

Thermal oxidation of silicon

sami.franssila@aalto.fi

Microfabrication

Thermal oxidation (at ~1000°C)

Dry oxidation: Si (s) + O_2 (g) \rightarrow Si O_2 (s)

Wet oxidation: Si (s) + 2 H₂O (g) \rightarrow SiO₂ (s) + 2 H₂ (g)

A What happens to materials in oxygen at 1000°C ?

- -silicon
- -epitaxial silicon
- -polysilicon
- -amorphous silicon

oxidized into SiO₂

-silicon nitride: not affected
-metals: melted (Al m.p. 653°C)
-metals: oxidized (e.g. CuO)

(==> not conductive any more)
-metals: reacted with silicon (e.g. TiSi₂, conductor)
-polymers (e.g. resist): burned (CO₂; H₂O)

Thermal SiO₂ properties

- Excellent electrical insulator high breakdown electric field
- Stable and reproducible Si/SiO₂ interface
- Selective oxidation with corresponding mask, e.g. Si₃N₄ (not PR)
- Good diffusion mask for common dopants
- Very good etching selectivity between Si and SiO₂
- Conformal oxide growth on exposed Si surface

Microfabrication

Roles of silicon dioxide

- 1. diffusion/implant mask (~1 µm)
- 2. surface passivation (a few nanometers and up)
- 3. transistor isolation (up to 1 μ m)
- 4. gate oxide in MOS structures (5-25 nm)
- 5. structural and sacrificial layer in MEMS (~1 μ m)

- Thermal oxidation
- <u>https://www.youtube.com/watch?v=nzF8f6ocqXo</u>

If there are both silicon and oxide areas exposed, oxidation will occur on both !

Deal-Grove oxidation model

Deal-Grove growth rates

General solution:

$$t = \frac{x}{kC_s v} + \frac{x^2}{2DC_s v}$$

Two useful approximations:

$$x = kC_s vt$$
$$x = \sqrt{2DC_s t}$$

x < 100*nm x* > 100*nm*

Microfabrication

Parabolic rate law: SQRT dependence

Double thickness requires quadruple time !

Doubling time only increases thickness by $\sqrt{2}$, or 50 min to 100 min \rightarrow 500 nm to 700 nm.

Microfabrication

A Dry oxidation is slower

Oxide thickness measurement: ellipsometry

Best accuracy 0.1nm Transparent films 10 – 1000 nm

Oxygen diffusion thru oxide is faster than diffusion of $H_2O \rightarrow$ you might think that dry oxidation is faster.

But water solubility in oxide is 1000X higher than soluibility of oxygen \rightarrow wet oxidation is faster even though individual molecules diffuse slower.

A Device isolation: LOCOS vs. STI

STI - shallow trench isolation

Thermal oxide Thermal + deposited oxides

Local oxidation of silicon (LOCOS)

 Nitride prevents oxygen diffusion → oxidation areas defined by nitride lithography & etching

A STI: Shallow trench isolation

pad oxide (thermal) pad nitride (LPCVD) lithography etching nitride/oxide/silicon resist strip and cleaning liner oxide (thermal) CVD oxide deposition CMP planarization of the oxide Nitride etching Oxide etching

Contamination sources

- -reaction (by)products in e.g. etching or CVD
- -flaking of films from chamber walls
- -sputtering of wall materials
- -wafer transport: mechanical handling, chucking/clamping
- -jigs: wafer boats (quartz), polypropylene/teflon cassettes
- -wafer itself: chipping and breakage
- -maintenance: cleaning of chambers and transport mechanisms

Cleaning vs. surface preparation

- Wafer cleaning
 - removal of added contamination
 - chemically clean
 - particle-free
- Surface preparation
 - known surface condition
 - independence of previous step
 - independence of wait time

Contamination effects

- -particles -> patterning, growth
- -metals (atomic and ionic contamination) –> Si electronic properties, oxide quality
- -organics (molecules and molecular films) –> contact resistance, growth
- -native oxide (nanometer films) –> growth, contact degradation
- -surface roughness -> growth, patterning

COP defects (pits)

After thermal oxidation and polysilicon capacitor electrodes

Yamabe et al: Journal of The Electrochemical Society, 150 ~3! F42-F46 ~2003!

Pre-oxidation cleaning

Defects at Si/SiO₂ interface

Amorphous and crystalline material cannot match exactly \rightarrow defects at interface

Six silicon atoms in a ring formation is the basic element of oxide

Interface (in)stability

Dangling bonds can be stabilized by hydrogen treatment.

But hydrogen easily diffuses away at elevated temperatures.

CV-measurement: Broad if dangling bonds present; narrow if bonds terminated by H.

The Si/SiO₂ interface

(Photo courtesy of J. Bravman.)

In HRTEM we can see atoms but not dangling bonds.

Oxide microdefects

Dangling bonds at interface

Fixed charge at interface.

Charged defects in oxide bulk

Impurity atoms/ions: Na & K mobile

https://www.semitracks.com/newsletters/april/2015-april-newsletter.php

Gross oxide defects

- thinning
- roughness
- pinholes
- voids
- particles
- stacking faults

Something has prevented oxidation locally

Failure in surface prep: not good enough starting surface, or particles have prevented growth

Oxide electrical quality

A-mode defects: Big problems, e.g. voids.

B-mode defects:

Small problems: thinning, roughnening, impurity atoms, ...

C-mode defects:

Fundamental oxide quality, strength of chemical bonds and uniformity of oxide

Breakdown field: E = V/d; $E_{BD} = V_{max}/d$

Oxidation furnace

3-zone resistive heating

Practical oxidation

POA: post oxidation anneal. Oxide thickness unchanged but densification and some defect elimination.

A Furnace for 300 mm wafers

Oxidation of polysilicon

Polysilicon is rough and consists of grains of different orientations, which oxidize at slightly different rates, leading to rough oxide with non-uniform thickness.

$$Si(s) + O_2(g) ==> SiO_2(s)$$

ALD HfO₂/Si interface

Silicon is easily oxidized, and when we introduce oxygen to deposit HfO_2 , silicon turns to SiO_2 .

Gavartin: Modeling HfO2/SiO2/Si interface, 2007

When depositing ALD oxides \rightarrow thermal SiO₂

A Oxide as sacrificial material

Isotropic HF wet etching of oxide under polysilicon → Membrane is released and can move (=vibrate according to cyclic thermal expansion induced by cyclic heating the gold wire)

H. G. Craighead

Oxidation for silicon tip fabrication

<111> vs. <100> oxidation

Antti J. Niskanen, PhD thesis, Aalto 2012

Both crystal orientation effects and stresses affect oxidation in corners.

- Thermal oxidation happens at 800 °C-1200 °C
- It is a batch process
- It provides high quality SiO₂
- Growth rate is non-constant -> parabolic law.
- Preliminary surface oxidation, Si crystal orientation and Si doping affect on growth rate