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Thermal oxidation (at ~1000oC)

Dry oxidation: 

Si (s) + O2 (g) ➔ SiO2 (s) 

Wet oxidation:  

Si (s) + 2 H2O (g) ➔ SiO2 (s) + 2 H2 (g)



What happens to materials in 
oxygen at 1000oC ?

-silicon

-epitaxial silicon

-polysilicon

-amorphous silicon

oxidized into SiO2

-silicon nitride: not affected

-metals: melted (Al m.p. 653C)

-metals: oxidized (e.g. CuO)

(==> not conductive any more)

-metals: reacted with silicon (e.g. TiSi2 , conductor)

-polymers (e.g. resist): burned (CO2; H2O)



Thermal SiO2 properties
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Roles of silicon dioxide

1. diffusion/implant mask (~1 µm)

2. surface passivation (a few nanometers and up)

3. transistor isolation (up to 1 µm)

4. gate oxide in MOS structures (5-25 nm)

5. structural and sacrificial layer in MEMS (~1 µm)
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Videos

• Thermal oxidation

• https://www.youtube.com/watch?v=nzF8f6ocqXo
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https://www.youtube.com/watch?v=nzF8f6ocqXo


Thermal oxide vs. CVD oxide
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More thermal oxide
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If there are both silicon and oxide areas

exposed, oxidation will occur on both ! 



Oxidation overview
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Deal-Grove oxidation model

Microfabrication

F1 = F2 = F3 in equilibrium



Deal-Grove growth rates

Microfabrication

General solution:

Two useful approximations:



Parabolic rate law: 
SQRT dependence

Microfabrication

Double 

thickness 

requires 

quadruple time !

Doubling time

only increases

thickness by

2 , or 50 min 

to 100 min ➔

500 nm to 700 

nm.

Simulator results, not very accurate.



Dry oxidation is slower
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Oxide thickness measurement: 
ellipsometry
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Wet vs dry
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Oxygen diffusion thru oxide is faster than 

diffusion of H2O  ➔ you might think that dry 

oxidation is faster.

But water solubility in oxide is 1000X higher 

than soluibility of oxygen ➔ wet oxidation is 

faster even though individual molecules diffuse 

slower.



Device isolation: LOCOS vs. STI
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Local oxidation of silicon (LOCOS)

• Nitride prevents oxygen diffusion ➔ oxidation areas 
defined by nitride lithography & etching

nitride
SiO2

nitride
SiO2



STI: Shallow trench isolation
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STI process
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pad oxide (thermal)
pad nitride (LPCVD)
lithography
etching nitride/oxide/silicon 
resist strip and cleaning
liner oxide (thermal)
CVD oxide deposition
CMP planarization of the oxide
Nitride etching
Oxide etching



Contamination sources
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Cleaning vs. surface preparation

Microfabrication



Contamination effects
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Oxide defects
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COP defects (pits)
After thermal oxidation

and polysilicon capacitor

electrodes

Yamabe et al: Journal of The 

Electrochemical Society, 150 ~3! 

F42-F46 ~2003!



Pre-oxidation cleaning
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Defects at Si/SiO2 interface

Plummer, Deal, Griffen: VLSI

Six silicon atoms in a 

ring formation is the 

basic element of oxide

Amorphous and crystalline material cannot 

match exactly ➔ defects at interface



Interface (in)stability

Dangling bonds can be 

stabilized by hydrogen 

treatment.

But hydrogen easily diffuses 

away at elevated temperatures.

CV-measurement:

Broad if dangling

bonds present;

narrow if bonds

terminated by H.



In HRTEM we can see atoms but not 

dangling bonds.



Oxide microdefects

https://www.semitracks.com/newsletters/april/2015-april-newsletter.php

Dangling bonds at 

interface

Fixed charge at 

interface.

Charged defects in 

oxide bulk

Impurity atoms/ions:

Na & K mobile



Gross oxide defects

+ +--

+ + +

silicon

• thinning

• roughness

• pinholes

• voids

• particles

• stacking faults

Something has prevented 

oxidation locally

Failure in surface prep: not 

good enough starting surface, 

or particles have prevented 

growth

oxide



Oxide electrical quality
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A-mode defects:

Big problems, e.g. voids.

B-mode defects:

Small problems: thinning, 

roughnening, impurity atoms, …

C-mode defects:

Fundamental oxide quality, 

strength of chemical bonds and 

uniformity of oxide 

Breakdown field: E = V/d; EBD = Vmax/d 



Oxidation furnace

oxygen

hydrogen

nitrogen

DCE/HCl

burn

box

3-zone resistive heating



Practical oxidation

Franssila: Introduction to Microfabrication 

POA: post oxidation anneal.

Oxide thickness unchanged but 

densification and some defect 

elimination.

O2 flow

Oxidation 

proper



Furnace for 300 mm wafers



Oxidation of polysilicon

Si (s) + O2 (g) ==> SiO2 (s) 



ALD HfO2/Si interface

HfO2

<Si>

Gavartin: Modeling HfO2/SiO2/Si interface, 2007

HfO2

<Si>

SiO2

Silicon is easily oxidized, and when we 

introduce oxygen to deposit HfO2, 

silicon turns to SiO2.

Target

Result



When depositing ALD oxides ➔ thermal SiO2

ref. Kukli 2007.

Amorphous

SiO2



Oxide as sacrificial material

Isotropic HF wet 

etching of oxide 

under polysilicon

➔ Membrane is 

released and can 

move (=vibrate 

according to cyclic 

thermal expansion 

induced by cyclic 

heating the gold 

wire)

H. G. Craighead

SiO2SiO2

poly



Oxidation for silicon tip 
fabrication
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SiO2



<111> vs. <100> oxidation

Antti J. Niskanen, PhD 

thesis, Aalto 2012

For very thin 

oxides

City University of Hongkong, Ch 4



Oxidation of corners
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Both crystal orientation effects and stresses 

affect oxidation in corners.



Summary
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