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I. SUPERCONDUCTIVITY

• 1911 – Heike Kamerlingh Onnes

Electrical resistance of Hg (metal!) dropped to < 10−5 Ω at Tc = 4.2 K.

Other metals become superconductors:

Tc = 1.2 K for Al

Tc = 7.2 K for Pb

Tc = 9.2 K for Nb.

• 1986 – Discovery of high Tc compounds by J.G. Bednorz and K.A. Müller.

Tc = 95 K for Y Ba2Cu3O7−δ

Tc = 125 K for T l2Ba2Ca2Cu3O10

Tc = 9.2 K for HgBa2Ca2Cu3O8+δ.

These are not metals! They are ceramic materials at room temperature!
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A. Meissner Effect

– In the beginning of superconductivity research it was hoped that the electromagnetic

properties could be derived from the property of infinite conductivity.

σ = ∞, J⃗ = σ · E⃗

J⃗ = finite

 =⇒ E⃗ = 0 =⇒ ∇⃗× E⃗ = 0 (1)

Maxwell: ∇⃗ × E⃗ = −∂B⃗
∂t

=⇒ ∂B⃗

∂t
= 0 . (2)

So B⃗ = constant inside a superconductor and also we expect it to be dependent on

the way it was cooled down (e.g. either in the presence or absence of the magnetic

field).

But in 1933 Meisner and Ochsenfeld discovered that B⃗ = 0. The magnetic field

inside the superconductor is not just constant, but it is exactly zero. Magnetic field

lines are expelled. A superconductor is a perfect diamagnet.

Theory Development

• 1935 – Phenomenological theory developed by F. & H. London (two brothers!)

• 1957 – BCS (Bardeen-Cooper-Schrieffer) theory.

• high-TC superconductivity – maybe YOU?

Elements of London Theory:

Consider a particle of mass m∗ and charge q∗. It will turn out that m∗ = 2me and

q∗ = −2e; these particles are Cooper pairs, and a complete understanding of what

they are is provided by the BCS theory.

Recall:

B⃗ = ∇⃗ × A⃗, A⃗ = magnetic vector potential, V = electric potential.
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Schrödinger equation:

iℏ
∂

∂t
ψ(r⃗, t) =

1

2m∗

(
− iℏ∇⃗ − q∗A⃗(r⃗)

)2

ψ(r⃗, t) + q∗V (r⃗, t)ψ(r⃗, t) , (3)

Recall also that: E⃗ = −∂A⃗
∂t

− ∇⃗V .

Note: the Hamiltonian of a free particle in a magnetic field is H = Π⃗2

2m∗ , where

Π⃗(r⃗) = −iℏ∇⃗ − q∗A⃗(r⃗) is the canonical momentum.

The probability density: P (r⃗, t) = |ψ(r⃗, t)|2

∴ ∂P (r⃗,t)
∂t

= ∂ψ∗(r⃗,t)
∂t

ψ(r⃗, t)+ψ∗(r⃗, t)∂ψ(r⃗,t)
∂t

= i
ℏ

{[
1

2m∗

(
iℏ∇⃗−q∗A⃗(r⃗)

)2

ψ∗(r⃗, t)
]
ψ(r⃗, t)−

ψ∗(r⃗, t)
[

1
2m∗

(
− iℏ∇⃗ − q∗A⃗(r⃗)

)2]
ψ(r⃗, t)

}
= −∇⃗ · j⃗(r⃗, t).

∴
∂P (r⃗, t)

∂t
= −∇⃗ · j⃗(r⃗, t) , (4)

where j⃗(r⃗, t) = 1
2m∗

[(
− iℏ∇⃗ − q∗A⃗(r⃗)

)
ψ(r⃗, t)

]∗
ψ(r⃗, t) + 1

2m∗ψ
∗(r⃗, t) ·

[(
− iℏ∇⃗ −

q∗A⃗(r⃗)
)
ψ(r⃗, t)

]
.

Key point: The wavefunction ψ(r⃗, t) for a superconductor can be regarded as an

order parameter (a macroscopic wavefunction!). Let us call this “solution” ψs. It is

also convenient to normalize it to the number of particles rather than 1 (as usual for a

wavefunction), and we will call this object Ψs (the superconductor Ginzburg-Landau

order parameter).

The Ginzburg-Landau Order Parameter: Ψs(r⃗, t) =
√
ns(r⃗, t)e

iθ(r⃗,t), where ns(r⃗, t) =

density of superconducting particles, and θ(r⃗, t) = superconducting phase. Appears

as a result of a broken symmetry.
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The dynamical equation of the Ginzburg-Landau order parameter looks the same as

the Schrödinger equation

iℏ
∂

∂t
Ψs =

1

2m∗

(
− iℏ∇⃗ − q∗A⃗

)2

Ψs + q∗VΨs. (5)

Note that indeed with this definition
´
dr⃗Ψ∗

s(r⃗, t)Ψs(r⃗, t) = total number of supercon-

ducting particles.

• From now on we will assume ns(r⃗, t) ≡ ns = const.

∴ J⃗s(r⃗, t) = ℏns

m∗

[
∇⃗θ(r⃗, t) − q∗

ℏ A⃗(r⃗, t)
]
is the particle current associated with Ψs.

This leads to an electrical current density J⃗s = q∗J⃗s.

Therefore, we have the

J⃗s(r⃗, t) =
ℏq∗ns
m∗

[
∇⃗θ(r⃗, t)− q∗

ℏ
A⃗(r⃗, t)

]
= superconducting current density , (6)

where
[
∇⃗θ(r⃗, t)− e∗

ℏ A⃗(r⃗, t)
]
is a gauge-invariant phase:

θ → θ + q∗

ℏ χ

A⃗→ A⃗+ ∇⃗χ .
(7)

Consequences:

• Let us consider θ = constant in r⃗, ∇⃗θ = 0.
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• Perfect Conductivity

J⃗s = − q∗2

m∗nsA⃗ =⇒ dJs(r⃗,t)
dt

= − q∗2

m∗ns
dA⃗(r⃗,t)
dt

(Recall Maxwell: ∇⃗ × E⃗ = −∂B⃗
∂t

&

B⃗ = ∇⃗ × A⃗), or

dJ⃗s(r⃗, t)
dt

= +
q∗2ns
m∗ E⃗(r⃗, t) . (8)

What does it mean? A constant-in-time current can flow through a superconductor

even if the electric field is zero (resulting in a zero voltage drop - therefore zero electrical

resistance).

Take a ballistic superelectron (no collision with atoms, impurities, etc.)

m∗ dv⃗s
dt

= q∗ · E⃗

J⃗s = ρs · q∗ · v⃗s

 =⇒ dJ⃗s
dt

=
q∗2ρs
m∗ E⃗ (9)

Note the difference with respect to J⃗ = σE⃗ (Ohm’s law)!

• Meissner Effect

Let us look at Maxwell’s equations:

∇⃗ · B⃗ = 0 ,

∇⃗ × B⃗ = µ0J⃗s .

Now B⃗ = ∇⃗ × A⃗ so ∇⃗ × B⃗ = ∇⃗ × (∇⃗ × A⃗) = ∇⃗(∇⃗ · A⃗)− ∇⃗2 · A⃗ = −∇⃗2A⃗, where we

can use the Coulomb gauge ∇⃗ · A⃗ = 0.

∴

∇⃗2A⃗ = −µ0J⃗s ,

J⃗s = − q∗2

m∗nsA⃗ ,
=⇒ ∇⃗2A⃗ =

µ0q
∗2ns
m∗ A⃗ . (10)

Notation:
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λL =
√

m∗

µ0nsq∗2
= London penetration length.

Since J⃗s = − q∗2ns

m∗ A⃗, we have

J⃗s = − 1
µ0λ2L

A⃗ ,

∇⃗2A⃗ = 1
λ2L
A⃗ .

(11)

∴ µ0λ
2
LJ⃗s = −A⃗ =⇒ µ0λ

2
L∇⃗ × J⃗s = −∇⃗ × A⃗ = −B⃗,

or µ0λ
2
L
∂
∂t
(∇⃗ × J⃗s) = −∇⃗×

(
∂A⃗
∂t

≡ −E⃗
)
, since voltage is zero and E⃗ = −∂A⃗

∂t
− ∇⃗V .

But J⃗s = 1
µ0
∇⃗ × B⃗,

∴ λ2L
∂
∂t
· (∇⃗ × (∇⃗ × B⃗)) = ∇⃗ × E⃗ = −∂B⃗

∂t
.

Note ∇⃗ × (∇⃗ × B⃗) = ∇⃗ · (∇⃗ · B⃗)− ∇⃗2B⃗, and that ∇⃗ · (∇⃗ · B⃗) = 0.

This implies λ2L∇⃗2B⃗ = +B⃗, or

[ 1

λ2L
− ∇⃗2

]
B⃗(r⃗) = 0 . (12)

Take B⃗(r⃗) = (0, B(z), 0) (the field is parallel to the surface of the superconductor, let’s

say in the y direction). The solution of the equation above is B(z) = B0 exp(−z/λL).

This is the Meissner effect. The field decays exponentially in the superconductor.

To review: we found
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J⃗s = − 1

µ0λ2L
A⃗ , (13)

and

∇2A⃗ =
1

λ2L
A⃗ , (14)

or
dJ⃗s
dt

=
1

µ0λ2L
E⃗ — called 1st London equation, (15)

B⃗ = −µ0λ
2
L∇⃗ × J⃗s — called 2nd London equation. (16)

So the magnetic field can penetrate at most to depths of ≃ λL.

Currents can flow in this region, but deep in the bulk they will be zero.

II. QUANTIZATION OF FLUX

So far we have not discussed the phase θ from the general expression of the current.

Now it’s time ... with a spectacular example!

We consider a superconducting ring and choose a contour of integration deep in the

bulk where J⃗s(r⃗, t) = 0. This implies
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ℏ∇⃗θ(r⃗) = q∗A⃗(r⃗) =⇒ ℏ

2πn︷ ︸︸ ︷˛
∇⃗ · θ(r⃗)dℓ⃗ = q∗Φ, where Φ = magnetic flux, and n =

integer number. With ϕ =
˜
B⃗ds⃗, we have

ϕ =
2πnℏ
q∗

=
h

q∗
· n . (17)

The flux quantum is ϕ0 =
h
2e

= 2.067× 10−15 Wb, and q∗ = −2e.

• Another useful relation: the energy-phase relationship

−ℏ
∂θ

∂t︸ ︷︷ ︸
“change of phase”

=
1

2

µ0λ
2
L

ns
· J⃗s

2

︸ ︷︷ ︸
“kinetic energy”

+ q∗V︸︷︷︸
“potential energy”

(18)

Proof:

From the Schrödinger-like equation for the order parameter iℏ ∂
∂t
Ψs =

1
2m∗

(
− iℏ∇⃗ −

q∗A⃗
)2

Ψs + q∗VΨs we replace Ψs =
√
nse

iθ where ns = const.

=⇒ −ℏ∂θ
∂t

· √ns = 1
2m∗

(
+ ℏ∇⃗θ − q∗A⃗

)2

· √ns + q∗V
√
ns,

but J⃗s
2
= q∗2n2

s

m∗2

(
ℏ∇⃗θ − q∗A⃗

)2
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=⇒ −ℏ∂θ
∂t

= 1
2

m∗

n2
sq

∗2︸ ︷︷ ︸
≡

µ0λ
2
L

ns

J 2
s + q ∗V .

Let us recap a bit:

Electrodynamics of superconductors is described by

1st London equation dJ⃗s

dt
= 1

µ0λ2L
E⃗ ,

2nd London equation B⃗ = −µ0λ
2
L∇⃗ × J⃗s .

(19)

Here J⃗s = ℏq∗ns

m∗

[
∇⃗θ − q∗

ℏ A⃗
]
or

J⃗s = − ϕ0
2πµ0λ2L

[
∇⃗θ + 2π

ϕ0
A⃗
]
, where the London penetration length is λ2L = m∗

µ0nsq∗2
and

ϕ0 =
h
2e

= flux quantum, q∗ = −2e.

The quantity: ∇⃗θ + 2π
ϕ0
A⃗ = gauge-invariant phase gradient.
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