Some More Math for Economists: Dynamics

Spring 2023

Dynamics

Consider the consumption savings problem

$$
\begin{aligned}
& \max _{s, c \in \mathbb{R}_{+}^{\mathbb{N}}} \sum_{t=0}^{\infty} \delta^{t} u\left(c_{t}\right) \\
& c_{t}+s_{t} \leq(1+r) s_{t-1}+w
\end{aligned}
$$

with $s_{-1}=0$. This seems like an especially difficult version of our standard maximization problem. We now need to pick a infinite vector of consumption/saving choices.
But the dynamics actually make this problem in some sense easier.

Dynamics

To see this, consider the finite horizon version of this problem

$$
\begin{array}{r}
\max _{s, c \in \mathbb{R}_{+}^{T}} \sum_{t=0}^{\infty} \delta^{t} u\left(c_{t}\right) \\
c_{t}+s_{t} \leq(1+r) s_{t-1}+w
\end{array}
$$

where $T \in \mathbb{N}$. This is a particularly simple version of our standard constrained optimization problem. Note that:

- The cost function is additively separable
- s_{t} shows up in at most 2 constraints, c_{t} shows up in at most 1 .
- We could try to solve this using multipliers (more on this in a bit).
- Let's try a different angle

Bellman Equations

Define a family of value functions

$$
\begin{aligned}
V_{T}\left(s^{\prime}\right)= & \max _{s, c \in \mathbb{R}_{+}^{T}} \sum_{t=0}^{T} \delta^{t} u\left(c_{t}\right) \\
& \text { s.t. } c_{t}+s_{t} \leq(1+r) s_{t-1}+w \\
& s_{-1}=s^{\prime}
\end{aligned}
$$

We can essentially solve this problem backwards. Clearly

$$
\begin{array}{r}
V_{T}\left(s^{\prime}\right)=\max _{s, c \in \mathbb{R}_{+}} u(c)+\delta V_{T-1}(s) \\
\text { s.t. } c+s \leq(1+r) s^{\prime}+w
\end{array}
$$

If we knew V_{T} this is an easy problem for babies.

Bellman Equations

The same should hold in our infinite horizon problem.

$$
\begin{aligned}
V\left(s^{\prime}\right)= & \max _{s, c \in \mathbb{R}_{+}} u(c)+\delta V(s) \\
& \text { s.t. } c+s \leq(1+r) s^{\prime}+w
\end{aligned}
$$

where $V(s)$ is the value function for the infinite horizon problem.
These sorts of equations are called Bellman Equations.

Principle of Optimality

While this recursion is intuitive, it's requires proof.
Theorem
If $V\left(s_{-1}\right)$ is the value function for

$$
\begin{aligned}
& \sup _{s, c \in \mathbb{R}_{+}^{T}} \sum_{t=0}^{\infty} \delta^{t} u\left(c_{t}\right) \\
& c_{t}+s_{t} \leq(1+r) s_{t-1}+w
\end{aligned}
$$

then it is a bounded solution to the Bellman Equation

$$
\begin{aligned}
V\left(s^{\prime}\right)= & \sup _{s, c \in \mathbb{R}_{+}} u(c)+\delta V(s) \\
& \text { s.t. } c+s \leq(1+r) s^{\prime}+w
\end{aligned}
$$

Principle of Optimality

Note first that for we can define a function U that maps from any fixed policy $x=\left(c_{t}, s_{t}\right)_{t=0}^{\infty}$ to payoffs and satisfies the equation

$$
U(x)=\sum_{t=0}^{\infty} \delta^{t} u\left(c_{t}\right)=u\left(c_{0}\right)+\delta U\left(x^{\prime}\right)
$$

where $x^{\prime}=\left(c_{t}, s_{t}\right)_{t=1}^{\infty}$. For any $\epsilon>0$ we can find a policy x such that $U\left(x^{\prime}\right) \geq V\left(s_{0}\right)-\epsilon$, so

$$
V\left(s_{-1}\right) \geq u\left(c_{0}\right)+\delta U\left(x^{\prime}\right) \geq u\left(c_{0}\right)+\delta V\left(s_{0}\right)-\delta \epsilon
$$

Principle of Optimality

Note first that for we can define a function U that maps from any fixed policy $x=\left(c_{t}, s_{t}\right)_{t=0}^{\infty}$ to payoffs and satisfies the equation

$$
U(x)=\sum_{t=0}^{\infty} \delta^{t} u\left(c_{t}\right)=u\left(c_{0}\right)+\delta U\left(x^{\prime}\right)
$$

where $x^{\prime}=\left(c_{t}, s_{t}\right)_{t=1}^{\infty}$. For any $\epsilon>0$ we can find a policy x such that $U\left(x^{\prime}\right) \geq V\left(s_{0}\right)-\epsilon$, so

$$
V\left(s_{-1}\right) \geq u\left(c_{0}\right)+\delta U\left(x^{\prime}\right) \geq u\left(c_{0}\right)+\delta V\left(s_{0}\right)-\delta \epsilon
$$

So for all feasible s_{0}, c_{0}, s_{-1} we get

$$
V\left(s_{-1}\right) \geq \sup u\left(c_{0}\right)+\delta V\left(s_{0}\right)
$$

Since V is a supremum, we also get for any $\epsilon>0$ there is some for some feasible policy x s.t.

$$
V\left(s_{-1}\right) \leq u\left(c_{0}\right)+\delta V\left(s_{0}\right)+\epsilon \leq \sup u\left(c_{0}\right)+\delta V\left(s_{0}\right)+\epsilon
$$

Therefore, the V satisfies the Bellman Equation

Bellman Equations

So know we know the value function satisfies the equation

$$
V\left(s^{\prime}\right)=\max _{c, s} u(c)+\delta V(s) \text { s.t. } c+s \leq(1+r) s^{\prime}+w
$$

We'll now show that:

- V is the unique (continuous, bounded) solution to this problem.
- How to solve for V.

Sequences

Part of our maximization exercise is now solving for a function. It would be helpful to have some analogues to tools we've developed for real numbers here.
Recall in \mathbb{R}^{n} we measure distance according to a norm $\|x\|$. This satisfies

- $\|0\|=0$.
- $\|a x\|=|a|\|x\|$ for any $a \in \mathbb{R}$
- $\|x+y\| \leq\|x\|+\|y\|$

Sequences

This norm gives us concepts like convergent sequences.
Definition
A sequence $x_{n} \in \mathbb{R}^{k}$ converges to x if for any $\epsilon>0$, there exists an N s.t. if $n \geq N$ then $\left\|x_{n}-x\right\|<\epsilon$.

Definition

A sequence $x_{n} \in \mathbb{R}^{k}$ is Cauchy if for any $\epsilon>0$ there exists a N s.t. if $n, m \geq N$ then $\left\|x_{n}-x_{m}\right\|<\epsilon$.

Theorem
A real valued sequence converges if and only if it is Cauchy.

A Function Space

What if we tried to do the same thing for functions.

- Let $C(X)$ be the set of bounded, continuous functions with domain X.
- Define a norm

$$
\|f\|=\sup _{x \in X}|f(x)|
$$

Why do we call this a norm? It's easy to verify that it satisfies three important properties:

- $\|0\|=0$.
- $\| a f| |=|a|| | f| |$ for any $a \in \mathbb{R}$
- $\|f+g\| \leq\|f\|+\|g\|$

Sequences of Functions

We can define convergence of functions exactly like we did for sequences

Definition

A sequence $f_{n} \in C(X)$ converges to f if for any $\epsilon>0$, there exists an N s.t. if $n \geq N$ then $\left\|f_{n}-f\right\|<\epsilon$.

This is a concept called uniform convergence. Note that it is asking for more then just $f_{n}(x) \rightarrow f(x)$ at every $x \in X$.

Cauchy Sequences of Functions

Theorem

$C(X)$ with the norm $\|f\|=\sup |f(x)|$ is complete, i.e. every Cauchy sequence converges to a function in $C(X)$.

Take a Cauchy sequence $\left(f_{n}\right)_{n=1}^{\infty}$. We know that for any $\epsilon>0$ there exists an N s.t. if $n, m \geq N$ then $\left\|f_{n}-f_{m}\right\|<\epsilon$.

Take $f(x)=\lim f_{n}(x)$, which exists since $f_{n}(x)$ is a Cauchy sequence in \mathbb{R}. This is a continuous bounded function (try proving this yourself).

Proof-Continued

We want to show that f is also the limit of f_{n} under the sup norm.

- Now take any $\epsilon>0$. We want to show that there exists an N s.t. if $n \geq N$ then $\left\|f-f_{n}\right\|<\epsilon$.

Proof-Continued

We want to show that f is also the limit of f_{n} under the sup norm.

- Now take any $\epsilon>0$. We want to show that there exists an N s.t. if $n \geq N$ then $\left\|f-f_{n}\right\|<\epsilon$.
- Consider $\sup _{x \in X}\left|f_{n}(x)-f(x)\right|$. We know for any N and for any $m>N$ and for any $x \in X$

$$
\left|f_{n}(x)-f(x)\right| \leq\left|f_{n}(x)-f_{m}(x)\right|+\left|f(x)-f_{m}(x)\right|
$$

Proof-Continued

We want to show that f is also the limit of f_{n} under the sup norm.

- Now take any $\epsilon>0$. We want to show that there exists an N s.t. if $n \geq N$ then $\left\|f-f_{n}\right\|<\epsilon$.
- Consider $\sup _{x \in X}\left|f_{n}(x)-f(x)\right|$. We know for any N and for any $m>N$ and for any $x \in X$

$$
\left|f_{n}(x)-f(x)\right| \leq\left|f_{n}(x)-f_{m}(x)\right|+\left|f(x)-f_{m}(x)\right|
$$

- Choose N so that for $n, m \geq N,\left\|f_{n}-f_{m}\right\|<\epsilon / 2$. Take any $x \in X$ and choose m so that $\left|f(x)-f_{m}(x)\right|<\epsilon / 2$

$$
\left|f_{n}(x)-f(x)\right| \leq\left|f_{n}(x)-f_{m}(x)\right|+\left|f(x)-f_{m}(x)\right| \leq \epsilon
$$

Note that our choice of N was independent of x, so we're done.

Bellman Equations

We've shown that the value function satisfies the Bellman
Equation. Is any function that satisfies the Bellman equation a value function?

- Can we find a function that satisfies this recursion.
- Recall(?) when you took differential equations, you showed that a solution to a differential equation existed by writing down an "algorithm" to find it.
- Can we do the same thing here?

We need one more concept

Definition

Let $k \in(0,1)$. A function $T: X \rightarrow X$ is a contraction of modulus k if $\|T x-T y\| \leq k\|x-y\|$.

Bellman Equations

Theorem (Contraction Mapping Theorem)
If $T: C(X) \rightarrow C(X)$ is a contraction, then it has a unique fixed point, a function $f \in C(X)$ s.t. $T f=f$.
Moreover, this fixed point is the limit of $T^{n} g$ (where T^{n} denotes the n-fold composition of T) for any $g \in C(X)$, i.e. for any $\epsilon>0$ there is an N s.t. if $n \geq N$ then $\left\|T^{n} g-f\right\|<\epsilon$.

Proof

This is a theorem holds more broadly in complete metric spaces, i.e. spaces where Cauchy sequences converge. The statement of the theorem already gives a big hint for how to prove this.

Proof

- Consider the sequence $f_{n}=T^{n} f_{0}$ for some arbitrary f_{0}.
- This is a Cauchy sequence.
- So it has a limit f^{*}. Since T is a contraction, it is continuous and thus this is a fixed point

$$
\left(T f^{*}=\lim _{n \rightarrow \infty} T\left(T^{n} f_{0}\right)=\lim _{n \rightarrow \infty} T^{n+1} f_{0}=f^{*}\right)
$$

Proof

- Consider the sequence $f_{n}=T^{n} f_{0}$ for some arbitrary f_{0}.
- This is a Cauchy sequence.
- So it has a limit f^{*}. Since T is a contraction, it is continuous and thus this is a fixed point

$$
\left(T f^{*}=\lim _{n \rightarrow \infty} T\left(T^{n} f_{0}\right)=\lim _{n \rightarrow \infty} T^{n+1} f_{0}=f^{*}\right)
$$

- If there were two fixed points f^{*} and g^{*} then

$$
\left\|f^{*}-g^{*}\right\|=\left\|T f^{*}-T g^{*}\right\|<k\left\|f^{*}-g^{*}\right\| .
$$

Bellman Equations

Theorem (Blackwell's Theorem)
Let $T: C(X) \rightarrow C(X)$ be an operator that satisfies

- Monotonicity: if $f, g, \in C(X)$ and $f(x) \leq g(x)$ for all $x \in X$ then $(T f)(x) \leq(T g)(x)$ for all $x \in X$.
- Discounting: There exists some $\delta \in(0,1)$ such that

$$
(T(f+a))(x) \leq(T f)(x)+\delta a
$$

for all $f \in C(X), a \geq 0$ and $x \in X$.
then T is a contraction with modulus δ.

Blackwell's Theorem

To see this, note that for any f, g and any $x \in X$

$$
f(x) \leq g(x)+\|f(x)-g(x)\|
$$

and then just apply T to both sides to get

$$
T f \leq T g+\delta\|f-g\|
$$

The same argument with f and g flipped gives

$$
T g \leq T f+\delta\|f-g\|
$$

Bellman Equation

In our consumption/savings problem, let

$$
\begin{aligned}
(T V)\left(s^{\prime}\right)= & \max _{s, c \in \mathbb{R}_{+}} u(c)+\delta V(s) \\
& \text { s.t. } c+s \leq(1+r) s^{\prime}+w
\end{aligned}
$$

This clearly satisfies both properties of Blackwell's theorem, and thus it has a fixed point.

Dynamic Programming

The key trick here was that the dynamic structure let us break this up into a bunch of recursive subproblems.

- This is called the principal of optimality
- Uses the natural recursive structure implied by optimization over time to simplify the maximization problem.
- In finite horizon problems we can work backwards.
- In infinite horizon problems, we have a difference equation that $V(\cdot)$ must satisfy, and a numerical tool to solve for it.

Euler Equation

We can also use the Bellman equation to get a equation for consumption:

We have

$$
V\left(s_{t}\right)=\max u(c)+\delta V(s) \text { s.t. } c+s \leq(1+r) s_{t}+w
$$

If V is differentiable, then the first order condition is

$$
u^{\prime}\left(c_{t+1}\right)=\delta V^{\prime}\left(s_{t+1}\right)
$$

The envelope theorem gives us

$$
V^{\prime}\left(s_{t}\right)=(1+r) u^{\prime}\left(c_{t+1}\right)
$$

Since this holds at all t, we get

$$
u^{\prime}\left(c_{t+1}\right)=\delta(1+r) u^{\prime}\left(c_{t}\right)
$$

Euler Equation

Hoping for closed form solutions to these is mostly a waste of time. A notable exception are the class of CRRA utility functions:

$$
u(c)=\frac{c^{1-\gamma}-1}{1-\gamma}
$$

which make the Euler equations satisfy a linear difference equation

$$
c_{t+1}=(\delta(1+r))^{\frac{1}{\gamma}} c_{t}
$$

So consumption grows/shrinks by a constant factor each period until we hit the non-negativity constraint. We could in principle use these consumption paths to then solve for the optimal c_{0}.

Guess and Verify

An alternative approach would be to solve for V, usually by guessing a functional form and verifying it.

- For instance $w=0$ and $u(c)=\ln c$, one could conjecture that $V\left(s^{\prime}\right)=A \ln s^{\prime}+K$ and solve for an A and K that make V satisfy the Bellman equation.
- Sometimes (often) closed form solutions are just going to be hopeless.
- But, even without a closed form solution, we have a lot to work with.
- e.g. we can see from the Euler equation whether consumption is growing or shrinking over time

Search

A worker is searching for a job.

- At each time t, if the worker is unemployed they draw a new job with wage w, drawn from pdf $f(w)$ with support W contained in \mathbb{R}_{+}.
- Once they accept a job, they collect w from then on.
- The worker collects 0 in each period they are unemployed.
- There are T periods, discount rate δ.
- Bellman equations make this problem very easy to formulate and solve

Search

If a worker accepts a wage of w at time t, they receive

$$
\sum_{0}^{T-t} \delta^{t} w=w\left(\frac{1-\delta^{T-t}}{1-\delta}\right)
$$

so this problem has Bellman equation

$$
V_{t}(w)=\max \left\{w\left(\frac{1-\delta^{T-t}}{1-\delta}\right), \delta \int_{W} V_{t+1}(x) f(x) d x\right\}
$$

From this, it's easy to see

- The optimal strategy is a cutoff strategy.
- The cutoffs are decreasing.

Search

What if we solved the infinite horizon version of this problem. This has Bellman equation

$$
V(w)=\max \left\{\frac{w}{(1-\delta)}, \delta \int_{W} V(x) f(x) d x\right\}
$$

What does equilibrium look like?

Search

Clearly the accept/reject decision is monotone. There must be an w^{*} where you accept if $w>w^{*}$.

Above the cutoff

$$
V(w)=w /(1-\delta)
$$

below the cutoff

$$
V(w)=\delta E(V(x))
$$

If the value function is continuous then

$$
V\left(w^{*}\right)=\frac{w^{*}}{1-\delta}=\delta E(V(x))
$$

Search

So at the optimal w^{*} it must be that

$$
\begin{aligned}
\frac{w^{*}}{1-\delta} & =\delta E(V(x)) \\
& =\delta\left(\int_{0}^{w^{*}} V\left(w^{*}\right) f(x) d x+\int_{w^{*}}^{\infty} \frac{x}{1-\delta} f(x) d x\right) \\
& =\delta F\left(w^{*}\right) \frac{w^{*}}{1-\delta}+\frac{\delta}{1-\delta} \int_{w^{*}}^{\infty} x f(x) d x
\end{aligned}
$$

So w^{*} solves

$$
\left(1-\delta F\left(w^{*}\right)\right) w^{*}-\delta \int_{w^{*}}^{\infty} x f(x) d x=0
$$

The LHS is strictly increasing over the support of the wage distribution, continuous, and negative at 0 , positive at ∞. So this implicitly defines w^{*}.

Continuous Time

When you start looking at dynamic models, you often see them formulated in continuous time. Your intuition may be that this seems like a terrible idea; we've gone from solving for a sequence of numbers to a function.

But, thinking about the Bellman equation makes it clear why this can be a convenient modeling too.

Consumption/Savings

Consider the problem

$$
\begin{aligned}
& \max \int_{0}^{\infty} e^{-\rho t} u\left(c_{t}\right) d t \\
& \text { s.t. } \dot{s}_{t}=w+r s_{t}-c_{t}
\end{aligned}
$$

We can write the Bellman equation

$$
V\left(s_{t}\right)=\max \int_{t}^{t+\Delta} e^{-\rho(x-t)} u\left(c_{x}\right) d x+e^{-\rho \Delta} V\left(s_{t+\Delta}\right)
$$

HJB Equations

$$
V\left(s_{t}\right)=\max \int_{t}^{t+\Delta} e^{-\rho(x-t)} u\left(c_{x}\right) d x+e^{-\rho \Delta} V\left(s_{t+\Delta}\right)
$$

Assuming things are well behaved

$$
\begin{aligned}
& V\left(s_{t}\right)=\max \int_{t}^{t+\Delta} e^{-\rho(x-t)} u\left(c_{x}\right) d x+e^{-\rho \Delta}\left(V\left(s_{t}\right)+V^{\prime}\left(s_{t}\right) \dot{s}_{t} \Delta+o(\Delta)\right. \\
& \left(1-e^{-\rho \Delta}\right) V\left(s_{t}\right)=\max \int_{t}^{t+\Delta} e^{-\rho(x-t)} u\left(c_{x}\right) d x+e^{-\rho \Delta} V^{\prime}\left(s_{t}\right) \dot{s}_{t} \Delta+o(\Delta \\
& \rho V\left(s_{t}\right)=\max u\left(c_{t}\right)+V^{\prime}\left(s_{t}\right) \dot{s}_{t} \\
& \rho V\left(s_{t}\right)=\max u\left(c_{t}\right)+V^{\prime}\left(s_{t}\right)\left(w+r s_{t}-c_{t}\right)
\end{aligned}
$$

HJB Equation

So we are left with the differential equation

$$
\rho V(s)=u(c)+V^{\prime}(s)(w+r s-c)
$$

where c solves $u^{\prime}(c)=V^{\prime}(s)$. This is called the Hamilton-Jacobi-Bellman Equation.
We can learn a bit more from this, by the envelope theorem

$$
\rho V^{\prime}(s)=V^{\prime \prime}(s)(w+r s-c)+r V^{\prime}(s)
$$

Combining this with the FOC, we get

$$
(\rho-r) u^{\prime}(c)=u^{\prime \prime}(c) \frac{d c}{d s} \frac{d s}{d t}
$$

so c_{t} solves the functional equation

$$
\frac{\dot{c}_{t} / c_{t}}{r-\rho}=-\frac{u^{\prime}\left(c_{t}\right)}{c_{t} u^{\prime \prime}\left(c_{t}\right)}
$$

This the continuous time version of our Euler equation. This tells us the "elasticity of intertemporal substitution."

HJB Equations

The HJB equation gives us a differential equation to solve. In some cases, we can guess a solution. Assume $u(c)=\ln c, r>\rho$ and guess $V(s)=b \ln (s+a)+k$ for some b, a, k. Then

$$
\frac{1}{c}=\frac{b}{s+a}
$$

And want to find b, a, k s.t.

$$
\begin{aligned}
\rho V(s) & =\ln \frac{s+a}{b}+V^{\prime}(s)\left(w+r s+\frac{s+a}{b}\right) \\
\rho(b \ln (s+a)+k) & =\ln (s+a)-\ln b+\frac{b(w+r s)}{s+a}-1
\end{aligned}
$$

HJB Equation

$$
(b \ln (s+a)+k)=\frac{1}{\rho} \ln (s+a)-\frac{1}{\rho} \ln b+\frac{b(w+r s)}{\rho(s+a)}-\frac{1}{\rho}
$$

So $b=\frac{1}{\rho}$. We need to set a so that

$$
\frac{1}{\rho} \ln \rho+\frac{1}{\rho^{2}} \frac{w+r s}{s+a}-\frac{1}{\rho}
$$

is independent of s, so $a=w / r$. Thus

$$
V(s)=\frac{1}{\rho} \ln (s+w / r)+\frac{1}{\rho} \ln \rho+\frac{r}{\rho^{2}}-\frac{1}{\rho}
$$

and

$$
c=\rho\left(s+\frac{w}{r}\right)
$$

so you consume a constant share ρ / r of your flow income.

Hamiltonians

Let's go back to our discrete time consumption/savings problem (with some modified time indices)

$$
\begin{array}{r}
\max _{s, c \in \mathbb{R}_{+}^{T}} \sum_{t=0}^{T} \delta^{t} u\left(c_{t}\right) \\
s_{t+1}-s_{t}=r s_{t}+w-c_{t}
\end{array}
$$

What if we tried solving this with multipliers? We get FOCs

$$
\delta^{t} u^{\prime}\left(c_{t}\right)=-\lambda_{t}
$$

and

$$
\lambda_{t}-\lambda_{t-1}=-r \lambda_{t}
$$

We can see how the recursive structure comes into play here.

Hamiltonians

Note that c_{t} only appears in one constraint, while s_{t} links consecutive constraints together. Maybe we can reformulate this as a sequence of static problems?

Consider the following static problem

$$
H(c, s, \lambda, t)=\max _{c} \delta^{t} u\left(c_{t}\right)-\lambda_{t}\left(r s_{t}+w-c_{t}\right)
$$

When we optimize with respect to c we get

$$
u^{\prime}\left(c_{t}\right)=-\lambda_{t}
$$

Hamiltonians

We have the function

$$
H^{*}\left(s_{t}, \lambda_{t}, t\right)=\max _{c} \delta^{t} u\left(c_{t}\right)-\lambda_{t}\left(r s_{t}+w-c_{t}\right)
$$

The objective is called a Hamiltonian. Observe that, by the envelope theorem

$$
H_{s_{t}}=-r \lambda_{t}
$$

and

$$
H_{\lambda_{t}}=-\left(s_{t+1}-s_{t}\right)
$$

Finally we know that, across problems

$$
\lambda_{t}-\lambda_{t-1}=-r \lambda_{t}
$$

The Maximum Principle

This gives us the following maximum principle
Theorem (The Maximum Principle)
Consider a maximization problem,

$$
\max \sum_{t=0}^{T} F\left(x_{t}, y_{t}\right) \quad \text { s.t. } y_{t+1}-y_{t}=G\left(x_{t}, y_{t}\right)
$$

With initial and terminal conditions $y_{T}=b, y_{0}=a$. Let x_{t}^{*} be the solution to this. Define the Hamiltonian

$$
H\left(x_{t}, y_{t}, \lambda_{t}, t\right)=F\left(x_{t}, y_{t}, t\right)-\lambda_{t} G\left(x_{t}, y_{t}, t\right)
$$

For each t, x_{t}^{*} maximizes H when λ and y satisfy

- $\lambda_{t}-\lambda_{t-1}=F_{y}\left(x_{t}^{*}, y_{t}, t\right)-\lambda_{t} G_{y}\left(x_{t}^{*}, y_{t}, t\right)$
- $y_{t+1}-y_{t}=G\left(x_{t}^{*}, y_{t}, t\right)$
- $y_{T}=b, y_{0}=a$

The Maximum Principle

Even though c_{t} only appears in a single period, it impacts all periods.

The Hamiltonian uses the multiplier to turn this into a static problem, adjusting the objective using the shadow price of consumption today. The shadow prices are exactly equal to the rate of return from holding y_{t}, so the condition on λ 's shuts down "arbitrage"

Hamiltonians

Back to consumption/savings. We have

$$
\begin{aligned}
\delta^{t} u^{\prime}\left(c_{t}\right) & =-\lambda_{t} \\
\lambda_{t}-\lambda_{t-1} & =-r \lambda_{t} \\
s_{t+1}-s_{t} & =r s_{t}+w-c_{t}
\end{aligned}
$$

Note that

$$
u^{\prime}\left(c_{t-1}\right)=\delta(1+r) u^{\prime}\left(c_{t}\right)
$$

which is a discrete time Euler equation.
Unsurprisingly, there's a connection between this approach and the Bellman equation approach, the multiplier here is indirectly capturing the marginal benefit of savings.

Hamiltonians

Consider for instance the simple version of our problem

$$
\begin{aligned}
& \max \sum_{t=0}^{T} \delta^{t} \ln \left(c_{t}\right) \\
& \text { s.t. } s_{t+1}-s_{t}=-c_{t} \\
& s_{0}=Y
\end{aligned}
$$

How do I optimally distribute Y units of consumption?

Hamiltonians

We have the Hamiltonian

$$
\delta^{t} \ln \left(c_{t}\right)+\lambda_{t} c_{t}
$$

Which gives us

$$
\begin{aligned}
\delta^{t} / c_{t} & =-\lambda_{t} \\
\lambda_{t}-\lambda_{t-1} & =0 \\
s_{t+1}-s_{t} & =-c_{t} \\
s_{T+1} & =0
\end{aligned}
$$

So

$$
\delta c_{t-1}=c_{t}
$$

and this problem becomes

$$
\sum_{t=0}^{T} \delta^{t} c_{0}=Y
$$

so $c_{0}=(1-\delta) Y /\left(1-\delta^{T}\right)$.

Hamiltonians

What if we wanted to use this to solve an infinite horizon problem?
The obvious thing to do is to replace $s_{T}=0$ with $\lim _{t \rightarrow \infty} s_{t}=0$.

- This is called a transversality condition.
- We could incorporate the constraint that savings just have to end above 0 by modifying this to $\lim s_{t} \lambda_{t}=0$.
- In general, figuring out these terminal conditions is beyond the scope of this course.

In our previous problem, this gives us exactly what we'd get if we took $T \rightarrow \infty$.

Hamiltonians

We have a bunch of difference equations. Again, continuous time is going to make our lives much easier. Consider

$$
\begin{aligned}
& \max \int_{t=0}^{T} e^{-\rho t} \ln \left(c_{t}\right) \\
& \text { s.t. } \dot{s}_{t}=-c_{t} \\
& s_{0}=Y, S_{T}=0
\end{aligned}
$$

and the continuous time analogues of our conditions are

$$
\begin{aligned}
e^{-\rho t} / c_{t} & =-\lambda_{t} \\
\dot{\lambda}_{t} & =0 \\
\dot{s}_{t} & =-c_{t} .
\end{aligned}
$$

The Maximum Principle

This gives us the following maximum principle

Theorem (The Maximum Principle)

Consider a maximization problem,

$$
\max \int_{t=0}^{T} F\left(x_{t}, y_{t}, t\right) \quad \text { s.t. } \dot{y}_{t}=G\left(x_{t}, y_{t}, t\right)
$$

With initial and terminal conditions $y_{T}=b, y_{0}=a$. Let x_{t}^{*} be the solution to this. Define the Hamiltonian

$$
H\left(x_{t}, y_{t}, \lambda_{t}, t\right)=F\left(x_{t}, y_{t}, t\right)-\lambda_{t} G\left(x_{t}, y_{t}, t\right)
$$

For each t, x_{t}^{*} maximizes H when λ and y satisfy

- $\dot{\lambda}_{t}=F_{y}\left(x_{t}^{*}, y_{t}, t\right)+\lambda_{t} G_{y}\left(x_{t}^{*}, y_{t}, t\right)$
- $\dot{y}_{t}=G\left(x_{t}^{*}, y_{t}, t\right)$
- $y_{T}=b, y_{0}=a$

Hamiltonians

$$
\begin{aligned}
e^{-\rho t} / c_{t} & =-\lambda_{t} \\
\dot{\lambda}_{t} & =0 \\
\dot{s}_{t} & =-c_{t}
\end{aligned}
$$

We can differentiate the first order condition to get

$$
-\rho e^{-\rho_{t}}=\dot{\lambda}_{t} c_{t}+\dot{c}_{t} \lambda_{t}
$$

which gives

$$
-\rho=\dot{c}_{t} / c_{t}
$$

so $c_{t}=c_{0} e^{-\rho t}$ and $c_{0} \int_{0}^{T} e^{-\rho t} d t=Y$

Hamiltonians

Back to our old problem.

$$
\begin{aligned}
& \max \int_{t=0}^{\infty} e^{-\rho t} u\left(c_{t}\right) \\
& \text { s.t. } \dot{s}_{t}=w+r s_{t}-c_{t} \\
& s_{0}=0
\end{aligned}
$$

we get

$$
\begin{aligned}
e^{-\rho t} u^{\prime}\left(c_{t}\right) & =-\lambda_{t} \\
\dot{\lambda}_{t} & =-r \lambda_{t} \\
\dot{s}_{t} & =w+r s_{t}-c_{t} \\
s_{0} & =0, \lim _{t \rightarrow \infty} \lambda_{t} s_{t}=0
\end{aligned}
$$

Hamiltonians

From some algebra

$$
\begin{aligned}
-\rho e^{-\rho t} u^{\prime}\left(c_{t}\right)+e^{-\rho t} u^{\prime \prime}\left(c_{t}\right) \dot{c}_{t} & =-\dot{\lambda}_{t} \\
-\rho e^{-\rho t} u^{\prime}\left(c_{t}\right)+e^{-\rho t} u^{\prime \prime}\left(c_{t}\right) \dot{c}_{t} & =r e^{-\rho t} u^{\prime}\left(c_{t}\right) \\
\frac{u^{\prime \prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t}\right)} \dot{c}_{t} & =(\rho-r)
\end{aligned}
$$

which looks familiar.

Hamiltonians

We have an initial and terminal condition.
Let $u(c)=\frac{c^{1-\sigma}-1}{1-\sigma}$. We have Euler equation

$$
\dot{c}_{t}=\frac{1}{\sigma}(r-\rho) c_{t}
$$

giving $c_{t}=c_{0} e^{\frac{r-\rho}{\sigma} t}$. In addition we have

$$
\dot{\lambda}_{t}=-r \lambda_{t} \dot{s}_{t}=w+r s_{t}-c_{0} e^{\frac{r-\rho}{\sigma} t}
$$

Hamiltonians

So now we have differential equation

$$
\dot{s}_{t}=w+r s_{t}-c_{0} e^{\frac{(r-\rho)}{\sigma} t} .
$$

If you remember enough differential equation tricks, this is easy to solve

$$
\frac{d}{d t}\left[s_{t} e^{-r t}\right]=\left(\dot{s}_{t}-r s_{t}\right) e^{-r t}=e^{-r t}\left(w-c_{0} e^{\frac{(r-\rho)}{\sigma} t}\right)
$$

Which gives us

$$
s_{t} e^{-r t}=\frac{1}{r} w\left[1-e^{-r t}\right]+c_{0} \frac{\sigma}{r(1-\sigma)-\rho}\left[1-e^{\frac{r(1-\sigma)-\rho}{\sigma} t}\right] .
$$

We can then plug in $\lim \lambda_{t} s_{t}=\lim e^{-r t} s_{t}=0$ and solve for c_{0}. We get

$$
c_{0}=\left(\frac{\rho}{r \sigma}-\frac{1-\sigma}{\sigma}\right) w .
$$

Growth

We can reframe this problem in terms of the growth of an economy.

$$
\begin{aligned}
& \max \int_{0}^{\infty} e^{-\rho t} u\left(c_{t}\right) d t \\
& \text { s.t. } \dot{k}_{t}=F\left(k_{t}\right)-\delta k_{t}-c_{t} \\
& c_{t}, k_{t} \geq 0 .
\end{aligned}
$$

where k is capital, F is capital production function, strictly concave and strictly increasing, $F^{\prime}(0)>\rho+\delta$.

Hamiltonians

As before

$$
\begin{aligned}
u^{\prime}\left(c_{t}\right) & =-e^{\rho t} \lambda_{t} \\
\dot{\lambda}_{t} & =-\lambda_{t}\left[F^{\prime}\left(k_{t}\right)-\delta\right]
\end{aligned}
$$

and through substitution we get

$$
-\frac{u^{\prime \prime}(c)}{u^{\prime}(c)} \dot{c}=F^{\prime}(k)-(\rho+\delta)
$$

Phase Diagrams

So we have two differential equations

$$
\begin{aligned}
& \dot{c}=\frac{F^{\prime}(k)-(\rho+\delta)}{-\frac{u^{\prime \prime}(c)}{u^{\prime}(c)}} \\
& \dot{k}=F(k)-\delta k-c
\end{aligned}
$$

we can just these to graphically trace trajectories in (k, c) space.

Phase Diagrams

We can divide (k, c) space into regions.

- k is increasing iff $c<F(k)-\delta k$.
- c is increasing iff $F^{\prime}(k)<\rho+\delta$

Let c^{*}, k^{*} solve the equations

$$
\begin{aligned}
c^{*} & =F\left(k^{*}\right)-\delta k^{*} \\
F^{\prime}\left(k^{*}\right) & =\rho+\delta
\end{aligned}
$$

- Qualitatively, three possible paths:
- $c \rightarrow 0$ and $k \rightarrow \infty$.
- $k \rightarrow 0$ and $c \rightarrow 0$ (due to non-negativity constraints).
- $c \rightarrow c^{*}$ and $k \rightarrow k^{*}$.
- Intuitively, $c(0)$ is optimal if it puts us on the third path.
- This path satisfies the transversality condition $\lambda_{t} k_{t} \rightarrow 0$.

Dynamics

We've seen two different approaches to solving dynamic programs.
Which is more useful depends a bit on the problem.

- Some of the early literature (e.g. the textbook) is a bit dismissive of the HJB approach, which requires us to characterize the entire value function as opposed to the optimal trajectory.
- But, the HJB approach is, at the moment, more prominent in economics.
- Numerical tools have made solving for the value function less costly.
- Stochastic models are in general a bit more straightforward to analyze with Bellman equations and have become prominent in modern economics
- Bellman equations seem a bit easier to work with in things like dynamic games.

