Some More Math for Economists: Dynamics

Spring 2023

Dynamics

Consider the consumption savings problem

$$\max_{\substack{s,c \in \mathbb{R}_+^{\mathbb{N}}}} \sum_{t=0}^{\infty} \delta^t u(c_t)$$
$$c_t + s_t \le (1+r)s_{t-1} + w$$

with $s_{-1} = 0$. This seems like an especially difficult version of our standard maximization problem. We now need to pick a infinite vector of consumption/saving choices.

But the dynamics actually make this problem in some sense easier.

Dynamics

To see this, consider the finite horizon version of this problem

$$\max_{\substack{s,c \in \mathbb{R}_+^T \\ t = 0}} \sum_{t=0}^\infty \delta^t u(c_t)$$
$$c_t + s_t \le (1+r)s_{t-1} + w$$

where $T \in \mathbb{N}$. This is a particularly simple version of our standard constrained optimization problem. Note that:

- The cost function is additively separable
- s_t shows up in at most 2 constraints, c_t shows up in at most 1.
- We could try to solve this using multipliers (more on this in a bit).
- Let's try a different angle

Bellman Equations

Define a family of value functions

$$V_{\mathcal{T}}(s') = \max_{\substack{s,c \in \mathbb{R}_{+}^{T} \\ t = 0}} \sum_{t=0}^{T} \delta^{t} u(c_{t})$$

s.t. $c_{t} + s_{t} \leq (1+r)s_{t-1} + w$
 $s_{-1} = s'$

We can essentially solve this problem backwards. Clearly

$$V_{\mathcal{T}}(s') = \max_{s,c \in \mathbb{R}_+} u(c) + \delta V_{\mathcal{T}-1}(s)$$

s.t. $c + s \le (1 + r)s' + w$

If we knew V_T this is an easy problem for babies.

Bellman Equations

The same should hold in our infinite horizon problem.

$$V(s') = \max_{s,c \in \mathbb{R}_+} u(c) + \delta V(s)$$

s.t. $c + s \le (1 + r)s' + w$

where V(s) is the value function for the infinite horizon problem. These sorts of equations are called Bellman Equations.

Principle of Optimality

While this recursion is intuitive, it's requires proof.

Theorem If $V(s_{-1})$ is the value function for

$$\sup_{s,c \in \mathbb{R}^T_+} \sum_{t=0}^{\infty} \delta^t u(c_t)$$

$$c_t + s_t \leq (1+r)s_{t-1} + w$$

then it is a bounded solution to the Bellman Equation

$$V(s') = \sup_{s,c \in \mathbb{R}_+} u(c) + \delta V(s)$$

s.t. $c + s \le (1 + r)s' + w$

Principle of Optimality

Note first that for we can define a function U that maps from any fixed policy $x = (c_t, s_t)_{t=0}^{\infty}$ to payoffs and satisfies the equation

$$U(x) = \sum_{t=0}^{\infty} \delta^t u(c_t) = u(c_0) + \delta U(x')$$

where $x' = (c_t, s_t)_{t=1}^{\infty}$. For any $\epsilon > 0$ we can find a policy x such that $U(x') \ge V(s_0) - \epsilon$, so

$$V(s_{-1}) \geq u(c_0) + \delta U(x') \geq u(c_0) + \delta V(s_0) - \delta \epsilon$$

Principle of Optimality

Note first that for we can define a function U that maps from any fixed policy $x = (c_t, s_t)_{t=0}^{\infty}$ to payoffs and satisfies the equation

$$U(x) = \sum_{t=0}^{\infty} \delta^t u(c_t) = u(c_0) + \delta U(x')$$

where $x' = (c_t, s_t)_{t=1}^{\infty}$. For any $\epsilon > 0$ we can find a policy x such that $U(x') \ge V(s_0) - \epsilon$, so

$$V(s_{-1}) \ge u(c_0) + \delta U(x') \ge u(c_0) + \delta V(s_0) - \delta \epsilon$$

So for all feasible s_0, c_0, s_{-1} we get

$$V(s_{-1}) \geq \sup u(c_0) + \delta V(s_0)$$

Since V is a supremum, we also get for any $\epsilon > 0$ there is some for some feasible policy x s.t.

$$V(s_{-1}) \leq u(c_0) + \delta V(s_0) + \epsilon \leq \sup u(c_0) + \delta V(s_0) + \epsilon$$

Therefore, the V satisfies the Bellman Equation

So know we know the value function satisfies the equation

$$V(s') = \max_{c,s} u(c) + \delta V(s) \text{ s.t. } c+s \leq (1+r)s' + w$$

We'll now show that:

- V is the unique (continuous, bounded) solution to this problem.
- ► How to solve for *V*.

Sequences

Part of our maximization exercise is now solving for a function. It would be helpful to have some analogues to tools we've developed for real numbers here.

Recall in \mathbb{R}^n we measure distance according to a norm ||x||. This satisfies

▶
$$||ax|| = |a|||x||$$
 for any $a \in \mathbb{R}$

► $||x + y|| \le ||x|| + ||y||$

Sequences

This norm gives us concepts like convergent sequences.

Definition

A sequence $x_n \in \mathbb{R}^k$ converges to x if for any $\epsilon > 0$, there exists an N s.t. if $n \ge N$ then $||x_n - x|| < \epsilon$.

Definition

A sequence $x_n \in \mathbb{R}^k$ is Cauchy if for any $\epsilon > 0$ there exists a N s.t. if $n, m \ge N$ then $||x_n - x_m|| < \epsilon$.

Theorem

A real valued sequence converges if and only if it is Cauchy.

A Function Space

What if we tried to do the same thing for functions.

- ► Let C(X) be the set of bounded, continuous functions with domain X.
- Define a norm

$$||f|| = \sup_{x \in X} |f(x)|$$

Why do we call this a norm? It's easy to verify that it satisfies three important properties:

We can define convergence of functions exactly like we did for sequences

Definition

A sequence $f_n \in C(X)$ converges to f if for any $\epsilon > 0$, there exists an N s.t. if $n \ge N$ then $||f_n - f|| < \epsilon$.

This is a concept called uniform convergence. Note that it is asking for more then just $f_n(x) \to f(x)$ at every $x \in X$.

Cauchy Sequences of Functions

Theorem

C(X) with the norm $||f|| = \sup |f(x)|$ is complete, i.e. every Cauchy sequence converges to a function in C(X).

Take a Cauchy sequence $(f_n)_{n=1}^{\infty}$. We know that for any $\epsilon > 0$ there exists an N s.t. if $n, m \ge N$ then $||f_n - f_m|| < \epsilon$.

Take $f(x) = \lim f_n(x)$, which exists since $f_n(x)$ is a Cauchy sequence in \mathbb{R} . This is a continuous bounded function (try proving this yourself).

Proof-Continued

We want to show that f is also the limit of f_n under the sup norm.

Now take any ε > 0. We want to show that there exists an N s.t. if n ≥ N then ||f − f_n|| < ε.</p>

Proof-Continued

We want to show that f is also the limit of f_n under the sup norm.

- Now take any ε > 0. We want to show that there exists an N s.t. if n ≥ N then ||f − f_n|| < ε.</p>
- Consider sup_{x∈X} |f_n(x) − f(x)|. We know for any N and for any m > N and for any x ∈ X

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f(x) - f_m(x)|$$

Proof-Continued

We want to show that f is also the limit of f_n under the sup norm.

- Now take any ε > 0. We want to show that there exists an N s.t. if n ≥ N then ||f − f_n|| < ε.</p>
- Consider sup_{x∈X} |f_n(x) − f(x)|. We know for any N and for any m > N and for any x ∈ X

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f(x) - f_m(x)|$$

• Choose N so that for $n, m \ge N$, $||f_n - f_m|| < \epsilon/2$. Take any $x \in X$ and choose m so that $|f(x) - f_m(x)| < \epsilon/2$

$$|f_n(x)-f(x)|\leq |f_n(x)-f_m(x)|+|f(x)-f_m(x)|\leq \epsilon$$

Note that our choice of N was independent of x, so we're done.

Bellman Equations

We've shown that the value function satisfies the Bellman Equation. Is any function that satisfies the Bellman equation a value function?

- Can we find a function that satisfies this recursion.
- Recall(?) when you took differential equations, you showed that a solution to a differential equation existed by writing down an "algorithm" to find it.
- Can we do the same thing here?

We need one more concept

Definition

Let $k \in (0, 1)$. A function $T : X \to X$ is a contraction of modulus k if $||Tx - Ty|| \le k||x - y||$.

Theorem (Contraction Mapping Theorem)

If $T : C(X) \to C(X)$ is a contraction, then it has a unique fixed point, a function $f \in C(X)$ s.t. Tf = f.

Moreover, this fixed point is the limit of $T^n g$ (where T^n denotes the n-fold composition of T) for any $g \in C(X)$, i.e. for any $\epsilon > 0$ there is an N s.t. if $n \ge N$ then $||T^n g - f|| < \epsilon$.

Proof

This is a theorem holds more broadly in complete metric spaces, i.e. spaces where Cauchy sequences converge. The statement of the theorem already gives a big hint for how to prove this.

Proof

- Consider the sequence $f_n = T^n f_0$ for some arbitrary f_0 .
- This is a Cauchy sequence.
- ▶ So it has a limit f^* . Since T is a contraction, it is continuous and thus this is a fixed point $(Tf^* = \lim_{n\to\infty} T(T^n f_0) = \lim_{n\to\infty} T^{n+1} f_0 = f^*).$

Proof

- Consider the sequence $f_n = T^n f_0$ for some arbitrary f_0 .
- This is a Cauchy sequence.
- ▶ So it has a limit f^* . Since T is a contraction, it is continuous and thus this is a fixed point $(Tf^* = \lim_{n\to\infty} T(T^n f_0) = \lim_{n\to\infty} T^{n+1} f_0 = f^*).$
- ► If there were two fixed points f* and g* then ||f* - g*|| = ||Tf* - Tg*|| < k||f* - g*||.</p>

Bellman Equations

Theorem (Blackwell's Theorem)

Let $T : C(X) \to C(X)$ be an operator that satisfies

- Monotonicity: if f, g, ∈ C(X) and f(x) ≤ g(x) for all x ∈ X then (Tf)(x) ≤ (Tg)(x) for all x ∈ X.
- Discounting: There exists some $\delta \in (0,1)$ such that

$$(T(f+a))(x) \leq (Tf)(x) + \delta a$$

for all $f \in C(X)$, $a \ge 0$ and $x \in X$.

then T is a contraction with modulus δ .

Blackwell's Theorem

To see this, note that for any f,g and any $x \in X$

$$f(x) \leq g(x) + ||f(x) - g(x)||$$

and then just apply T to both sides to get

$$Tf \leq Tg + \delta ||f - g||.$$

The same argument with f and g flipped gives

$$Tg \leq Tf + \delta ||f - g||.$$

In our consumption/savings problem, let

$$(TV)(s') = \max_{s,c \in \mathbb{R}_+} u(c) + \delta V(s)$$

s.t. $c + s \le (1 + r)s' + w$

This clearly satisfies both properties of Blackwell's theorem, and thus it has a fixed point.

Dynamic Programming

The key trick here was that the dynamic structure let us break this up into a bunch of recursive subproblems.

- This is called the principal of optimality
- Uses the natural recursive structure implied by optimization over time to simplify the maximization problem.
- ► In finite horizon problems we can work backwards.
- ► In infinite horizon problems, we have a difference equation that V(·) must satisfy, and a numerical tool to solve for it.

Euler Equation

We can also use the Bellman equation to get a equation for consumption:

We have

$$V(s_t) = \max u(c) + \delta V(s) ext{ s.t. } c+s \leq (1+r)s_t + w$$

If V is differentiable, then the first order condition is

$$u'(c_{t+1}) = \delta V'(s_{t+1})$$

The envelope theorem gives us

$$V'(s_t) = (1+r)u'(c_{t+1})$$

Since this holds at all t, we get

$$u'(c_{t+1}) = \delta(1+r)u'(c_t)$$

Euler Equation

Hoping for closed form solutions to these is mostly a waste of time. A notable exception are the class of CRRA utility functions:

$$u(c) = rac{c^{1-\gamma}-1}{1-\gamma}$$

which make the Euler equations satisfy a linear difference equation

$$c_{t+1} = (\delta(1+r))^{\frac{1}{\gamma}}c_t.$$

So consumption grows/shrinks by a constant factor each period until we hit the non-negativity constraint. We could in principle use these consumption paths to then solve for the optimal c_0 .

Guess and Verify

An alternative approach would be to solve for V, usually by guessing a functional form and verifying it.

- For instance w = 0 and u(c) = ln c, one could conjecture that V(s') = A ln s' + K and solve for an A and K that make V satisfy the Bellman equation.
- Sometimes (often) closed form solutions are just going to be hopeless.
- But, even without a closed form solution, we have a lot to work with.
 - e.g. we can see from the Euler equation whether consumption is growing or shrinking over time

Search

A worker is searching for a job.

- At each time t, if the worker is unemployed they draw a new job with wage w, drawn from pdf f(w) with support W contained in ℝ₊.
- Once they accept a job, they collect w from then on.
- ► The worker collects 0 in each period they are unemployed.
- There are T periods, discount rate δ .
- Bellman equations make this problem very easy to formulate and solve

Search

If a worker accepts a wage of w at time t, they receive

$$\sum_{0}^{T-t} \delta^{t} w = w \left(\frac{1 - \delta^{T-t}}{1 - \delta} \right)$$

so this problem has Bellman equation

$$V_t(w) = \max\left\{w\left(\frac{1-\delta^{T-t}}{1-\delta}\right), \delta \int_W V_{t+1}(x)f(x)\,dx\right\}.$$

From this, it's easy to see

- The optimal strategy is a cutoff strategy.
- ► The cutoffs are decreasing.

What if we solved the infinite horizon version of this problem. This has Bellman equation

$$V(w) = \max\left\{\frac{w}{(1-\delta)}, \delta \int_W V(x)f(x)\,dx\right\}$$

What does equilibrium look like?

Search

Clearly the accept/reject decision is monotone. There must be an w^* where you accept if $w > w^*$.

Above the cutoff

$$V(w) = w/(1-\delta)$$

below the cutoff

$$V(w) = \delta E(V(x))$$

If the value function is continuous then

$$V(w^*) = \frac{w^*}{1-\delta} = \delta E(V(x))$$

Search

So at the optimal w^* it must be that

$$\frac{w^*}{1-\delta} = \delta E(V(x))$$

= $\delta (\int_0^{w^*} V(w^*) f(x) dx + \int_{w^*}^{\infty} \frac{x}{1-\delta} f(x) dx)$
= $\delta F(w^*) \frac{w^*}{1-\delta} + \frac{\delta}{1-\delta} \int_{w^*}^{\infty} x f(x) dx$

So w^* solves

$$(1-\delta F(w^*))w^*-\delta \int_{w^*}^{\infty} xf(x)\,dx=0$$

The LHS is strictly increasing over the support of the wage distribution, continuous, and negative at 0, positive at ∞ . So this implicitly defines w^* .

Continuous Time

When you start looking at dynamic models, you often see them formulated in continuous time. Your intuition may be that this seems like a terrible idea; we've gone from solving for a sequence of numbers to a function.

But, thinking about the Bellman equation makes it clear why this can be a convenient modeling too.

Consumption/Savings

Consider the problem

$$\max \int_0^\infty e^{-\rho t} u(c_t) dt$$

s.t. $\dot{s}_t = w + rs_t - c_t$

We can write the Bellman equation

$$V(s_t) = \max \int_t^{t+\Delta} e^{-\rho(x-t)} u(c_x) \, dx + e^{-\rho\Delta} V(s_{t+\Delta})$$

HJB Equations

$$V(s_t) = \max \int_t^{t+\Delta} e^{-\rho(x-t)} u(c_x) \, dx + e^{-\rho\Delta} V(s_{t+\Delta}).$$

Assuming things are well behaved

$$V(s_t) = \max \int_t^{t+\Delta} e^{-\rho(x-t)} u(c_x) dx + e^{-\rho\Delta} (V(s_t) + V'(s_t) \dot{s}_t \Delta + o(\Delta))$$

$$(1 - e^{-\rho\Delta}) V(s_t) = \max \int_t^{t+\Delta} e^{-\rho(x-t)} u(c_x) dx + e^{-\rho\Delta} V'(s_t) \dot{s}_t \Delta + o(\Delta)$$

$$\rho V(s_t) = \max u(c_t) + V'(s_t) \dot{s}_t$$

$$\rho V(s_t) = \max u(c_t) + V'(s_t) (w + rs_t - c_t)$$

HJB Equation

So we are left with the differential equation

$$\rho V(s) = u(c) + V'(s)(w + rs - c)$$

where c solves u'(c) = V'(s). This is called the Hamilton-Jacobi-Bellman Equation.

We can learn a bit more from this, by the envelope theorem

$$\rho V'(s) = V''(s)(w + rs - c) + rV'(s)$$

Combining this with the FOC, we get

$$(\rho - r)u'(c) = u''(c)\frac{dc}{ds}\frac{ds}{dt}$$

so c_t solves the functional equation

$$\frac{\dot{c}_t/c_t}{r-\rho} = -\frac{u'(c_t)}{c_t u''(c_t)}$$

This the continuous time version of our Euler equation. This tells us the "elasticity of intertemporal substitution."

HJB Equations

The HJB equation gives us a differential equation to solve. In some cases, we can guess a solution. Assume $u(c) = \ln c$, $r > \rho$ and guess $V(s) = b \ln(s + a) + k$ for some b, a, k. Then

$$\frac{1}{c} = \frac{b}{s+a}$$

And want to find b, a, k s.t.

$$\rho V(s) = \ln \frac{s+a}{b} + V'(s)(w+rs+\frac{s+a}{b})$$
$$\rho(b\ln(s+a)+k) = \ln(s+a) - \ln b + \frac{b(w+rs)}{s+a} - 1$$

HJB Equation

$$(b\ln(s+a)+k) = \frac{1}{\rho}\ln(s+a) - \frac{1}{\rho}\ln b + \frac{b(w+rs)}{\rho(s+a)} - \frac{1}{\rho}$$

So $b = \frac{1}{\rho}$. We need to set *a* so that

$$\frac{1}{\rho}\ln\rho+\frac{1}{\rho^2}\frac{w+\mathit{rs}}{\mathit{s}+\mathit{a}}-\frac{1}{\rho}$$

is independent of s, so a = w/r. Thus

$$V(s) = \frac{1}{\rho} \ln(s + w/r) + \frac{1}{\rho} \ln \rho + \frac{r}{\rho^2} - \frac{1}{\rho}$$

and

$$c = \rho \left(s + \frac{w}{r} \right)$$

so you consume a constant share ρ/r of your flow income.

Let's go back to our discrete time consumption/savings problem (with some modified time indices)

$$\max_{\substack{s,c \in \mathbb{R}^T_+ \ t=0}} \sum_{t=0}^T \delta^t u(c_t)$$
$$s_{t+1} - s_t = rs_t + w - c_t$$

What if we tried solving this with multipliers? We get FOCs

$$\delta^t u'(c_t) = -\lambda_t$$

and

$$\lambda_t - \lambda_{t-1} = -r\lambda_t.$$

We can see how the recursive structure comes into play here.

Note that c_t only appears in one constraint, while s_t links consecutive constraints together. Maybe we can reformulate this as a sequence of static problems?

Consider the following static problem

$$H(c, s, \lambda, t) = \max_{c} \delta^{t} u(c_{t}) - \lambda_{t} (rs_{t} + w - c_{t})$$

When we optimize with respect to c we get

$$u'(c_t) = -\lambda_t.$$

We have the function

$$H^*(s_t, \lambda_t, t) = \max_c \delta^t u(c_t) - \lambda_t (rs_t + w - c_t).$$

The objective is called a Hamiltonian. Observe that, by the envelope theorem

$$H_{s_t} = -r\lambda_t$$

and

$$H_{\lambda_t} = -(s_{t+1} - s_t)$$

Finally we know that, across problems

$$\lambda_t - \lambda_{t-1} = -r\lambda_t$$

The Maximum Principle

This gives us the following maximum principle

Theorem (The Maximum Principle) Consider a maximization problem,

$$\max \sum_{t=0}^{T} F(x_t, y_t) \qquad s.t. \ y_{t+1} - y_t = G(x_t, y_t)$$

With initial and terminal conditions $y_T = b$, $y_0 = a$. Let x_t^* be the solution to this. Define the Hamiltonian

$$H(x_t, y_t, \lambda_t, t) = F(x_t, y_t, t) - \lambda_t G(x_t, y_t, t)$$

For each t, x_t^* maximizes H when λ and y satisfy

•
$$\lambda_t - \lambda_{t-1} = F_y(x_t^*, y_t, t) - \lambda_t G_y(x_t^*, y_t, t)$$

• $y_{t+1} - y_t = G(x_t^*, y_t, t)$
• $y_T = b, y_0 = a$

Even though c_t only appears in a single period, it impacts all periods.

The Hamiltonian uses the multiplier to turn this into a static problem, adjusting the objective using the shadow price of consumption today. The shadow prices are exactly equal to the rate of return from holding y_t , so the condition on λ 's shuts down "arbitrage"

Back to consumption/savings. We have

$$\delta^{t} u'(c_{t}) = -\lambda_{t}$$
$$\lambda_{t} - \lambda_{t-1} = -r\lambda_{t}$$
$$s_{t+1} - s_{t} = rs_{t} + w - c_{t}$$

Note that

$$u'(c_{t-1}) = \delta(1+r)u'(c_t),$$

which is a discrete time Euler equation.

Unsurprisingly, there's a connection between this approach and the Bellman equation approach, the multiplier here is indirectly capturing the marginal benefit of savings.

Consider for instance the simple version of our problem

$$\max \sum_{t=0}^{T} \delta^{t} \ln(c_{t})$$

s.t. $s_{t+1} - s_{t} = -c_{t}$
 $s_{0} = Y$

How do I optimally distribute Y units of consumption?

We have the Hamiltonian

 $\delta^t \ln(c_t) + \lambda_t c_t$

Which gives us

$$\delta^{t}/c_{t} = -\lambda_{t}$$
$$\lambda_{t} - \lambda_{t-1} = 0$$
$$s_{t+1} - s_{t} = -c_{t}$$
$$s_{T+1} = 0$$

So

$$\delta c_{t-1} = c_t$$

and this problem becomes

$$\sum_{t=0}^{T} \delta^t c_0 = Y,$$

so $c_0 = (1 - \delta)Y/(1 - \delta^T)$.

What if we wanted to use this to solve an infinite horizon problem?

The obvious thing to do is to replace $s_T = 0$ with $\lim_{t\to\infty} s_t = 0$.

- This is called a transversality condition.
- We could incorporate the constraint that savings just have to end above 0 by modifying this to lim s_tλ_t = 0.
- In general, figuring out these terminal conditions is beyond the scope of this course.

In our previous problem, this gives us exactly what we'd get if we took $\mathcal{T} \to \infty.$

We have a bunch of difference equations. Again, continuous time is going to make our lives much easier. Consider

$$\max \int_{t=0}^{T} e^{-\rho t} \ln(c_t)$$

s.t. $\dot{s}_t = -c_t$
 $s_0 = Y, S_T = 0$

and the continuous time analogues of our conditions are

$$e^{-
ho t}/c_t = -\lambda_t$$

 $\dot{\lambda}_t = 0$
 $\dot{s}_t = -c_t.$

The Maximum Principle

This gives us the following maximum principle

Theorem (The Maximum Principle) Consider a maximization problem,

$$\max \int_{t=0}^{T} F(x_t, y_t, t) \qquad s.t. \ \dot{y}_t = G(x_t, y_t, t)$$

With initial and terminal conditions $y_T = b$, $y_0 = a$. Let x_t^* be the solution to this. Define the Hamiltonian

$$H(x_t, y_t, \lambda_t, t) = F(x_t, y_t, t) - \lambda_t G(x_t, y_t, t)$$

For each t, x_t^* maximizes H when λ and y satisfy

•
$$\dot{\lambda}_t = F_y(x_t^*, y_t, t) + \lambda_t G_y(x_t^*, y_t, t)$$

• $\dot{y}_t = G(x_t^*, y_t, t)$
• $y_T = b, y_0 = a$

$$e^{-
ho t}/c_t = -\lambda_t$$

 $\dot{\lambda}_t = 0$
 $\dot{s}_t = -c_t$

We can differentiate the first order condition to get

$$-\rho e^{-\rho_t} = \dot{\lambda}_t c_t + \dot{c}_t \lambda_t$$

which gives

$$-
ho = \dot{c}_t/c_t$$

so
$$c_t = c_0 e^{-
ho t}$$
 and $c_0 \int_0^{\mathcal{T}} e^{-
ho t} \, dt = Y$

Back to our old problem.

$$\max \int_{t=0}^{\infty} e^{-\rho t} u(c_t)$$

s.t. $\dot{s}_t = w + rs_t - c_t$
 $s_0 = 0$

we get

$$e^{-\rho t}u'(c_t) = -\lambda_t$$
$$\dot{\lambda}_t = -r\lambda_t$$
$$\dot{s}_t = w + rs_t - c_t$$
$$s_0 = 0, \lim_{t \to \infty} \lambda_t s_t = 0;$$

From some algebra

$$\begin{aligned} -\rho e^{-\rho t} u'(c_t) + e^{-\rho t} u''(c_t) \dot{c}_t &= -\dot{\lambda}_t \\ -\rho e^{-\rho t} u'(c_t) + e^{-\rho t} u''(c_t) \dot{c}_t &= r e^{-\rho t} u'(c_t) \\ \frac{u''(c_t)}{u'(c_t)} \dot{c}_t &= (\rho - r) \end{aligned}$$

which looks familiar.

We have an initial and terminal condition. Let $u(c) = \frac{c^{1-\sigma}-1}{1-\sigma}$. We have Euler equation

$$\dot{c}_t = \frac{1}{\sigma} (r - \rho) c_t$$

giving $c_t = c_0 e^{\frac{r-\rho}{\sigma}t}$. In addition we have

$$\dot{\lambda}_t = -r\lambda_t \dot{s}_t = w + rs_t - c_0 e^{\frac{r-
ho}{\sigma}t}$$

So now we have differential equation

$$\dot{s}_t = w + rs_t - c_0 e^{\frac{(r-\rho)}{\sigma}t}.$$

If you remember enough differential equation tricks, this is easy to solve

$$\frac{d}{dt}[s_t e^{-rt}] = (\dot{s}_t - rs_t)e^{-rt} = e^{-rt}(w - c_0 e^{\frac{(r-\rho)}{\sigma}t})$$

Which gives us

$$s_t e^{-rt} = \frac{1}{r} w [1 - e^{-rt}] + c_0 \frac{\sigma}{r(1 - \sigma) - \rho} [1 - e^{\frac{r(1 - \sigma) - \rho}{\sigma}t}].$$

We can then plug in $\lim \lambda_t s_t = \lim e^{-rt} s_t = 0$ and solve for c_0 . We get

$$c_0 = \left(\frac{\rho}{r\sigma} - \frac{1-\sigma}{\sigma}\right) w.$$

Growth

We can reframe this problem in terms of the growth of an economy.

$$\max \int_{0}^{\infty} e^{-\rho t} u(c_t) dt$$

s.t. $\dot{k}_t = F(k_t) - \delta k_t - c_t$
 $c_t, k_t \ge 0.$

where k is capital, F is capital production function, strictly concave and strictly increasing, $F'(0) > \rho + \delta$.

As before

$$u'(c_t) = -e^{
ho t}\lambda_t$$

 $\dot{\lambda}_t = -\lambda_t[F'(k_t) - \delta]$

and through substitution we get

$$-\frac{u''(c)}{u'(c)}\dot{c}=F'(k)-(\rho+\delta)$$

Phase Diagrams

So we have two differential equations

$$\dot{c} = \frac{F'(k) - (\rho + \delta)}{-\frac{u''(c)}{u'(c)}}$$
$$\dot{k} = F(k) - \delta k - c$$

we can just these to graphically trace trajectories in (k, c) space.

Phase Diagrams

We can divide (k, c) space into regions.

- k is increasing iff $c < F(k) \delta k$.
- c is increasing iff $F'(k) < \rho + \delta$

Let c^* , k^* solve the equations

$$egin{aligned} m{c}^* &= m{F}(k^*) - \delta k^* \ m{F}'(k^*) &=
ho + \delta \end{aligned}$$

- Qualitatively, three possible paths:
 - $c \to 0$ and $k \to \infty$.
 - $k \rightarrow 0$ and $c \rightarrow 0$ (due to non-negativity constraints).
 - $c \rightarrow c^*$ and $k \rightarrow k^*$.

lntuitively, c(0) is optimal if it puts us on the third path.

• This path satisfies the transversality condition $\lambda_t k_t \rightarrow 0$.

Dynamics

We've seen two different approaches to solving dynamic programs. Which is more useful depends a bit on the problem.

- Some of the early literature (e.g. the textbook) is a bit dismissive of the HJB approach, which requires us to characterize the entire value function as opposed to the optimal trajectory.
- But, the HJB approach is, at the moment, more prominent in economics.
 - Numerical tools have made solving for the value function less costly.
 - Stochastic models are in general a bit more straightforward to analyze with Bellman equations and have become prominent in modern economics
 - Bellman equations seem a bit easier to work with in things like dynamic games.