

ELEC-E8126: Robotic Manipulation Kinematic redundancies

Ville Kyrki 20.3.2023

Learning goals

 Understand modeling and characteristics of redundant kinematic chains.

 Understand how redundancy can be used to address e.g. singularities, joint limits or obstacles.

Kinematic redundancy

- Kinematically redundant
 manipulator has more than
 minimal number of degrees of
 freedom to complete its task.
 - Thus, same task configuration can be achieved with infinitely many joint configurations.
- Why are kinematically redundant manipulators interesting?

Sofge&Chiang 2007

Kinematic redundancy

- Kinematically redundant manipulator has more than minimal number of degrees of freedom to complete its task.
 - Thus, same task configuration can be achieved with infinitely many joint configurations.
- Why are kinematically redundant manipulators interesting?
 - Secondary tasks: e.g. avoid singularities, avoid joint limits, avoid obstacles, optimize motion.

Example: 6-DOF manipulator, translation task

- 6-DOF serial manipulator
- Only translation of e-e needs to be controlled in position.
 - Orientation can be ignored.
- How many degrees of motion does the robot have?
- How many are constrained by task?
- Is the system redundant?

Inverse differential kinematics

Remember: Forward differential kinematics

$$\dot{\mathbf{x}} = J(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}$$

- What is the inverse of this?
- When is it non-unique?
- What are the other solutions?

Inverse differential kinematics

Remember: Forward differential kinematics

$$\dot{\mathbf{x}} = J(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}$$

- What is the inverse of this? $\dot{\boldsymbol{\theta}} = J^{-1}(\boldsymbol{\theta})\dot{\boldsymbol{x}}$ $\dot{\boldsymbol{\theta}} = J^{+}(\boldsymbol{\theta})\dot{\boldsymbol{x}}$
- When is it non-unique?
- What are the other solutions?

$$\dot{\boldsymbol{\theta}} = J^{+}(\boldsymbol{\theta})\dot{\boldsymbol{x}} + \left(I - J^{+}(\boldsymbol{\theta})J(\boldsymbol{\theta})\right)\dot{\boldsymbol{\theta}}_{0}$$
 any vector

Null space revisited

$$\dot{\boldsymbol{\theta}} = J^{+}(\boldsymbol{\theta})\dot{\boldsymbol{x}} + \left(I - J^{+}(\boldsymbol{\theta})J(\boldsymbol{\theta})\right)\dot{\boldsymbol{\theta}_{0}}$$

can also be written

$$\dot{\boldsymbol{\theta}} = J^{+}(\boldsymbol{\theta})\dot{\boldsymbol{x}} + NN^{+}\dot{\boldsymbol{\theta}}_{0}$$

$$= J^{+}(\boldsymbol{\theta})\dot{\boldsymbol{x}} + P\dot{\boldsymbol{\theta}}_{0}$$

- N is null space of $J(\theta)$
 - Set of vectors $N = \{ \boldsymbol{n_1}, \boldsymbol{n_2}, \ldots \}$
 - such that $J(\boldsymbol{\theta})\boldsymbol{n_i} = \mathbf{0}$

Internal (self) motion example

Task: 2-D position.

Note: Internal motion is a changing combination of joint velocities (and accelerations).

Using internal motions

- Why did we want internal motions?
- How? Two approaches:
 - Optimize performance criteria.

 We'll look at this a bit closer.
 - Add more tasks.
 But first an example of this.
- Both approaches only move in null space of primary task.

$$\dot{\boldsymbol{\theta}} = J^{+}(\boldsymbol{\theta})\dot{\boldsymbol{x}} + \left[I - J^{+}(\boldsymbol{\theta})J(\boldsymbol{\theta})\right]\dot{\boldsymbol{\theta}_{0}}$$

Using null space with extra tasks Example: joint-limit avoidance

Use null-space to avoid joint limits

Optimizing performance criteria

- Consider we want to minimize some joint-dependent criterion $H(\theta)$ that can be expressed analytically and is differentiable
- How to write a controller to move joints towards minimum of H?

$$\dot{\boldsymbol{\theta}} = J^{+}(\boldsymbol{\theta})\dot{\boldsymbol{x}} + \left[I - J^{+}(\boldsymbol{\theta})J(\boldsymbol{\theta})\right]\dot{\boldsymbol{\theta}_{0}}$$

Optimizing performance criteria

- Consider we want to minimize some joint-dependent criterion $H(\theta)$ that can be expressed analytically
- How to write a controller to move joints towards minimum of H?

$$\dot{\boldsymbol{\theta}} = -k_H \nabla H(\boldsymbol{\theta})$$

Now substitute to velocity controller:

$$\dot{\boldsymbol{\theta}} = J^{+}(\boldsymbol{\theta})\dot{\boldsymbol{x}} - k_{H}(I - J^{+}(\boldsymbol{\theta})J(\boldsymbol{\theta}))\nabla H(\boldsymbol{\theta})$$

Performance criteria examples

- Joint-limit avoidance
 - Propose criteria!
- Singularity avoidance
 - E.g. manipulability

$$H(\boldsymbol{\theta}) = \sqrt{|J(\boldsymbol{\theta})J^{T}(\boldsymbol{\theta})|}$$

Connection: In-hand motions / Kinematic and actuator redundancies

Remember the grasping constraint?

$$J \dot{\boldsymbol{\theta}} = \boldsymbol{G}^T \boldsymbol{V}_O$$

- Kinemator redundancy null space of J.
 - Internal motions.
- Actuator redundancy null space of G.
 - Internal forces.

Summary

- Redundancies can be used to resolve additional tasks without sacrificing primary task.
- Redundancies are especially useful to avoid joint limits and singularities.

Next time: Learning in manipulation

Readings:

- Kroemer et al., "A review on robot learning for manipulation", secs. 1-3.
- Link available on course website.