−ρe−ρt = λ̇tct + ċtλt

which gives
−ρ = ċt/ct

so ct = c0e
−ρt and c0

∫ T
0 e−ρt dt = Y



Hamiltonians

Back to our old problem.

max

∫ ∞

t=0
e−ρtu(ct)

s.t. ṡt = w + rst − ct

s0 = 0

we get

e−ρtu′(ct) = −λt

λ̇t = −rλt

ṡt = w + rst − ct

s0 = 0, lim
t→∞

λtst = 0;



Hamiltonians

From some algebra

−ρe−ρtu′(ct) + e−ρtu′′(ct)ċt = −λ̇t

−ρe−ρtu′(ct) + e−ρtu′′(ct)ċt = re−ρtu′(ct)

u′′(ct)

u′(ct)
ċt = (ρ− r)

which looks familiar.



Hamiltonians

We have an initial and terminal condition.
Let u(c) = c1−σ−1

1−σ . We have Euler equation

ċt =
1

σ
(r − ρ)ct

giving ct = c0e
r−ρ
σ

t . In addition we have

λ̇t = −rλt ṡt = w + rst − c0e
r−ρ
σ

t



Hamiltonians
So now we have differential equation

ṡt = w + rst − c0e
(r−ρ)

σ
t .

If you remember enough differential equation tricks, this is easy to
solve

d

dt
[ste

−rt ] = (ṡt − rst)e
−rt = e−rt(w − c0e

(r−ρ)
σ

t)

Which gives us

ste
−rt =

1

r
w [1− e−rt ] + c0

σ

r(1− σ)− ρ
[1− e

r(1−σ)−ρ
σ

t ].

We can then plug in limλtst = lim e−rtst = 0 and solve for c0. We
get

c0 =

(
ρ

rσ
− 1− σ

σ

)
w .



Growth

We can reframe this problem in terms of the growth of an economy.

max

∫ ∞

0
e−ρtu(ct) dt

s.t. k̇t = F (kt)− δkt − ct

ct , kt ≥ 0.

where k is capital, F is capital production function, strictly
concave and strictly increasing, F ′(0) > ρ+ δ.



Hamiltonians

As before

u′(ct) = −eρtλt

λ̇t = −λt [F
′(kt)− δ]

and through substitution we get

−u′′(c)

u′(c)
ċ = F ′(k)− (ρ+ δ)



Phase Diagrams

So we have two differential equations

ċ =
F ′(k)− (ρ+ δ)

−u′′(c)
u′(c)

k̇ = F (k)− δk − c

we can just these to graphically trace trajectories in (k , c) space.



Phase Diagrams

We can divide (k , c) space into regions.

▶ k is increasing iff c < F (k)− δk.

▶ c is increasing iff F ′(k) < ρ+ δ

Let c∗, k∗ solve the equations

c∗ = F (k∗)− δk∗

F ′(k∗) = ρ+ δ
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▶ Qualitatively, three possible paths:
▶ c → 0 and k → ∞.
▶ k → 0 and c → 0 (due to non-negativity constraints).
▶ c → c∗ and k → k∗.

▶ Intuitively, c(0) is optimal if it puts us on the third path.

▶ This path satisfies the transversality condition λtkt → 0.



Dynamics

We’ve seen two different approaches to solving dynamic programs.
Which is more useful depends a bit on the problem.

▶ Some of the early literature (e.g. the textbook) is a bit
dismissive of the HJB approach, which requires us to
characterize the entire value function as opposed to the
optimal trajectory.

▶ But, the HJB approach is, at the moment, more prominent in
economics.
▶ Numerical tools have made solving for the value function less

costly.
▶ Stochastic models are in general a bit more straightforward to

analyze with Bellman equations and have become prominent in
modern economics

▶ Bellman equations seem a bit easier to work with in things like
dynamic games.


