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About me: From science to industry

- Originally from Sasebo, Japan

- 1971 -1975: Science student at Kyoto University, Japan

- 1975 -1981: PhD student in Physics at Kyoto.

- 1980 — 1982: Research Fellow & Postdoc at University of
Southern California, LA.

- 1982 —1983: Math Student at King’s College, London

- 1983 —1985: Postdoc at University of Alberta, Canada

- 1985 —1986: Postdoc at University of Sussex, UK

- 1986 — 1993: Associate Prof. at Shizuoka University,
Japan

- 1993 —2017: Associate Prof & Prof at Kindai University,
Japan

- 2017 — 2020: Prof at Shanghai University, PR China

- 2023 —today: Quantum Education Manager at IQM

- 2001- ??: Lectured quantum computing at Helsinki
University of Technology (TKK)




|IQM in brief

Quantum computing scale-up

» Spinout of Aalto University and VTT in July 2019

« Develop and sell on-premises quantum computers based on
superconducting technology

» Secured 2 rounds of private investment funding (Seed & A)

« Sold 2 quantum computers thus far (Finland, Germany)
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IQM builds and delivers quantum computers

AT
240+ On- 1/
experts premises & Y,
¥ full access é\a
105+ PhDs gyl -
25ystems J
45+ sold
nationalities 1 delivered |

Full-stack solutions

Industry partners
with CO-design AtoS

A KEYSIGHT VTT

Own facilities —
fast turnaround

Funding

200+ M€

IQM’s Private
Foundry: 600 m?

Our Mission: To build world-leading quantum computers for the well-being of humankind, now and for the future
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How does everything fit into the big picture?

What is
required?

 Scientists, atoms, circuits, qubits, quantum computing t




Di Vincenzo Criteria and where you can find them in
this course

Statement of the criteria

A scalable physical system with well characterized qubit

The ability to initialize the state of the qubits to a simple fiducial state
Long relevant decoherence times

A "universal” set of quantum gates

A gqubit-specific measurement capability

AL WON=




Agenda for lectures 8-12

8. Quantization of electrical networks

a. Harmonic oscillator: Lagrangian, eigenfrequency
b. LC oscillator, Legendre transform to Hamiltonian
C. Quantization of oscillators

9. Superconducting quantum circuits

a. Qubits: Transmon qubit, Charge qubit, Flux qubit

b. Circuit-QED: Rabi model

C. Rotating Wave approximation: Jaynes-Cummings model
10.Single-qubit operations:

a. Initialization

b. Readout

c. Control:T1, T2 measurements, Randomized benchmarking

11. Two-qubit operations: Architectures for 2-qubit gates

a. iSWAP
b. cPhase
C. cNot
12. Challenges in quantum computing
a. Scaling
b. SW-HW gap
C. Error-correction

| QM



Agenda for today

7. Quantization of electrical networks

a.
b. LC oscillator, Legendre transform to Hamiltonian
C. Quantization of oscillators
a. b. C. -
;EA
70 L& <
+ 2
V T lf &

Figure 2: Superconducting LC oscillator.

Figure 1: Classical pendulum.



General note: Harmonic oscillators

* General note: In physics, many phenomena can be explained by
harmonic oscillators. They are the standard tool in our physics toolbox.

V() = V(0) + VAO)x + V" (0)x? + -

« Usually, there are two important variables involved like position and
momentum, g and p.

* One can often find analogies where two system variables are
equivalent to gand p. For example, in an LC oscillator these are flux
and charge.

| QM



Short review: Lagrangian & Hamiltonian

 During this course, Lagrangian and Hamiltonian mechanics are used
for analyzing quantum computing circuits.

« Recall that the Lagrangian is defined as the kinetic energy 7 minus the
potential energy V' LG, q) = TG, q) — V(q)

 Quite often the Hamiltonian represents the {otal energy of the system:

H(p,q) =T(p,q) +V(q) Legendre transformation

10
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Short review: Classical oscillator®

The Euler-Lagrange equation states

d (oL\ aL
dt \9g ) 9q

p , If 7does not depend on g, E)_ v
g Jq
i i i g Since p = dL/dj we obtain Newton/s equation of
H dp ~ JV
m dt ~  9g

Figure 1: Classical pendulum.

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Short review: Classical oscillator®

The kinetic energy is

1 1 .
T = Emt?z = 5'}?16292

| The potential energy for small oscillation is
v V=mgh=mgl(1—cosb) = %?r;gﬁﬁz
L=T-V.

We introduce generalized coordinates g and
i1 ig generalized momentum p as

q=0,

m P=36" 38\2 2

Figure 1: Classical pendulum. p is the angular momentum
|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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—mf?0?% — —mg€62> = me?

12



Short review: Classical oscillator®

Applying our example to the Euler-Lagrange equation

gives ,
p = —mgfo.
By differentiating p = m#26 wrt time, we obtain
f p = mb20.
Equating these yields
P19
vyy |\ ¥ 'h m€2é+mg€9=0—>9'+%9=0.

Figure 1: Classical pendulum.

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Short review: Classical oscillator®

vvy |\

Figure 1: Classical pendulum.

Because we are smart, we chose a trial function

0 = Cexp(iwt)

Inserting this function into the differential equation
yields: i
i*w*C exp(iwt) + %C exp(iwt) =0

This equation is satisfied for any t if we choose

w=/8/"

Key takeaway: Starting from the equation of
motion, we derived the eigenfrequency of the
system

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Agenda for today

7. Quantization of electrical networks

a.
b.

Harmonic oscillator: Lagrangian, eigenfrequency

Quantization of oscillators

Figure 1: Classical pendulum.

b.

. L ®
+H @
V. = l 1
= C
Figure 2: Superconducting LC oscillator.
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General note: LC oscillators

* General note: Once you understand the harmonic oscillator, you can
easily apply the concept to any other oscillator.

Position ¢ < Flux d
Momentum p <> Charge Q
Mass m <« Capacitance C

Frequency w < w = 1/VLC

| QM
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Transfer step: LC oscillator®

We consider an electrical circuit consisting of
Inductance L and capacitance C. For the magnetic
flux @ through a coill, it holds that

vV — lI The Lenz law tells us that
b=V
Figure 2: Superconducting LC oscillator. Hence, the potential energy stored in the inductor is
tl tl t1 .
U = JPdt—fVIdt—fq)CD dt—q)2
— —_ — L - 2L )
to tO tO

where we defined & as the generalized coordinate.
|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Transfer step: LC oscillator®

e L ®
V:é:Q l]

Figure 2: Superconducting LC oscillator.

The charge stored in the capacitor is

Q = CV.

The power fed into the circuit is P = V//and
consequently

P=VQ =VC(CV.
Hence, the kinetic energy stored in the capacitor is
t t
1 ocv? o,
T = detz f VCVdt =——==
2 2
to to

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Transfer step: LC oscillator®

To apply Lagrangian mechanics, we use the
previous results

T = d P2 U= i
I & 2 2L
V i_@ lI allowing us to write the Lagrangian as
=1 C e
L=%¢p2 -2
2 2L
Figure 2: Superconducting LC oscillator. To derive the equation of motion, we again
iIntroduce generalized coordinate and
momentum

oL .
C[:CI), p:a—d):C(D:CV:Q.

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Transfer step: LC oscillator®

Remind yourself again of Euler-Lagrange

equation:
d <8L) - dL
dt \9j)  9g
L& I I

R Q Using the above results gives the equation of
V ;:C lI motion for flux:

cé+¢ 0 é+¢ 0
—_— -_ —_— .
L LC

Using a similar ansatz for the trial function yields
the resonance frequency
Pendulum:

w_V%?‘<:$>CUIVgM

Figure 2: Superconducting LC oscillator.

Key takeaway: Starting from the equation of motion,
we derived the eigenfrequency of the system

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf



Legendre transformation to Hamiltonian®

Hamiltonian gives two 1st order We need the Hamiltonian to write down the

differential equations, while Euler | Schrodinger Equation. The general definition of a
Lagrange gives one 2"d order Hamiltonian is

d oL OL 0 H(p,q) = qp — L(q,q).
dtdq Jdq We take the total time derivative to show H is

conserved:;
OH = 96/q+q5p ;/q—— dH . .. OL . 0L %
— =qp +qp — —— —q — .

dt ag1 " 9"
—q5p—p5q— 5p+ oq , Il
Since p = dL/dq and = 0, we have

_)dqzaH’dpz_a_H aH oL g(a_L)_a_L i
dt  dp’'dt  dq & =i pi=d|(50) ~ a0 |

The Hamiltonian is a constant of motion, i.e. the energy is conserved.
|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf




Legendre transformation to Hamiltonian®

Hamiltonian gives two 1 order We can use the general definition for the

differential equations, while Euler Hamiltonian to find
Lagrange gives one 2" order

H=qb —(Sor-2) L &
L ® =0 2 2L ) 2C 2L
-+
V ::Q lf T = Q—z IS the energy of a capacitor while IV = %2
—LY IS the energy of the inductor.

Hence, the Hamiltonian represents the total
energy of the system.

H(®,Q) =T(Q) +V(P)

Figure 2: Superconducting LC oscillator.

Key takeaway: Starting from Lagrangian, we
derived the Hamiltonian of the system. This is
necessary to derive energy quantization.

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf



Agenda for today

7. Quantization of electrical networks

a. Harmonic oscillator: Lagrangian, eigenfrequency
b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
d.
a b. C -
AN
=

L&
V=R Bl

Epnt/h

Figure 2: Superconducting LC oscillator.

Figure 1: Classical pendulum.



Classical 2 Quantum

| QM

v" QUANTIZATION OF CHARGE

Photoelectric effect 2
Electromagnetic field is

quantized 2 E = hw(n + E)

Energy is quantized:

/S
S,

C @@Gf:@@
©% @ e o

24



General note: Quantization of oscillators

* General note: In quantum mechanics, the energy of a system is given
by an eigenvalue of the Hamiltonian.

* [n a harmonic oscillator, the energy is quantized equidistantly.

* Energy quantization can be seen as counting the number of photons
stored in the oscillator.

25

| QM



Quantization of an oscillator

In quantum mechanics, variables are replaced by

operators:
N\ N lh a
g, P—>p=—lh—
q9—->q PP 9
For practical reasons, we often use matrix
representations (OY) On Oz ... Oy
R (O?;I))Q 021 022 023'
O., = (e, |0]|e =
ket <k| lf) (OY); O;1 Oz ... Oy
> Two conjugate variables follow the commutation

1 relation o |
P.q =pq—qp = —ih

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiBBner-Institut (2001 - 2020)
|QM * Detalls in lecturenotes-EQS_Helsinki_2019.pdf

(AR
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Quantization of an oscillator

It is convenient to transform § and p to @ and a7

h
2mawo

(a+aft), p=-i

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiBBner-Institut (2001 - 2020)

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf

to find the eigenvalues algebraically.

A /\'I‘ —
2mhw P,

—

hmao
2

(a-a")

\
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Quantization of an oscillator

Let us work out the eigenvalue problem of a harmonic
oscillator.

Let A = @Ta@ and |n) be an eigenvector of A, 7i|n) = n|n).
From [A,a] = —da and [f,aT | = aT (exercise) we find
A(@n)) = (n — 1(@n)), 7@ n)) = (n + 1)(a'in)),
showing d|n) « |n — 1) and at|n) « |n + 1).

a*|n) has eigenvalue n — k, which must be nonnegative;
(n —klaT@n—k)=(n—-k) = |||a|n — k)||2 >0

- k<n
This is possible if there is |0) such that 71|0) = 0. There is
no "|—1) = a|0)". |0) is called the vacuum state.

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiBBner-Institut (2001 - 2020)
|QM * Detalls in lecturenotes-EQS_Helsinki_2019.pdf
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Quantization of an oscillator

It follows from (n|@at|n) = n + 1 that (exercise)
@
Vn!

In) = 10), n=2012,..

Matrix elements:

<m ?’1) — \/ﬁ<m‘n — 1> — \/Eém,n—l

~

a

(mlfiln) = n &pmp

Explicitly

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeilBner-Institut (2001 - 2020)

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf

|n) is an eigenvector of 71 such that 7i|n) = n|n).

(m|a'n) = Vo + Lim|n +1) = Vi + 16mnst.

29



Quantization of an oscillator

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiBner-Institut (2001

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf

(0 VI 0 0 0

00 +v2 0 --- 0 ---
0 0 /3 -+ 0 --
o 0 0 . = .-
o o o0 --- 0

N

n=

e © O O O

Exercise: Show that
ata = ii. Show also
that |a,a’| = 1 by
using the above matrix
representations.

Is Traa® = Tra'a?

30



Quantization of an oscillator

In summary, the eigenvalues of a harmonic oscillator are
guantized as

E,=ho(n+3),n=012,..
The difference between the adjacent eigenvalues is hw
independent of n.
This may be interpreted as “there are n photons (or quanta)

in |n) state”. @ annihilates one photon while @' creates one
photon. @ (a%) is called the annihilation (creation) operator.

Vacuum |0) is not empty. There

. : : hw
% is zero-point fluctuation. Eq = —

Is called the vacuum energy or
the zero-point energy.

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiBBner-Institut (2001 - 2020)
|QM * Detalls in lecturenotes-EQS_Helsinki_2019.pdf
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Quantization of the LC oscillator

For the superconducting LC resonator, we have
32 (;‘T_,Q @2 1

y_ W F Wy 240
H=5c+350 =30 Ttw®

We aim to diagonalize H by rewriting it in terms of

o (ora). o= (o)

Here w = 1/+/LC. The square root factors have been
inserted so that [@,a"| = 1. Then H is written as

. 1
i = m(afa + 2) — ho (,a +%>
as before.

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiBBner-Institut (2001 - 2020)

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf



Quantization of the LC oscillator

The Hamiltonian
. 1 1
H — h&)(ATA —) = n —_
a'a+ 5 hw (n + 2)
with w = 1/V/LC . The eigenvalues and eigenvectors
n=20,12,..,10),[1),]2),..

The energy eigenvalues are
EO — %h(l),El — %hw, EZ — ;hw,

n denotes the number of photons in
the circuit. Zero-point energy E|,
even when n = 0. ® and Q cannot
vanish simultaneously, |[Q, ®| = —it.

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiB3ner-Institut (2001 - 2020)

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Zero-Point Energy from Uncertainty Relation

AQA® >~ [([Q, ®])| = where AQ? = (Q?) — (Q)? etc.

h

Let AQ AP = -
h? h? AQZ Acl>2 AQ2 h?

AQADE ~ —— 5 A2 ~ H ~
Q 4 4AQ2 +8LAQ2

oH 1 B 2 _ N |C
dAQ2  2C 8L(AQ2)2 =0-A0Q f

| QM
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Problem of an LC oscillator as a qubit

Does an LC oscillator work as a qubit? {|0), |1)}?

Transition between |0) < |1) is realized by absorption
& emission of a photon of energy Aw. But the energy
eigenvalues are equidistant, and the same photon
iInduces transition between arbitrary |n) and |[n £ 1). It
IS impossible to confine the qubit state within

Span{|0), [1)}.

This problem is circumvented by introducing
nonlinearity in V (®). We see in the following lectures
that this will be realized by replacing the inductor In
the circuit with a Josephson junction.

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiBBner-Institut (2001 - 2020)

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Agenda for today (done)

7. Quantization of electrical networks

a.
b.
C.

Harmonic oscillator: Lagrangian, eigenfrequency
Transfer step: LC oscillator, Legendre transform to Hamiltonian

Quantization of oscillators

Figure 1: Classical pendulum.

b.

. L ®
+ @
U — l 1
= C
Figure 2: Superconducting LC oscillator.

Epnt/h

rEn/h
>
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Add-on: Vacuum fluctuations & thermal photons (if

time allows)

0

T(w) (dB)

= resonator
—fead line

= 05-115MHz . couplin
E m pling

capacitor

C
Vacuum -—{::‘

fluctuations
(+1/2)

7/
Ve

38



Legendre transformation to Hamiltonian®

Hamiltonian gives two 15 order Using the above terms in the total time derivative
differential equations, while Euler yields
Lagrange gives one 2" order dH s oL 0L 0L
= (p ) — —(q — —(q — —
It = 4P T 4] 04 q 0 q ot
S Q L ® Simplifying this formula further results in
V — l I since % = 0. The RHS vanishes due to Euler-
P C Lagrange equation, and hence

since g— 0. The RHS vanishes due to Euler-

Figure 2: Superconducting LC oscillator.

Lagrange equation, and hence
dH
R
dt

The Hamiltonian is a constant of motion, i.e. energy is conserved.

39

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf



Quantization of the LC oscillator

The previous Hamiltonian becomes

2 2
Vgt @] [ -
_|_

H =
2L 2C
hw /s g s
= 1 (H{EJF -+ it a -+ aat + H+{E)
= — (rer -+ aJrn) :
2
Using |7, ﬁﬂ — it follows that aa' = ata + 1
Key takeaway: The of the system . g~ 1
is given by vacuum fluctuations (+1/2) and the H =hw(a"a+ E)
number of photons stored at frequency o

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeilBner-Institut (2001 - 2020)

|AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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