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Outline

* (Neutron and particle) environment for plasma-facing
materials:

Need for power exhaust (due to particle bombardment)

Material options

Impact of neutrons on materials

Material migration and tritium retention

 Physics models to describe scrape-off layer plasma and
plasma-material interactions = required for extrapolation
toward future fusion power plants
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The plasma-surrounding (material) walls (vessel)

provides a containment and vacuum conditions

 Fusion requires a base
pressure of about 10 mbar
= pumping system

« Power in a-particles and
auxiliary must be
(eventually) extracted
through walls

- Power Iin neutrons
converted to heat in blanket
wall

- Tritium breeding

« Helium removal via in-
vessel pumps
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The choice of materials in fusion reactors Is driven

by plasma/neutron-wall interactions

 Primary issues are: material lifetime, tritium inventory, and
debris formation

= Economical/practical aspect, but tritium and debris
formation also an additional safety aspect

 D-T fusion reaction: D+ T — a (3.5 MeV) + n (14.1 MeV)

— a-particle for plasma self-heating, neutron for blanket heating

= 1 g D-T produces 67.6 GJ in a-particles and 271.8 GJ in
neutrons (1kg of coal produces 24 MJ)

- Following thermalization, a-particles become helium ash = need
to be removed from system

= In future fusion power plants, both power and particle
exhaust and activation of surrounding wall are issues
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Diverting the magnetic field lines to dedicated regions

Inside the vessel controls plasma-wall interaction
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Isolation of divertor from main chamber by adding coils at
the bottom of device to produce magnetic null
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Low divertor temperatures, and thus heat fluxes to the
divertor target plates, are achieved in detached conds.

Confined
Plasma

Scrape-off
layer

Separatrix

JG06.315-4¢

Localised Volumetric

« Standard picture: power and particle flow from the confined
plasma via the scrape-off layer onto the divertor targets =
transfer of kinetic energy to surface

« Detachment: recombine plasma to neutrals in front of targets
= power loss in radiation and recombination

A Mathias Groth - Fusion Technology PHYS-E0463 “Plasma-Wall Interaction and Power Exhaust®, Aalto University 6

Aalto University
Scl



Direct contact of the plasma with the vessel wall

must be limited to certain (controlled) areas

Power in the plasma is
predominately radiated
= (isotropically) spread over

wall

« Remaining power in
escaping particles

— lons following field lines
= limiter and divertor
plates

- Charge-exchange
neutrals = main chamber
and divertor plates




No uniform engineering boundary conditions since
escaping particles have a wide range of fluxes and energies
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In tokamaks, plasma radiation is concentrated in the

divertor region (desired situation!)
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« Main radiation in hydrogen

and impurity, and
Bremsstrahlung
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Detachment can be achieved by operating at high

density and/or by intentionally injecting impurities
~1.0 draes 5515005 NIl 500 400

Aho-Mantila et al. INM 2013

0.0E+00 5.0E+16 1.0E+17 1.5E+17 2.0E+17
N Il intensity (Ph/m?s) Jarvinen et al. PSI 2014

 Line radiation of nitrogen is strongest at temperatures
characteristic of the scrape-off layer

« Low-dose “seeding” leads to reduction of T, to 5 eV
= reduced surface heating

A_ _ Mathias Groth - Fusion Technology PHYS-E0463 “Plasma-Wall Interaction and Power Exhaust®, Aalto University 10



(@))
=
7))
>
®)
(D)
s
>
o
&
@)
&
(D)
@)
>
©
&
'©
>
@)
-
()]
| -
)
©
(D)
i
(D)
s
©
)
&u
>
©
©
()]
)
)

N
)
-
=)
c
L
&)
)
e
~~
e
c
)
=
[
)
)
—
c
S
O
—
©
O
C
©
e
n

@ s X o
m\.m = o o S
_2=35 =B (N |
3235 g § g
ES8ES o & ES
aMmri@ S | =
c ~ O = = o
LFEET2 L § =78
2T S o3G WJ 3 n1U_K,1_
LT ® = c u
cB8cE=cad 2 1 U
LES=Zoco O L O=49«
ﬁ <]
(@))]
£
& 5 O
- © O
~ Wr
= - O
e ©
O =
—— =
> \\om.,..,
o =
c Wk
a S Gl
ot Y s
— e

11

Mathias Groth - Fusion Technology PHYS-E0463 “Plasma-Wall Interaction and Power Exhaust®, Aalto University

Ito University
School of Science



The energy In transient events is too high for any

material to absorb = need to mitigate plasma events

« Surface temperature follows square-root law with time:
T(t) x P X/t

 ITER ELMs = 15 MJ, deposition time = 0.1 — 0.5 ms,
deposition area = 6 m? = power density = 10 GW/m?

= Thax = 6000 °C, penetration depth = 0.15 mm

« Sublimation temperature for graphite = 2200 °C

« Melting and boiling temperature of W = 3410 °C/ 5560 °C
= Graphite will sublimate rapidly, metals will melt

= No immediate material solution, need to mitigate plasma
events!
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Transient event in the plasmas lead to sudden

excursions in heat load and surface temperature
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Edge localized modes can raise surface temperature

transiently by more than 50%

Coenen, Arnoux et al. JET August 2013
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Controlled flash melting by ELM induced

temperature excursions

« Target plate base

maximum temperature (C)

40004 | | _ | temperature
. | | | | heated up to
~— - = 2800 °C
3000
: « AT by ELMs
20004 Ny N = 800-1000 K
= ITER decision pro
1000 | | | : tungsten divertor
. | from start of
o4 . - o operation
525 530 535 540 545 550
time (s)

[B. Bazylev et al., 21st PSI 2014, J. Coenen et al., 21st PSI 2014]
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Fiber-carbon composites are some of the most heat-
resilient materials known to-date

Nose cap temp: 1300 °C

"

=

www.nasa.gov

* Principle factors that ensure spacecraft reentry are shape of
the vehicle, angle of reentry and usage of range of materials

« Compared to continuous fusion device operation,
replacement of space shuttle components is routine ...
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Choice of materials in fusion devices depends on the

stage and readiness of building a fusion power plant

rEEET ] « Heat flux and erosion
' capability, high duty
cycle operation

Induced Activation (Gi/em’)

« Compatibility of
materials with plasma

‘ . |
10°* 107 107 10" 10" 10" 107 10°

Time After Shutdown (years) "_ | p e rfo r m an C e

« Change of thermo-
mechanical properties
IN neutron environment,
transmutation

VCrTi Si
Fe Cr W V Ta

« Tritium retention, safety

« Post-operation waste
management
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While carbon-based plasma facing components

sublimate, metals melt above a certain temperature

graphite CFC metals
(20 kev)
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While carbon-based plasma facing components
sublimate, metals melt

metals

RS ped)

boiling and
droplet formation

e- beam
(120 keV)

homogeneous melt ejection
melting

e —

increasing energy density
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Both globally and locally the various wall elements

are in dynamic equilibrium
Dlsruptlons

S °." ITER
@ 1.25x1023 D, Ts—"1

4x1021 Be s—1

Baffles

]

-

1025 D,Ts-1
Be Wall /
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Disruptions
&ELMs o W
@ .

Divertor target - Castellations

Be erosion = layer
formation = T
retention

Be transport into
remote areas = T
retention in
plasma-shadowed
areas

W erosion,
prompt re-
deposition

Be/W dust
formation
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A wide range of processes take place at the plasma-

material interface, including sputtering and implantation

confined plasma
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Material migration leads to long-term modification of
plasma-facing components and alloy formation

Plasma

Fuel ions + atoms (charge exchange) +
impurity ions bombard 1st wall

Wall materials

Erosion mm) Transport mmm) Deposition)

t Re-erosion
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Formation of Be-W alloys on tungsten surfaces

reduce the melting temperature from 3695 to ~ 1570 K

Weight Percent Tungsten
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Implantation and co-deposition of tritium on plasma-

facing surfaces administratively limits ITER operation

number of 4[}[}5 ITER t:llst:harges 25[} 2500 25000
10° . —

1025—;

Retained amount (T-atoms)

%IIII

107
10° 10° 10° 10° 10° 10

Roth et al. J. Nucl. Mat. 2009 Time (s)

Tritium is
radioactive, most
hazardous to the
public in T,0 =
tritium
management

Metals are
significantly less
susceptible of
absorbing tritium
than carbon =
preferred (and
decided!) for ITER
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Changing the JET wall from carbon to beryllium and

tungsten reduced the hydrogen retention by 10x

retention rate [D/s]
normalised to divertor time

Loarer et al. J. Nucl. Mat 2013

1022 ] | T | T |
1| mmm LW (with cryo pump)
1| pm LW (with turbo pump)
1 | [ ]ILW (NBI & long outgasing)
4 | mmCFC
1 L-mode
107 4
107
| ohmic
10"

gas balances with different conditions

H-mode
type Il

H-mode

111
10x

Tritium concentration (T/X)

10°5

=
S S
ll—‘

[ERN
Q
&

10*-

N
2l

. BeC
11 © BeO+C

WC -

100 200 300 400 500 600
Temperature (° C)

Hydrogen retention likely due to co-deposition with

beryllium

= Another 10x expected for going to full tungsten device

A
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Thick deposition layer can also delaminate and thereby
forming radioactive and chemically reactive dust

Coad et al. J. Nucl. Mat. 2001

27



Neutrons significantly change the thermo-

mechanical properties of materials

| Affected global parameter

Microscopic change

Heat conductivity

Swelling

Ductility (i.e., ability to stretch
material into a wire)

Composition

Trap sites for tritium (retention)

Lattice defects

Void formation, gas bubbles
(e.g., n — Be)

Neutron and helium induced
hardening and embrittlement

Transmutation products

Blister formation

* Investigations into neutron damage of materials requires
dedicated facilities (e.g., IFMIF for fusion neutrons, heavy
lons) = need for up to 100 dpa
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Irradiation of tungsten with heavy ions and He

reduces the thermal conductivity by factors of 200

Doerner et al. PMIF-PFC 2013

250 4 . P
® Pristine W (this work) |rrad|at|0n by
= © Plasma-irradiated W (this work) o I
’é‘ — —a— Pristine W (Roedig et al.) ‘é heavy ion beam
s . -3 5 source (up to 18
e s
£ 150 = $8s3, g MeV)
f *sc0ss8 3
L2 3 )
E 100 T + Simultaneous
o o . .
(8]
TE . ; He implantation
- b1
o 501 L I T ITTH ¥ 3 + 3 =
EUREERRiitgpiiteenidpll g
0 - - . 0
300 350 400 450 500

Temperature (K)

« Other effects include increase of Ductile Brittle Transition
Temperature (DBTT), void swelling, increase of tritium
retention
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Both hydrogen and helium can be trapped deeply In

tungsten leading to bubbles and blisters

Migration _y —
E [
'3 He H h
D B
Solubility Bvl W[ |E
1
W He H\ @ ® He Htrapping,
clustering
J =bubbles

surface

 Low solubility of Hand He (E;S: 3.5 eV 5.5 eV)

« Fast interstitial migration into grain
boundaries (EM: 0.35 eV 0.24 eV)

 Deep trapping in vacancies (1.4 eV 4.7 eV)
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Because of tritium retention issue with carbon, and

the good experience with the JET-ILW, ITER opted
for a full-W divertor from day-one material

Be

Oct 22,
2013

Al e Al

L W - el
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Because of tritium retention issue with carbon, and
the good experience with the JET-ILW, ITER opted
for a full-W divertor from day-one material




Presemo quiz #1

https://presemo.aalto.fi/fet/
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Physics models

(to predict power exhaust and plasma-
material interaction in future reactors)
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Physics models are needed to extrapolate and

mitigate plasma-material issues

Parameter/s

Issue/s

Plasma radiation, power flux
and total energy to surface

Power exhaust

Particle flux and fluence

Erosion and impurity influxes
= plasma impurity content

Plasma temperature

Power exhaust, sputtering
yield, total erosion

Plasma density
(impurity seeding)

Detachment/power exhaust
(fuel dilution, density limit)

Helium

Fuel dilution

Dust

Fuel dilution, explosion hazard
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In diverted configurations, the separatrix divides the
core and the SOL, and defines a private plasma region

Closed magnetic
surfaces

Open
magnetic
surfaces

~
Qﬁ’
o

Scrape-off layer
X-point

Private plasma
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Plasma electrons and ions can stick to material

surface, and recycle as neutral (‘natural’ fueling)

Solid
negative

N\

T
h'\@ ©
()

AN

Impinging ions
recombine at surface

Particles can remain at
surface, diffuse into
material, or are released
back into plasmas as
atoms (backscattering) or
molecules (thermal
release)

Walls acts both as
particle sink and source:
strongest fueling process in
tokamaks
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Plasma-wall interaction leads to sputtering and

macroscopic erosion of material

0.1¢

Plasma SOli‘_d - @ Typical scatter
\ /negatlve - Be in measurements

0.01E ¢

NAN
Sputtering yield
=

0.001¢

00001 1 Ll Ll Lol Lol L 111l
0.01 0.1 1 10 100 1000
Impact energy E, (keV)

\\ chem « Phys. and chem. sputtering
h processes due to hydrogen ions
and neutrals, and impurities

(self-sputtering!)
= effective yields

N\

()

SN
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Sputtering due to ion and neutral impact on the

material surface leads to release of impurities

Physical sputtering: momentum transfer of incoming
particle to lattice

- Threshold energy: Y,u,s — 0 for Eg — Egpresn

- Peak yield correlates with maximum ion/neutral-substrate
momentum transfer

- Yields are strong function of material = future reactors
favor high-Z materials

- Self-sputtering of same-mass impurities can lead to
Yphyseff > 1 = run-away process
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Impurities are generated at both the main chamber

walls and divertor plates

« Impurities can enter the
main plasma as neutrals
or ions

N

DM

* Principal pathways
include

— Source (distribution)

DO

- Edge transport

- Core transport

P Ve
/ZO

T ° . . .
S NN Impurity migration

“If we understand the impurity source distribution, we can
mitigate the impurity issue almost entirely!” SRR

|
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Trace amounts of impurities in the plasmas can

significantly diminish benefits of high-Z materials

10-1 F I 2 !
— e e i
c / =
2 102+ 7
whd o v
8 /
T ’
= .
'S, 10° ! :
g, .I . —'-'D —)Be
= 1 I.I - =D'5W
% 10k ! FOR FER 0.4% Ne*" - W
2 ; ; ——0.2% A" 5> W
@ . i 2% C”" - W

1 10 100 1000

Plasma temperature (eV)

« For neon and argon impinging on tungsten, already less
than 0.5% is sufficient to drop Eipesn from 35 eVto 5 eV
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Chemical sputtering also occurs on metals (more

common feature for carbon)

Figure 2 from C Bjdrkas et al 2013 Plasma Phys. Control. Fusion 55 074004

10“5....| T r — TS
=
S
2
S 10° F .
g C
©
2
>
g
= -@- Bepotl
73 - Bepotll
2 10tk Be,W W surf.
-/~ Be,W Be surf. 3
1 1 1 1 1 ro a2 a2 17
10 100
D energy (eV)

Yields are strong functions of substrate temperature, alloy
composition, and magnitude of fluxes
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Plasma ions crossing the separatrix into SOL

experience ‘attractive’ force of limiter and divertor plate

“neutrons

Confined plasma

Separatrix A

e® = 3kT,

iz LJ_
Scrape-off Layer Divertor plate /

Limiter

Wall

 Upon plasma initiation, negative charged sheath forms in
front of limiter/plate (while SOL remains neutral!)

« SOL width is determined by competition between parallel-B
and perpendicular-B transport = order of cms
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The divertor target conditions are given by the

upstream conditions for power and density

'u' here
or
'u' here
[ ]
ltl
Private
-1 Plasma ! °
yd |
Target | x-point upstream
t | Divertor } Main « B .
A SOL ‘ SOL
yd
Pz
Wall

Conservation of
particles, momentum,
and energy = SOL
2-point model (1-D)

Eqgs. can be manipulated
to obtain n,, T, and T, for
given g, and n,
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In detached conditions, momentum and power

losses occur in the SOL in front of target plate

SOL
FJ.’ OJ_
/ h
Sp.iz ) @

'I_ g LCFS

| ¢

st | 4//,up

target I SOL

2n, Ty = fmomnuTu

7 L
7/2 7/2
Tu/ =T, / + Efcondqu —
Koe
q = yn:kT;c
: 1 _fpower et

« Momentum losses due to
(CX) friction of plasma
with neutrals (recycling
and volumetric)

« Surface heat load is
dispersed by line
radiation (line radiation,
recombination)
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The most attractive regime for fusion reactors is the

detached regime at high upstream density

100g

Temperature T [eV]
o
1

V*
10 Y B5
Ty
Ty
 Sheath-limited| High-recycling Detached
regime regime regime

1.0

Divertor density n,[10'° m®]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
[
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Upstream density n, [10'® m"?]

3.0

JG00.42/1c Mod

High upstream
densities required
for high core
plasma density
(‘natural by-
product’)

Plasma
temperature in
front of plate

1 eV, or below =
low sputtering

Plasma ionization
moves off plate
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Summary

« Acontainer (vessel) is required to provide the vacuum
conditions for fusion

« Materials are exposed to extreme neutron and particle
fluxes = currently, limited solution to materials issue

« Carbon and metals (beryllium, molybdenum, tungsten) have
been tested in tokamaks and linear devices

= Deterioration of thermo-mechanical properties under

neutron irradiation and tritium retention swayed ITER to opt
for metals (Be and W) only

= Plasma physics (e.g., achieving low plasma
temperatures at material surfaces and mitigation of
transient events) needs to solve materials issue

A_ _ Mathias Groth - Fusion Technology PHYS-E0463 “Plasma-Wall Interaction and Power Exhaust®, Aalto University
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Presemo quiz #2

https://presemo.aalto.fi/fet/

A_ _ Mathias Groth - Fusion Technology PHYS-E0463 “Plasma-Wall Interaction and Power Exhaust”, Aalto University

48



Backup material

A
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