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Outline

• (Neutron and particle) environment for plasma-facing  

materials:

- Need for power exhaust (due to particle bombardment)

- Material options

- Impact of neutrons on materials

- Material migration and tritium retention

• Physics models to describe scrape-off layer plasma and  

plasma-material interactions ⇒ required for extrapolation 

toward future fusion power plants
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The plasma-surrounding (material) walls (vessel)  

provides a containment and vacuum conditions

3

• Fusion requires a base 

pressure of about 10-8 mbar 

⇒ pumping system

• Power in -particles and  

auxiliary must be  

(eventually) extracted  

through walls

- Power in neutrons  

converted to heat in blanket 

wall

- Tritium breeding

• Helium removal via in-

vessel pumps
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The choice of materials in fusion reactors is driven 

by plasma/neutron-wall interactions

4

• Primary issues are: material lifetime, tritium inventory, and 

debris formation

⇒ Economical/practical aspect, but tritium and debris 

formation also an additional safety aspect

• D-T fusion reaction: D + T →  (3.5 MeV) + n (14.1 MeV)

- -particle for plasma self-heating, neutron for blanket heating

⇒ 1 g D-T produces 67.6 GJ in -particles and 271.8 GJ in

neutrons (1kg of coal produces 24 MJ)

- Following thermalization, -particles become helium ash ⇒ need

to be removed from system

⇒ In future fusion power plants, both power and particle 

exhaust and activation of surrounding wall are issues
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Diverting the magnetic field lines to dedicated regions  

inside the vessel controls plasma-wall interaction

5

• Isolation of divertor from main chamber by adding coils at

the bottom of device to produce magnetic null

Limiter  

config.

Divertor

config.
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Low divertor temperatures, and thus heat fluxes to the 

divertor target plates, are achieved in detached conds.

6

• Standard picture: power and particle flow from the confined 

plasma via the scrape-off layer onto the divertor targets ⇒ 
transfer of kinetic energy to surface

• Detachment: recombine plasma to neutrals in front of targets

⇒ power loss in radiation and recombination
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Direct contact of the plasma with the vessel wall  

must be limited to certain (controlled) areas

7

• Power in the plasma is 

predominately radiated

⇒ (isotropically) spread over

wall

• Remaining power in 

escaping particles

- Ions following field lines

⇒ limiter and divertor

plates

- Charge-exchange 

neutrals ⇒ main chamber

and divertor plates
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No uniform engineering boundary conditions since  

escaping particles have a wide range of fluxes and energies

8
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In tokamaks, plasma radiation is concentrated in  the 

divertor region (desired situation!)

9

• Main radiation in hydrogen 

and impurity, and

Bremsstrahlung

𝑃𝑟𝑎𝑑 ∝ 𝑛𝑒
1.95
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Detachment can be achieved by operating at high  

density and/or by intentionally injecting impurities
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• Line radiation of nitrogen is strongest at temperatures 

characteristic of the scrape-off layer

• Low-dose “seeding” leads to reduction of Te to 5 eV

⇒ reduced surface heating

Järvinen et al. PSI 2014

Aho-Mantila et al. JNM 2013
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Steady-state heat removal may be computed using 

standard (finite element) techniques
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• For given amour 

material of density () 

and thickness (d), and 

with a thermal heat 

conductivity () and heat 

capacity (c)

⇒ Steady state conditions:

∆𝑇 = 𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑤𝑎𝑡𝑒𝑟 = 𝑄 𝑑/𝜆

• Q ≈ 10 MW/m2,  ≈ 2000 

W/mK, d ≈ 2 cm ⇒
T ≈ 1000 ℃
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The energy in transient events is too high for any 

material to absorb ⇒ need to mitigate plasma events
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• Surface temperature follows square-root law with time:      

𝑇 𝑡 ∝ 𝑃 × 𝑡

• ITER ELMs ≈ 15 MJ, deposition time ≈ 0.1 – 0.5 ms, 

deposition area ≈ 6 m2 ⇒ power density ≈ 10 GW/m2

⇒ Tmax ≈ 6000 ℃, penetration depth ≈ 0.15 mm

• Sublimation temperature for graphite ≈ 2200 ℃

• Melting and boiling temperature of W = 3410 ℃ / 5560 ℃

⇒ Graphite will sublimate rapidly, metals will melt

⇒ No immediate material solution, need to mitigate plasma 

events!
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Transient event in the plasmas lead to sudden  

excursions in heat load and surface temperature

13

• ELMs: 2 MJ/m2 in 0.5 ms

• Disruptions: > 2 MJ/m2 

in ms

Ddivertor
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Dedicated JET experiments to intentionally melt and 

damage the tungsten divertor plates

14

Coenen, Arnoux et al. JETAugust 2013

KL9B
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Edge localized modes can raise surface temperature 

transiently by more than 50%

15

Stack A

Stack B

Stack A*

Coenen, Arnoux et al. JETAugust 2013
• Significant 

melting of W at 

the location of the 

elevated lamellae

• Careful alignment 

of (all the) other 

lamellae 

prevented W 

melting
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Controlled flash melting by ELM induced

temperature excursions

16

• Target plate base 

temperature 

heated up to 

≈ 2800 ℃

• T by ELMs

≈ 800–1000 K

⇒ ITER decision pro 

tungsten divertor

from start of 

operation

[B. Bazylev et al., 21st PSI 2014, J. Coenen et al., 21st PSI 2014]
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Fiber-carbon composites are some of the most heat-

resilient materials known to-date

17

• Principle factors that ensure spacecraft reentry are shape of 

the vehicle, angle of reentry and usage of range of materials

• Compared to continuous fusion device operation, 

replacement of space shuttle components is routine … 

Nose cap temp: 1300 ℃

www.nasa.gov
www.nasa.gov
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Choice of materials in fusion devices depends on the 

stage and readiness of building a fusion power plant  

18

• Heat flux and erosion 

capability, high duty 

cycle operation

• Compatibility of 

materials with plasma 

performance

• Change of thermo-

mechanical properties 

in neutron environment, 

transmutation

• Tritium retention, safety

• Post-operation waste 

management
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While carbon-based plasma facing components  

sublimate, metals melt above a certain temperature

19
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While carbon-based plasma facing components  

sublimate, metals melt

20

Alcator C-mod, MIT TEXTOR, Germany
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Both globally and locally the various wall elements 

are in dynamic equilibrium

21

• Be erosion ⇒ layer

formation ⇒ T

retention

• Be transport into 

remote areas ⇒ T 

retention in 

plasma-shadowed

areas

• W erosion, 

prompt re-

deposition

• Be/W dust 

formation
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A wide range of processes take place at the plasma-

material interface, including sputtering and implantation

22
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Material migration leads to long-term modification of 

plasma-facing components and alloy formation

23

Be

W
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Formation of Be-W alloys on tungsten surfaces  

reduce the melting temperature from 3695 to ~ 1570 K

24
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Implantation and co-deposition of tritium on plasma-

facing surfaces administratively limits ITER operation

25

• Tritium is 

radioactive, most 

hazardous to the 

public in T2O ⇒ 
tritium 

management

• Metals are 

significantly less 

susceptible of 

absorbing tritium 

than carbon ⇒ 
preferred (and 

decided!) for ITER

Roth et al. J. Nucl. Mat. 2009
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Changing the JET wall from carbon to beryllium and  

tungsten reduced the hydrogen retention by 10x

26
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• Hydrogen retention likely due to co-deposition with 

beryllium

⇒ Another 10x expected for going to full tungsten device
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Thick deposition layer can also delaminate and thereby  

forming radioactive and chemically reactive dust

27

Coad et al. J. Nucl. Mat. 2001
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Neutrons significantly change the thermo-

mechanical properties of materials

28

• Investigations into neutron damage of materials requires 

dedicated facilities (e.g., IFMIF for fusion neutrons, heavy

ions) ⇒ need for up to 100 dpa

Affected global parameter Microscopic change

Heat conductivity Lattice defects

Swelling Void formation, gas bubbles 

(e.g., n → Be)

Ductility (i.e., ability to stretch 

material into a wire)

Neutron and helium induced 

hardening and embrittlement

Composition Transmutation products

Trap sites for tritium (retention) Blister formation
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Irradiation of tungsten with heavy ions and He  

reduces the thermal conductivity by factors of 200

29

• Other effects include increase of Ductile Brittle Transition 

Temperature (DBTT), void swelling, increase of tritium 

retention

• Irradiation by 

heavy ion beam 

source (up to 18 

MeV)

• Simultaneous  

He implantation

Doerner et al. PMIF-PFC 2013
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Both hydrogen and helium can be trapped deeply in 

tungsten leading to bubbles and blisters

30

• Low solubility of H and He (EI
S: 3.5 eV, 5.5 eV)

• Fast interstitial migration into grain 

boundaries (EI
M : 0.35 eV, 0.24 eV)

• Deep trapping in vacancies (1.4 eV, 4.7 eV)

surface

vacancy

Solubility

W

Migration

He, H trapping , 
clustering
⇒bubbles

He, H

H in W

100µm

He, H



Mathias Groth - Fusion Technology PHYS-E0463 “Plasma-Wall Interaction and Power Exhaust“, Aalto University

Because of tritium retention issue with carbon, and 

the good experience with the JET-ILW, ITER opted 

for a full-W divertor from day-one material

31

W
C

Oct 22,

2013

⇒

Be
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Because of tritium retention issue with carbon, and 

the good experience with the JET-ILW, ITER opted 

for a full-W divertor from day-one material

32
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Presemo quiz #1

33

https://presemo.aalto.fi/fet/
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Physics models

(to predict power exhaust and plasma-

material interaction in future reactors)
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Physics models are needed to extrapolate and  

mitigate plasma-material issues

35

Parameter/s Issue/s

Plasma radiation, power flux 

and total energy to surface
Power exhaust

Particle flux and fluence
Erosion and impurity influxes

⇒ plasma impurity content

Plasma temperature
Power exhaust, sputtering 

yield, total erosion

Plasma density 

(impurity seeding)

Detachment/power exhaust 

(fuel dilution, density limit)

Helium Fuel dilution

Dust Fuel dilution, explosion hazard
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In diverted configurations, the separatrix divides the  

core and the SOL, and defines a private plasma region

36
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Plasma electrons and ions can stick to material  

surface, and recycle as neutral (‘natural’ fueling)

37

• Impinging ions 

recombine at surface

• Particles can remain at 

surface, diffuse into 

material, or are released 

back into plasmas as

atoms (backscattering) or 

molecules (thermal 

release)

• Walls acts both as 

particle sink and source:

strongest fueling process in

tokamaks!
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Plasma-wall interaction leads to sputtering and  

macroscopic erosion of material

38

• Phys. and chem. sputtering 

processes due to hydrogen ions 

and neutrals, and impurities

(self-sputtering!)

⇒ effective yields

Yphys

Ychem
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Sputtering due to ion and neutral impact on the  

material surface leads to release of impurities

39

• Physical sputtering: momentum transfer of incoming 

particle to lattice

- Threshold energy: Yphys → 0 for E0 → Ethresh

- Peak yield correlates with maximum ion/neutral-substrate 

momentum transfer

- Yields are strong function of material ⇒ future reactors 

favor high-Z materials

- Self-sputtering of same-mass impurities can lead to 

Yphys,eff > 1 ⇒ run-away process
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Impurities are generated at both the main chamber 

walls and divertor plates

40

• Impurities can enter the 

main plasma as neutrals

or ions

• Principal pathways 

include

- Source (distribution)

- Edge transport

- Core transport

• Impurity migration

“If we understand the impurity source distribution, we can

mitigate the impurity issue almost entirely!” Quoting P.C. Stangeby
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Trace amounts of impurities in the plasmas can  

significantly diminish benefits of high-Z materials

41

• For neon and argon impinging on tungsten, already less 

than 0.5% is sufficient to drop Ethresh from 35 eV to 5 eV
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Chemical sputtering also occurs on metals (more  

common feature for carbon)

42

• Yields are strong functions of substrate temperature, alloy

composition, and magnitude of fluxes
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Plasma ions crossing the separatrix into SOL  

experience ‘attractive’ force of limiter and divertor plate

43

• Upon plasma initiation, negative charged sheath forms in 

front of limiter/plate (while SOL remains neutral!)

• SOL width is determined by competition between parallel-B 

and perpendicular-B transport ⇒ order of cms
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The divertor target conditions are given by the  

upstream conditions for power and density

44

• Conservation of 

particles, momentum, 

and energy ⇒ SOL

2-point model (1-D)

• Eqs. can be manipulated

to obtain nt, Tt, and Tu for

given q|| and nu

2𝑛𝑡𝑇𝑡 = 𝑛𝑢𝑇𝑢

𝑇𝑢
7/2

= 𝑇𝑡
7/2

+
7

2
𝑞∥

𝐿

𝜅0𝑒
𝑞∥ = γ𝑛𝑡𝑘𝑇𝑡𝑐𝑠𝑡
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In detached conditions, momentum and power  

losses occur in the SOL in front of target plate

45

• Momentum losses due to 

(CX) friction of plasma 

with neutrals (recycling 

and volumetric)

• Surface heat load is 

dispersed by line 

radiation (line radiation, 

recombination)

2𝑛𝑡𝑇𝑡 = 𝒇𝒎𝒐𝒎𝑛𝑢𝑇𝑢

𝑇𝑢
7/2

= 𝑇𝑡
7/2

+
7

2
𝒇𝒄𝒐𝒏𝒅𝑞∥

𝐿

𝜅0𝑒

𝑞∥ =
𝟏

𝟏 − 𝒇𝒑𝒐𝒘𝒆𝒓
γ𝑛𝑡𝑘𝑇𝑡𝑐𝑠𝑡
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The most attractive regime for fusion reactors is  the 

detached regime at high upstream density

46

• High upstream 

densities required

for high core 

plasma density 

(‘natural by-

product’)

• Plasma 

temperature in 

front of plate

1 eV, or below ⇒
low sputtering

• Plasma ionization 

moves off plate
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Summary

47

• A container (vessel) is required to provide the vacuum 

conditions for fusion

• Materials are exposed to extreme neutron and particle 

fluxes ⇒ currently, limited solution to materials issue

• Carbon and metals (beryllium, molybdenum, tungsten) have

been tested in tokamaks and linear devices

⇒ Deterioration of thermo-mechanical properties under 

neutron irradiation and tritium retention swayed ITER to opt

for metals (Be and W) only

⇒ Plasma physics (e.g., achieving low plasma 

temperatures at material surfaces and mitigation of 

transient events) needs to solve materials issue
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Presemo quiz #2

48

https://presemo.aalto.fi/fet/
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Backup material

49
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