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Dynamics

Consider the consumption savings problem
o st
mas, 2 uled)
ce+se <(l+r)s;1+w
with s_; = 0. This seems like an especially difficult version of our

standard maximization problem. We now need to pick a infinite
vector of consumption/saving choices.

But the dynamics actually make this problem in some sense easier.



Dynamics

To see this, consider the finite horizon version of this problem

t
max Z 0tu(ce)

s,ceER} =0

ce+se <(l+r)se1+w

where T € N. This is a particularly simple version of our standard
constrained optimization problem. Note that:

» The cost function is additively separable

» s; shows up in at most 2 constraints, ¢; shows up in at most 1.

» We could try to solve this using multipliers (more on this in a
bit).

> Let's try a different angle



Bellman Equations

Define a family of value functions

-
Vr(s') = max_ Z 5tu(ct)

s,ceR

+ t=0
st.ce+se < (1+4r)se—1+w
S 1= S/

We can essentially solve this problem backwards. Clearly
Vr(s') = max u(c) +6Vr_1(s)
s,ceR4

st.c+s<(1+r)s+w

If we knew V7 this is an easy problem for babies.



Bellman Equations

The same should hold in our infinite horizon problem.

V(s') = max u(c)+V(s)

s,ceR4
st.c+s<(L+rs+w

where V/(s) is the value function for the infinite horizon problem.
These sorts of equations are called Bellman Equations.



Principle of Optimality

While this recursion is intuitive, it's requires proof.

Theorem
If V(s_1) is the value function for
o0

sup Zétu(ct)
s,ceRT g

Ct + St S (1+r)51_-_1+ w
then it is a bounded solution to the Bellman Equation

V(s') = sup u(c)+dV(s)

s,ceRy
st.c+s<(l+r)s+w



Principle of Optimality
Note first that for we can define a function U that maps from any
fixed policy x = (ct, 5¢)52 to payoffs and satisfies the equation

Zéuct u(co) + 6U(X")

where x" = (¢, 5¢)22,. For any € > 0 we can find a policy x such
that U(x") > V(so) — €, so

V(s_1) > u(co) + dU(X") > u(cp) + V(o) — e



Principle of Optimality
Note first that for we can define a function U that maps from any
fixed policy x = (ct, 5¢)52 to payoffs and satisfies the equation

Zéuct u(co) + 6U(X")
where x" = (¢, 5¢)22,. For any € > 0 we can find a policy x such
that U(x") > V(so) — €, so
V(s_1) > u(co) + dU(X") > u(cp) + V(o) — e
So for all feasible sp, ¢y, s_1 we get
V(s_1) > supu(c) + dV(s0)

Since V is a supremum, we also get for any € > 0 there is some for
some feasible policy x s.t.

V(s_1) < u(cp) +0V(so) + € < supu(co) +6V(so) + €

Therefore, the V satisfies the Bellman Equation



Bellman Equations

So know we know the value function satisfies the equation

V(s') = maxu(c)+dV(s)st. c+s<(1+r)s +w

c,s

We'll now show that:

» V is the unique (continuous, bounded) solution to this
problem.

» How to solve for V.



Sequences

Part of our maximization exercise is now solving for a function. It
would be helpful to have some analogues to tools we've developed
for real numbers here.

Recall in R™ we measure distance according to a norm ||x||. This

satisfies
> 0] = 0.
» ||ax|| = |a|||x]|| for any a € R

> |+ yll < [Ix[] + Iyl



Sequences

This norm gives us concepts like convergent sequences.
Definition

A sequence x, € R¥ converges to x if for any € > 0, there exists an
N s.t. if n > N then ||x, — x|| < e.

Definition

A sequence x, € R¥ is Cauchy if for any € > 0 there exists a N s.t.
if n,m> N then ||x, — xm|| < €.

Theorem

A real valued sequence converges if and only if it is Cauchy.



A Function Space

What if we tried to do the same thing for functions.

» Let C(X) be the set of bounded, continuous functions with
domain X.

» Define a norm
[[f[| = sup |f(x)]
xeX

Why do we call this a norm? It's easy to verify that it satisfies
three important properties:

> [|of]| = 0.

> ||af|| = |a|||f]| for any a € R

> [If +ell < Ifll +lgll



Sequences of Functions

We can define convergence of functions exactly like we did for
sequences

Definition

A sequence f, € C(X) converges to f if for any € > 0, there exists
an N s.t. if n > N then ||f, — ]| <.

This is a concept called uniform convergence. Note that it is
asking for more then just f,(x) — f(x) at every x € X.



Cauchy Sequences of Functions

Theorem

C(X) with the norm ||f|| = sup |f(x)| is complete, i.e. every
Cauchy sequence converges to a function in C(X).

Take a Cauchy sequence (f,)52 ;. We know that for any € > 0
there exists an N s.t. if n,m > N then ||f, — ful| < e.

Take f(x) = lim f,(x), which exists since f,(x) is a Cauchy
sequence in R. This is a continuous bounded function (try proving
this yourself).



Proof-Continued

We want to show that f is also the limit of f, under the sup norm.

> Now take any € > 0. We want to show that there exists an N
s.t. if n > N then ||f — f,|| <e.



Proof-Continued

We want to show that f is also the limit of f, under the sup norm.

> Now take any € > 0. We want to show that there exists an N
s.t. if n > N then ||f — f,|| <e.

» Consider sup,cx |fa(x) — f(x)|. We know for any N and for
any m > N and for any x € X

|fa(x) = FO)] < [Fa(x) = fn ()] + [F(x) = (X))



Proof-Continued

We want to show that f is also the limit of f, under the sup norm.

> Now take any € > 0. We want to show that there exists an N
s.t. if n> N then ||f — f|| <e.

» Consider sup,cx |fa(x) — f(x)|. We know for any N and for
any m > N and for any x € X

|fa(x) = FO)] < [Fa(x) = fn ()] + [F(x) = (X))

» Choose N so that for n,m > N, ||f, — f,|| < €/2. Take any
x € X and choose m so that |f(x) — fn(x)| < €/2

[fa(x) = FO)] < [Fa(x) = fn(X)| + [£(x) = fn(x)[ < €

Note that our choice of N was independent of x, so we're
done.



Bellman Equations

We've shown that the value function satisfies the Bellman
Equation. Is any function that satisfies the Bellman equation a
value function?

» Can we find a function that satisfies this recursion.

» Recall(?) when you took differential equations, you showed
that a solution to a differential equation existed by writing
down an “algorithm” to find it.

» Can we do the same thing here?
We need one more concept
Definition
Let k € (0,1). A function T : X — X is a contraction of modulus
kif || Tx = Tyl| < k[|x = y||.



Bellman Equations

Theorem (Contraction Mapping Theorem)

If T: C(X) — C(X) is a contraction, then it has a unique fixed
point, a function f € C(X) s.t. Tf =f.

Moreover, this fixed point is the limit of T"g (where T" denotes
the n-fold composition of T ) for any g € C(X), i.e. for any e >0
there is an N s.t. if n> N then ||T"g — f|| <.



Proof

This is a theorem holds more broadly in complete metric spaces,
i.e. spaces where Cauchy sequences converge. The statement of
the theorem already gives a big hint for how to prove this.



Proof

» Consider the sequence f, = T"fy for some arbitrary f.
» This is a Cauchy sequence.

» So it has a limit f*. Since T is a contraction, it is continuous
and thus this is a fixed point
(T =limpooo T(T ) = limposoe Ty = £¥).



Proof

» Consider the sequence f, = T"fy for some arbitrary f.

» This is a Cauchy sequence.

» So it has a limit *. Since T is a contraction, it is continuous
and thus this is a fixed point
(T =limpooo T(T ) = limposoe Ty = £¥).

» If there were two fixed points f* and g* then
| —g*[| = || TF* — Tg*|| < k|[f* — g"||.



Bellman Equations

Theorem (Blackwell's Theorem)
Let T : C(X) — C(X) be an operator that satisfies

» Monotonicity: if f,g,€ C(X) and f(x) < g(x) for all x € X
then (Tf)(x) < (Tg)(x) for all x € X.

» Discounting: There exists some § € (0,1) such that
(T(f + 2))(x) < (TF)(x) + da

for all f € C(X), a>0 and x € X.

then T is a contraction with modulus §.



Blackwell's Theorem

To see this, note that for any f, g and any x € X
f(x) < g(x) + [[f(x) — g(x)]]
and then just apply T to both sides to get
Tf < Tg + || —gll.
The same argument with f and g flipped gives

Tg < Tf +6||f — gl|.



Bellman Equation

In our consumption/savings problem, let

(TV)(s") = max u(c)+dV(s)

s,ceR4
st.c+s<(L+rs +w

This clearly satisfies both properties of Blackwell's theorem, and
thus it has a fixed point.



Dynamic Programming

The key trick here was that the dynamic structure let us break this
up into a bunch of recursive subproblems.

» This is called the principal of optimality

P Uses the natural recursive structure implied by optimization
over time to simplify the maximization problem.

» In finite horizon problems we can work backwards.

» In infinite horizon problems, we have a difference equation
that V/(-) must satisfy, and a numerical tool to solve for it.



Euler Equation

We can also use the Bellman equation to get a equation for
consumption:

We have
V(st) =maxu(c)+0V(s)st. c+s<(1+r)ss+w
If V is differentiable, then the first order condition is
u'(ce1) = 0V (se41)
The envelope theorem gives us
V/(se) = (1 + r)u'(ce+1)
Since this holds at all t, we get

U(cer1) =61+ ) (ct)



Euler Equation

Hoping for closed form solutions to these is mostly a waste of time.
A notable exception are the class of CRRA utility functions:
11—y _ 1

(€)=

which make the Euler equations satisfy a linear difference equation

1

Ci+1 = ((5(1 + I‘));Ct.

So consumption grows/shrinks by a constant factor each period
until we hit the non-negativity constraint. We could in principle
use these consumption paths to then solve for the optimal ¢p.



Guess and Verify

An alternative approach would be to solve for V, usually by
guessing a functional form and verifying it.
» For instance w = 0 and u(c) = In ¢, one could conjecture that
V(s') = Alns’ + K and solve for an A and K that make V
satisfy the Bellman equation.

» Sometimes (often) closed form solutions are just going to be
hopeless.
» But, even without a closed form solution, we have a lot to
work with.
P> e.g. we can see from the Euler equation whether consumption
is growing or shrinking over time



Search

A worker is searching for a job.

» At each time t, if the worker is unemployed they draw a new
job with wage w, drawn from pdf f(w) with support W
contained in R;.

» Once they accept a job, they collect w from then on.
» The worker collects 0 in each period they are unemployed.
» There are T periods, discount rate §.

» Bellman equations make this problem very easy to formulate
and solve



Search

If a worker accepts a wage of w at time t, they receive

so this problem has Bellman equation

Vt(W):max{W<1_6T t> 5/ Vip1(x)f }

From this, it's easy to see
» The optimal strategy is a cutoff strategy.

» The cutoffs are decreasing.



Search

What if we solved the infinite horizon version of this problem. This
has Bellman equation

V(w) = max {(1V—V6)’5/W V(x)f(x) dx}

What does equilibrium look like?



Search

Clearly the accept/reject decision is monotone. There must be an
w* where you accept if w > w*.

Above the cutoff

below the cutoff
V(w) =dE(V(x))

If the value function is continuous then

*




Search

So at the optimal w* it must be that

W*

1-96

= SE(V(x))

_ 5(/0W V(w*)F(x) dx + /OO F(x) o)

w
W*

6 o0
:5F(W*)1_5 +1—6/* xf(x) dx

So w* solves

[ee]
(1—0F(w*))w* — 5/ xf(x)dx =0
W*
The LHS is strictly increasing over the support of the wage
distribution, continuous, and negative at 0, positive at 0co. So this
implicitly defines w*.



Continuous Time

When you start looking at dynamic models, you often see them
formulated in continuous time. Your intuition may be that this
seems like a terrible idea; we've gone from solving for a sequence
of numbers to a function.

But, thinking about the Bellman equation makes it clear why this
can be a convenient modeling too.



Consumption /Savings

Consider the problem

o0
max/ e u(ce) dt
0

st. Ss =w+rs; — ¢t

We can write the Bellman equation

t+A
V(s) = max/ e P y(c ) dx + e P2V (seqn)
t



HJB Equations

t+A
V(st) = max/ e P (e ) dx + e PPV (sepn).
t
Assuming things are well behaved
t+A
V(st) = max/ e PO y(c ) dx + e PA(V(s) + V/(st)6:A 4 o(A)
t

t+A
(1—eP2)V(s) = max/ e Py )dx 4+ e PRV (s4) 5 A + o(A
t

pV(st) = maxu(ct) + V'(st)st
pV(st) = maxu(ce) + V'(se)(w + rse — )



HJB Equation

So we are left with the differential equation
pV(s) = u(c) + V'(s)(w +rs — ¢)

where ¢ solves uv/(c) = V/(s). This is called the
Hamilton-Jacobi-Bellman Equation.

We can learn a bit more from this, by the envelope theorem
pV'(s) = V"(s)(w+rs—c)+ rV'(s)
Combining this with the FOC, we get

dc ds
—nd'(c)=u"(c)——
(0= Nu(e) = w"(e) 5 5
so ¢; solves the functional equation
ét/Ct _ U/(Ct)
r—p ceu”(ct)

This the continuous time version of our Euler equation. This tells
us the “elasticity of intertemporal substitution.”



HJB Equations

The HJB equation gives us a differential equation to solve. In
some cases, we can guess a solution. Assume u(c) =Inc, r > p
and guess V/(s) = bIn(s + a) + k for some b, a, k. Then

1 b
c s+a
And want to find b, a, k s.t.
pV(s) = In 22 L V() (w + rs + 22)
b
p(bln(s—l—a)+k):In(s+a)—lnb+M—l

s+ a



HJB Equation

1 1 b(w+rs) 1
bin(s+a)+k)=-In(s+a)—-Inb+ ——F — —
(bln(s +2) k) p( ) p p(s+a) p

So b:%. We need to set a so that
1 1 +rs 1
,|p_|_ 2W _
p?st+a p

is independent of s, so a=w/r. Thus

1 1 ro 1
V(is)==In(s+w/r)+ —Inp+ — — —
(5) = 5 In(s = w/r) + ~Inp+ 2~
and
w
c:p(s—i——)
B

so you consume a constant share p/r of your flow income.



Hamiltonians

Let's go back to our discrete time consumption/savings problem
(with some modified time indices)

T
max Zétu(ct)

T
s,ceR} —o

St41 — St =I5t + W — ¢t
What if we tried solving this with multipliers? We get FOCs
(stU/(Ct) = _)\t

and
)\t — )\t_]_ = —r)\t.

We can see how the recursive structure comes into play here.



Hamiltonians

Note that c¢; only appears in one constraint, while s; links
consecutive constraints together. Maybe we can reformulate this
as a sequence of static problems?

Consider the following static problem
H(c,s, A\, t) = maxdtu(ce) — Ae(rse + w — ct)

When we optimize with respect to ¢ we get

U/(Ct—) == _)\t-



Hamiltonians

We have the function
H*(st, Ae, t) = max&tu(cy) — Ae(rse + w — ct).
C

The objective is called a Hamiltonian. Observe that, by the
envelope theorem
Hst = —r)\t

and
HAt = —(5t+1 - St)

Finally we know that, across problems

At —Aem1=—rAt



The Maximum Principle

This gives us the following maximum principle

Theorem (The Maximum Principle)

Consider a maximization problem,

-
maxz F(xt, yt) st yer1 — Y = G(xt, t)
t=0

With initial and terminal conditions yT = b, yo = a. Let x{ be the
solution to this. Define the Hamiltonian

H(Xt).yh )\ty t) — F(thtv t) - AtG(Xtayh t)
For each t, x{ maximizes H when )\ and y satisfy
> At’ - >\t—1 - Fy(X;fkayt) t) - )‘tGy(X;fkuyh t)
> Yer1 —ye = G(x{, ¥, t)
> yr=byo=a



The Maximum Principle

Even though c¢; only appears in a single period, it impacts all
periods.

The Hamiltonian uses the multiplier to turn this into a static
problem, adjusting the objective using the shadow price of
consumption today. The shadow prices are exactly equal to the
rate of return from holding y;, so the condition on \'s shuts down

“arbitrage”



Hamiltonians

Back to consumption/savings. We have
6tU/(Ct) = 7)\1—
At = Atm1 = —r);
St4+1 — St = ISt + W — (¢
Note that
U(c—1) =61+ nd(cr),
which is a discrete time Euler equation.

Unsurprisingly, there's a connection between this approach and the
Bellman equation approach, the multiplier here is indirectly
capturing the marginal benefit of savings.



Hamiltonians

Consider for instance the simple version of our problem

-
maxZét In(ct)
t=0

s.t. St+1 — St = —C¢
50 = Y

How do | optimally distribute Y units of consumption?



Hamiltonians
We have the Hamiltonian

(5t In(Ct) + )‘tct
Which gives us

§/ce = =Xt
At — -1 =0
St41 — St = —Ct
sT+1=0
So
dCt—1 = ¢t

and this problem becomes

T
Z 5tC0 = Y,
t=0

soc=(1-0)Y/(1-67).



Hamiltonians

What if we wanted to use this to solve an infinite horizon problem?

The obvious thing to do is to replace st = 0 with lim;_ ., s = 0.
» This is called a transversality condition.

» We could incorporate the constraint that savings just have to
end above 0 by modifying this to lim s;A; = 0.

» In general, figuring out these terminal conditions is beyond
the scope of this course.

In our previous problem, this gives us exactly what we'd get if we
took T — oo.



Hamiltonians

We have a bunch of difference equations. Again, continuous time
is going to make our lives much easier. Consider

-
max/ e "In(ct)
t

=0
s.t. 5.1_- = —Ct
So = Y, ST =0

and the continuous time analogues of our conditions are

e_pt/Ct = _)\t
)'\t - 0

ét = —Ct.



The Maximum Principle
This gives us the following maximum principle

Theorem (The Maximum Principle)

Consider a maximization problem,

T
maX/ F(Xtayta t) s.t. _)-/t = G(Xta,yt, t)
t=0

With initial and terminal conditions yT = b, yop = a. Let x{ be the
solution to this. Define the Hamiltonian

H(Xt7yt7 )\h t) == F(Xt7yf7 t) - Al’G(Xt‘7yi’7 t)

For each t, x{ maximizes H when )\ and y satisfy
> ).\t = Fy (x5 ye, t) + AeGy (X, ye,s t)
> yr = G(x{,yt, 1)
> yr=by=a



Hamiltonians

e_pt/Ct = _)\t
)-\t - O
S.t = —Ct

We can differentiate the first order condition to get
—,oe_pf = ).\tct + ét)\t

which gives
—p = Ct/ct

_ T _
soc=coe Pand g [, e tdt=Y



Hamiltonians

Back to our old problem.

o0
max/ e u(ct)
t

=0
st. Ss=wHrsy — ¢t

S0 = 0
we get
e "' (ct) = =Mt
).\t = —r)\t

.ét:W—i—rSt—Ct

S0 = 0, lim )\tst = 0,
t—00



Hamiltonians

From some algebra

_pe—pt /( ) +e —pt ”(Ct)ct
—pe —pt /( )+ e —pt ”(Ct)ct
u// Ct)

u’(ct)

which looks familiar.

re ptu’(ct)

=(p—r)



Hamiltonians

We have an initial and terminal condition.

l1—0o .
Let u(c) = S—*. We have Euler equation

¢ =—(r—p)c
t J( p)ce
giving ¢; = cpe o L. In addition we have

r

N . r—-p
Ae = —r\eSe=w+rsp —cpe o ¢



Hamiltonians

So now we have differential equation

. (r=p);
St = W rsg — cpe o

If you remember enough differential equation tricks, this is easy to
solve

rt

d
a[ste’”] = (st —rs)e T =e""(w—ce - )

Which gives us

1 rl—o)—
ste_rt:;w[l—e_rt]—i—cor —[1-e = °1].
p

1-0)

We can then plug in lim \;s; = lime~"*s; = 0 and solve for ¢g. We

get
1—
Co = <p— U) w.
ro g




Growth

We can reframe this problem in terms of the growth of an economy.

o0
max/ e u(c) dt
0

s.t. i(t = F(kt) — 5kt — Ct
Ct, ke > 0.

where k is capital, F is capital production function, strictly
concave and strictly increasing, F'(0) > p + 6.



Hamiltonians

As before

U/(Ct) = —ept)\t

Ae = =Ae[F'(ke) — 4]
and through substitution we get

UII(C)

u'(c)

¢=F (k)= (p+9)



Phase Diagrams

So we have two differential equations

_ Filk)—(p+9)
- u”(c)

_ u'(c)

k= F(k)— 6k —c

we can just these to graphically trace trajectories in (k, ¢) space.



Phase Diagrams

We can divide (k, ¢) space into regions.
» k is increasing iff ¢ < F(k) — dk.
» cis increasing iff F/(k) < p+4¢

Let c*, k* solve the equations

c* = F(k*) — 5k*
F/(k*)=p+6



» Qualitatively, three possible paths:

» ¢ —0and k — oo.
» k — 0 and ¢ — 0 (due to non-negativity constraints).
» c— c*and k — k*.

» Intuitively, c(0) is optimal if it puts us on the third path.
» This path satisfies the transversality condition Ask; — 0.



Dynamics

We've seen two different approaches to solving dynamic programs.
Which is more useful depends a bit on the problem.

» Some of the early literature (e.g. the textbook) is a bit
dismissive of the HJB approach, which requires us to
characterize the entire value function as opposed to the
optimal trajectory.

» But, the HIB approach is, at the moment, more prominent in
economics.

» Numerical tools have made solving for the value function less
costly.

» Stochastic models are in general a bit more straightforward to
analyze with Bellman equations and have become prominent in
modern economics

» Bellman equations seem a bit easier to work with in things like
dynamic games.



