IQM

WE BUILD QUANTUM COMPUTERS

About me: From science to industry

- Originally from Sasebo, Japan
- 1971-1975: Science student at Kyoto University, Japan
- 1975 - 1981: PhD student in Physics at Kyoto.
- 1980 - 1982: Research Fellow \& Postdoc at University of Southern California, LA.
- 1982-1983: Math Student at King's College, London
- 1983-1985: Postdoc at University of Alberta, Canada
- 1985-1986: Postdoc at University of Sussex, UK
- 1986 - 1993: Associate Prof. at Shizuoka University, Japan
- 1993 - 2017: Associate Prof \& Prof at Kindai University, Japan
- 2017-2020: Prof at Shanghai University, PR China
- 2023 - today: Quantum Education Manager at IQM
- 2001- ??: Lectured quantum computing at Helsinki University of Technology (TKK)

IQM in brief

Quantum computing scale-up

- Spinout of Aalto University and VTT in July 2019
- Develop and sell on-premises quantum computers based on superconducting technology
- Secured 2 rounds of private investment funding (Seed \& A)
- Sold 2 quantum computers thus far (Finland, Germany)

Employees

- 220+ employees
- 105 PhDs
- 11 Professor-level tech leaders
- 45+ nationalities

Technology
Operations
Business

- People \& Culture
- Finance
- Legal \& Compliance

IQM builds and delivers quantum computers

Our Mission: To build world-leading quantum computers for the well-being of humankind, now and for the future

How does everything fit into the big picture?

- Scientists, atoms, circuits, qubits, quantum computing

What is required?

Di Vincenzo Criteria and where you can find them in this course

Statement of the criteria

1. A scalable physical system with well characterized qubit
2. The ability to initialize the state of the qubits to a simple fiducial state
3. Long relevant decoherence times
4. A "universal" set of quantum gates
5. A qubit-specific measurement capability

Agenda for lectures 8-12

8. Quantization of electrical networks
a. Harmonic oscillator: Lagrangian, eigenfrequency
b. LC oscillator, Legendre transform to Hamiltonian
c. Quantization of oscillators
9. Superconducting quantum circuits
a. Qubits: Transmon qubit, Charge qubit, Flux qubit $1^{\text {st }}$ DiVincenzo criteria
b. Circuit-QED: Rabi model
c. Rotating Wave approximation: Jaynes-Cummings model
10. Single-qubit operations:
a. Initialization $2^{\text {nd }}$ DiVincenzo criteria
b. Readout $5^{\text {th }}$ DiVincenzo criteria
c. Control:T1, T2 measurements, Randomized benchmarking $3^{\text {rd }}$ DiVincenzo criteria
11. Two-qubit operations: Architectures for 2-qubit gates $4^{\text {th }}$ DiVincenzo criteria
a. iSWAP
b. cPhase
c. cNot
12. Challenges in quantum computing
a. Scaling
b. SW-HW gap
c. Error-correction

Agenda for today

7. Quantization of electrical networks a. Harmonic oscillator: Lagrangian, eigenfrequency
b. LC oscillator, Legendre transform to Hamiltonian
c. Quantization of oscillators

Figure 1: Classical pendulum.
b.

Figure 2: Superconducting LC oscillator.
c.

General note: Harmonic oscillators

- General note: In physics, many phenomena can be explained by harmonic oscillators. They are the standard tool in our physics toolbox.

$$
V(x)=V(0)+V^{\prime}(0) x+\frac{1}{2} V^{\prime \prime}(0) x^{2}+\cdots
$$

- Usually, there are two important variables involved like position and momentum, q and p.
- One can often find analogies where two system variables are equivalent to q and p. For example, in an LC oscillator these are flux and charge.

Short review: Lagrangian \& Hamiltonian

- During this course, Lagrangian and Hamiltonian mechanics are used for analyzing quantum computing circuits.
- Recall that the Lagrangian is defined as the kinetic energy T minus the potential energy V :

$$
L(\dot{q}, q) \equiv T(\dot{q}, q)-V(q)
$$

- Quite often the Hamiltonian represents the jotal energy of the system:

$$
H(p, q) \equiv T(p, q)+V(q) \quad \text { Legendre transformation }
$$

Short review: Classical oscillator*

The Euler-Lagrange equation states

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)=\frac{\partial L}{\partial q}
$$

If T does not depend on q,

$$
\frac{\partial L}{\partial q}=-\frac{\partial V}{\partial q}
$$

Since $p=\partial L / \partial \dot{q}$ we obtain Newton/s equation of motion

$$
\frac{\mathrm{d} p}{\mathrm{~d} t}=-\frac{\partial V}{\partial q}
$$

Figure 1: Classical pendulum.

Short review: Classical oscillator*

The kinetic energy is

$$
T=\frac{1}{2} m v^{2}=\frac{1}{2} m \ell^{2} \dot{\theta}^{2}
$$

The potential energy for small oscillation is

$$
\begin{aligned}
& V=m g h=m g \ell(1-\cos \theta) \approx \frac{1}{2} m g \ell \theta^{2} \\
& L \equiv T-V
\end{aligned}
$$

We introduce generalized coordinates q and generalized momentum p as

$$
\begin{aligned}
q \equiv & \theta \\
p \equiv & \frac{\partial L}{\partial \dot{\theta}} \simeq \frac{\partial}{\partial \dot{\theta}}\left(\frac{1}{2} m \ell^{2} \dot{\theta}^{2}-\frac{1}{2} m g \ell \theta^{2}\right)=m \ell^{2} \dot{\theta} \\
& p \text { is the angular momentum. }
\end{aligned}
$$

Short review: Classical oscillator*

Applying our example to the Euler-Lagrange equation gives

$$
\dot{p}=-m g \ell \theta .
$$

By differentiating $p=m \ell^{2} \dot{\theta}$ wrt time, we obtain

$$
\dot{p}=m \ell^{2} \ddot{\theta}
$$

Equating these yields

$$
m \ell^{2} \ddot{\theta}+m g \ell \theta=0 \rightarrow \ddot{\theta}+\frac{g}{\ell} \theta=0 .
$$

Figure 1: Classical pendulum.

Short review: Classical oscillator*

Figure 1: Classical pendulum.

Because we are smart, we chose a trial function

$$
\theta=C \exp (i \omega t)
$$

Inserting this function into the differential equation yields:

$$
i^{2} \omega^{2} C \exp (i \omega t)+\frac{g}{\ell} C \exp (i \omega t)=0
$$

This equation is satisfied for any t if we choose

$$
\omega=\sqrt{g / \ell}
$$

Key takeaway: Starting from the equation of motion, we derived the eigenfrequency of the system

Agenda for today

7. Quantization of electrical networks
a. Harmonic oscillator: Lagrangian, eigenfrequency
b. LC oscillator, Legendre transform to Hamiltonian
d. Quantization of oscillators

Figure 1: Classical pendulum.
b.

Figure 2: Superconducting LC oscillator.
c.

General note: LC oscillators

- General note: Once you understand the harmonic oscillator, you can easily apply the concept to any other oscillator.

Position $\hat{q} \leftrightarrow$ Flux $\hat{\Phi}$
$\begin{aligned} \text { Momentum } \hat{p} & \leftrightarrow \text { Charge } \hat{Q} \\ \text { Mass } m & \leftrightarrow \text { Capacitance } C\end{aligned}$
Frequency $\omega \leftrightarrow \omega=1 / \sqrt{L C}$

Transfer step: LC oscillator*

We consider an electrical circuit consisting of inductance L and capacitance C. For the magnetic flux Φ through a coil, it holds that

$$
\Phi=L I
$$

The Lenz law tells us that

$$
\dot{\Phi}=V
$$

Figure 2: Superconducting LC oscillator. Hence, the potential energy stored in the inductor is

$$
U=\int_{t_{0}}^{t_{1}} P d t=\int_{t_{0}}^{t_{1}} V I d t=\int_{t_{0}}^{t_{1}} \frac{\Phi \dot{\Phi}}{L} d t=\frac{\Phi^{2}}{2 L}
$$

where we defined Φ as the generalized coordinate.

Transfer step: LC oscillator*

The charge stored in the capacitor is

$$
Q=C V
$$

The power fed into the circuit is $P=V /$ and consequently

$$
P=V \dot{Q}=V C \dot{V}
$$

Hence, the kinetic energy stored in the capacitor is

$$
T=\int_{t_{0}}^{t_{1}} P d t=\int_{t_{0}}^{t_{1}} V C \dot{V} d t=\frac{C V^{2}}{2}=\frac{C}{2} \dot{\Phi}^{2}
$$

Transfer step: LC oscillator*

To apply Lagrangian mechanics, we use the previous results

$$
T=\frac{C}{2} \dot{\Phi}^{2}, \quad U=\frac{\Phi^{2}}{2 L}
$$

allowing us to write the Lagrangian as

$$
L=\frac{C}{2} \dot{\Phi}^{2}-\frac{\Phi^{2}}{2 L}
$$

To derive the equation of motion, we again introduce generalized coordinate and momentum

$$
q=\Phi, \quad p=\frac{\partial L}{\partial \dot{\Phi}}=C \dot{\Phi}=C V=Q
$$

Transfer step: LC oscillator*

Remind yourself again of Euler-Lagrange equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)=\frac{\partial L}{\partial q}
$$

Using the above results gives the equation of motion for flux:

$$
C \ddot{\Phi}+\frac{\Phi}{L}=0 \rightarrow \ddot{\Phi}+\frac{\Phi}{L C}=0 .
$$

Using a similar ansatz for the trial function yields the resonance frequency

$$
\omega=\frac{1}{\sqrt{L C}}
$$

Pendulum:

$$
\omega=\sqrt{g / \ell}
$$

Key takeaway: Starting from the equation of motion, we derived the eigenfrequency of the system

Legendre transformation to Hamiltonian*

Hamiltonian gives two $1^{\text {st }}$ order differential equations, while Euler

Lagrange gives one $2^{\text {nd }}$ order

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=0 \\
& \begin{aligned}
\delta H & =p \dot{p} \dot{q}+\dot{q} \delta p-\frac{\partial L}{\partial \dot{q}} \delta \dot{q}-\frac{\partial L}{\partial q} \delta q \\
\quad & =\dot{q} \delta p-\dot{p} \delta q=\frac{\partial H}{\partial p} \delta p+\frac{\partial H}{\partial q} \delta q
\end{aligned}
\end{aligned}
$$

We need the Hamiltonian to write down the Schrodinger Equation. The general definition of a Hamiltonian is

$$
H(p, q)=\dot{q} p-L(\dot{q}, q)
$$

We take the total time derivative to show H is conserved;

$$
\frac{d H}{d t}=\ddot{q} p+\dot{q} \dot{p}-\frac{\partial L}{\partial q} \dot{q}-\frac{\partial L}{\partial \dot{q}} \ddot{q}-\frac{\partial \psi}{\partial t} .
$$

Since $p=\partial L / \partial \dot{q}$ and $\frac{\partial L}{\partial t}=0$, we have

$$
\rightarrow \frac{d q}{d t}=\frac{\partial H}{\partial p}, \frac{d p}{d t}=-\frac{\partial H}{\partial q}
$$

$$
\frac{d H}{d t}=\ddot{p} p+\dot{q} \dot{p}-\frac{\partial L}{\partial q} \dot{q}-p \not q=\dot{q}\left[\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}\right]=0
$$

The Hamiltonian is a constant of motion, i.e. the energy is conserved.

Legendre transformation to Hamiltonian*

Hamiltonian gives two $1^{\text {st }}$ order differential equations, while Euler Lagrange gives one $2^{\text {nd }}$ order

Figure 2: Superconducting LC oscillator.

We can use the general definition for the Hamiltonian to find

$$
H=Q \dot{\Phi}-\left(\frac{C}{2} \dot{\Phi}^{2}-\frac{\Phi^{2}}{2 L}\right)=\frac{Q^{2}}{2 C}+\frac{\Phi^{2}}{2 L}
$$

$T=\frac{Q^{2}}{2 C}$ is the energy of a capacitor while $V=\frac{\Phi^{2}}{2 L}$ is the energy of the inductor.
Hence, the Hamiltonian represents the total energy of the system.

$$
H(\Phi, Q)=T(Q)+V(\Phi)
$$

Key takeaway: Starting from Lagrangian, we derived the Hamiltonian of the system. This is necessary to derive energy quantization.

Agenda for today

7. Quantization of electrical networks
a. Harmonic oscillator: Lagrangian, eigenfrequency
b. Transfer step: LC oscillator, Legendre transform to Hamiltonian d. Quantization of oscillators

Figure 1: Classical pendulum.
b.

Figure 2: Superconducting LC oscillator.
c.

Classical \rightarrow Quantum

Photoelectric effect \rightarrow Electromagnetic field is quantized $\rightarrow E=\hbar \omega\left(n+\frac{1}{2}\right)$

Energy is quantized:

General note: Quantization of oscillators

- General note: In quantum mechanics, the energy of a system is given by an eigenvalue of the Hamiltonian.
- In a harmonic oscillator, the energy is quantized equidistantly.
- Energy quantization can be seen as counting the number of photons stored in the oscillator.

Quantization of an oscillator

In quantum mechanics, variables are replaced by operators:

$$
q \rightarrow \hat{q}, p \rightarrow \hat{p}=-i \hbar \frac{\partial}{\partial q}
$$

For practical reasons, we often use matrix representations

$$
O_{k \ell}=\left\langle e_{k}\right| \hat{O}\left|e_{\ell}\right\rangle
$$

$$
\left(\begin{array}{c}
(O \psi)_{1} \\
(O \psi)_{2} \\
\ldots \ldots)_{i} \\
(O \psi \\
\ldots
\end{array}\right)=\left(\begin{array}{ccccc}
O_{11} & O_{12} & \ldots & O_{1 j} & \ldots \\
O_{11} & O_{22} & \ldots & O_{2 j} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
O_{i 1} & O_{i 2} & \ldots & O_{i j} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\ldots \\
\psi_{j} \\
\ldots
\end{array}\right)
$$

Two conjugate variables follow the commutation relation

$$
[\widehat{p}, \widehat{q}] \equiv \widehat{p} \hat{q}-\widehat{q} \hat{p}=-i \hbar
$$

Quantization of an oscillator

It is convenient to transform \hat{q} and \hat{p} to \hat{a} and \hat{a}^{\dagger} to find the eigenvalues algebraically.

$$
\begin{gathered}
\hat{q}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right), \quad \hat{p}=-i \sqrt{\frac{\hbar m \omega}{2}}\left(\hat{a}-\hat{a}^{\dagger}\right) \\
\hat{a}=\sqrt{\frac{m \omega}{2 \hbar}} \hat{q}+i \sqrt{\frac{1}{2 m \hbar \omega}} \hat{p}, \hat{a}^{\dagger}=\sqrt{\frac{m \omega}{2 \hbar}} \hat{q}-i \sqrt{\frac{1}{2 m \hbar \omega}} \hat{p} \\
{[\hat{p}, \hat{q}]=-i \hbar \rightarrow\left[\hat{a}, \hat{a}^{\dagger}\right]=1 .(\text { Exercise })} \\
\rightarrow H=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{q}=\frac{\hbar \omega}{2}\left(\hat{a}^{\dagger} \hat{a}+\hat{a} \hat{a}^{\dagger}\right)=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)
\end{gathered}
$$

Quantization of an oscillator

Let us work out the eigenvalue problem of a harmonic oscillator.
 Let $\hat{n}=\hat{a}^{\dagger} \hat{a}$ and $|n\rangle$ be an eigenvector of $\hat{n}, \widehat{n}|n\rangle=n|n\rangle$. From $[\hat{n}, \hat{a}]=-\hat{a}$ and $\left[\hat{n}, \hat{a}^{\dagger}\right]=\hat{a}^{\dagger}$ (exercise) we find $\hat{n}(\hat{a}|n\rangle)=(n-1)(\hat{a}|n\rangle), \widehat{n}\left(\hat{a}^{\dagger}|n\rangle\right)=(n+1)\left(\hat{a}^{\dagger}|n\rangle\right)$, showing $\hat{a}|n\rangle \propto|n-1\rangle$ and $\hat{a}^{\dagger}|n\rangle \propto|n+1\rangle$.
$\hat{a}^{k}|n\rangle$ has eigenvalue $n-k$, which must be nonnegative;

$$
\begin{gathered}
\langle n-k| \hat{a}^{\dagger} \hat{a}|n-k\rangle=(n-k)=\left|||a| n-k\rangle \|^{2} \geq 0\right. \\
\rightarrow k \leq n
\end{gathered}
$$

This is possible if there is $|0\rangle$ such that $\hat{n}|0\rangle=0$. There is no " $|-1\rangle=\hat{a}|0\rangle$ ". $|0\rangle$ is called the vacuum state.

Quantization of an oscillator

It follows from $\langle n| \hat{a} \hat{a}^{\dagger}|n\rangle=n+1$ that (exercise)

$$
|n\rangle=\frac{\left(\hat{a}^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle, \quad n=0,1,2, \ldots
$$

$|n\rangle$ is an eigenvector of \hat{n} such that $\hat{n}|n\rangle=n|n\rangle$.
Matrix elements:

$$
\begin{aligned}
& \langle m| \hat{a}|n\rangle=\sqrt{n}\langle m \mid n-1\rangle=\sqrt{n} \delta_{m, n-1} \\
& \langle m| \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}\langle m \mid n+1\rangle=\sqrt{n+1} \delta_{m, n+1} \\
& \langle m| \hat{n}|n\rangle=n \delta_{m n}
\end{aligned}
$$

Explicitly

Quantization of an oscillator

Quantization of an oscillator

In summary, the eigenvalues of a harmonic oscillator are quantized as

$$
E_{n}=\hbar \omega\left(n+\frac{1}{2}\right), n=0,1,2, \ldots
$$

The difference between the adjacent eigenvalues is $\hbar \omega$ independent of n.
This may be interpreted as "there are n photons (or quanta) in $|n\rangle$ state". \hat{a} annihilates one photon while \hat{a}^{\dagger} creates one photon. $\hat{a}\left(\hat{a}^{\dagger}\right)$ is called the annihilation (creation) operator. Vacuum $|0\rangle$ is not empty. There is zero-point fluctuation. $\mathrm{E}_{0}=\frac{\hbar \omega}{2}$ is called the vacuum energy or the zero-point energy.

Quantization of the LC oscillator

For the superconducting LC resonator, we have

$$
\hat{H}=\frac{\hat{Q}^{2}}{2 C}+\frac{\hat{\Phi}^{2}}{2 L}=\frac{\hat{Q}^{2}}{2 C}+\frac{1}{2} C \omega^{2} \hat{\Phi}^{2}
$$

We aim to diagonalize \widehat{H} by rewriting it in terms of

$$
\hat{\Phi}=\sqrt{\frac{\hbar}{2 C \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right), \quad \hat{Q}=-i \sqrt{\frac{\hbar C \omega}{2}}\left(\hat{a}-\hat{a}^{\dagger}\right)
$$

Here $\omega=1 / \sqrt{L C}$. The square root factors have been inserted so that $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$. Then \hat{H} is written as

$$
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)=\hbar \omega\left(\hat{n}+\frac{1}{2}\right)
$$

as before.

Quantization of the LC oscillator

The Hamiltonian

$$
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)=\hbar \omega\left(\hat{n}+\frac{1}{2}\right)
$$

with $\omega=1 / \sqrt{L C}$. The eigenvalues and eigenvectors

$$
n=0,1,2, \ldots,|0\rangle,|1\rangle,|2\rangle, \ldots
$$

The energy eigenvalues are

$$
E_{0}=\frac{1}{2} \hbar \omega, E_{1}=\frac{3}{2} \hbar \omega, E_{2}=\frac{5}{2} \hbar \omega, \ldots
$$

n denotes the number of photons in the circuit. Zero-point energy E_{0} even when $n=0$. Φ and Q cannot vanish simultaneously, $[\widehat{Q}, \widehat{\Phi}]=-i \hbar$.

Zero-Point Energy from Uncertainty Relation

$$
\begin{aligned}
& \Delta Q \Delta \Phi \geq \frac{1}{2}|\langle[Q, \Phi]\rangle|=\frac{\hbar}{2} \text { where } \Delta Q^{2} \equiv\left\langle Q^{2}\right\rangle-\langle Q\rangle^{2} \text { etc. } \\
& \text { Let } \Delta Q \Delta \Phi \simeq \frac{\hbar}{2} \\
& \Delta Q^{2} \Delta \Phi^{2} \simeq \frac{\hbar^{2}}{4} \rightarrow \Delta \Phi^{2} \simeq \frac{\hbar^{2}}{4 \Delta Q^{2}} \rightarrow H \simeq \frac{\Delta Q^{2}}{2 C}+\frac{\Delta \Phi^{2}}{2 L} \simeq \frac{\Delta Q^{2}}{2 C}+\frac{\hbar^{2}}{8 L \Delta Q^{2}} \\
& \frac{\partial H}{\partial \Delta Q^{2}} \simeq \frac{1}{2 C}-\frac{\hbar^{2}}{8 L\left(\Delta Q^{2}\right)^{2}}=0 \rightarrow \Delta Q^{2}=\frac{\hbar}{2} \sqrt{\frac{C}{L}} \rightarrow H \simeq \frac{\hbar}{4} \sqrt{\frac{1}{L C}}+\frac{\hbar}{4} \sqrt{\frac{1}{L C}}=\frac{\hbar \omega}{2} .
\end{aligned}
$$

Problem of an LC oscillator as a qubit

Does an LC oscillator work as a qubit? $\{|0\rangle,|1\rangle\}$?

Transition between $|0\rangle \leftrightarrow|1\rangle$ is realized by absorption \& emission of a photon of energy $\hbar \omega$. But the energy eigenvalues are equidistant, and the same photon induces transition between arbitrary $|n\rangle$ and $|n \pm 1\rangle$. It is impossible to confine the qubit state within Span $\{|0\rangle,|1\rangle\}$.

This problem is circumvented by introducing nonlinearity in $\mathrm{V}(\Phi)$. We see in the following lectures that this will be realized by replacing the inductor in the circuit with a Josephson junction.

Agenda for today (done)

7. Quantization of electrical networks
a. Harmonic oscillator: Lagrangian, eigenfrequency
b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
c. Quantization of oscillators

Figure 1: Classical pendulum.
b.

Figure 2: Superconducting LC oscillator.
c.

Add-on: Vacuum fluctuations \& thermal photons (if time allows)

[^0]
Legendre transformation to Hamiltonian*

Hamiltonian gives two $1^{\text {st }}$ order differential equations, while Euler Lagrange gives one $2^{\text {nd }}$ order

Figure 2: Superconducting LC oscillator.

Using the above terms in the total time derivative yields

$$
\frac{d H}{d t}=\ddot{q} p+\dot{q} \dot{p}-\frac{\partial L}{\partial q} \dot{q}-\frac{\partial L}{\partial \dot{q}} \ddot{q}-\frac{\partial L}{\partial t}
$$

Simplifying this formula further results in since $\frac{\partial L}{\partial t}=0$. The RHS vanishes due to EulerLagrange equation, and hence
since $\frac{\partial L}{\partial t}=0$. The RHS vanishes due to EulerLagrange equation, and hence

$$
\frac{\mathrm{d} H}{\mathrm{~d} t}=0
$$

The Hamiltonian is a constant of motion, i.e. energy is conserved.

Quantization of the LC oscillator

The previous Hamiltonian becomes

$$
\begin{aligned}
\hat{H} & =\frac{\left[\sqrt{\frac{\hbar \omega L}{2}}\left(\widehat{a}+\widehat{a}^{\dagger}\right)\right]^{2}}{2 L}+\frac{\left[\sqrt{\frac{\hbar \omega C}{2}} i\left(\hat{a}-\widehat{a}^{\dagger}\right)\right]^{2}}{2 C} \\
& =\frac{\hbar \omega}{4}\left(\hat{a} \widehat{a}^{\dagger}+\hat{a}^{\dagger} \widehat{a}+\hat{a} \widehat{a}^{\dagger}+\hat{a}^{\dagger} \widehat{a}\right) \\
& =\frac{\hbar \omega}{2}\left(\hat{a}^{\widehat{a}^{\dagger}}+\widehat{a}^{\dagger} \hat{a}\right) .
\end{aligned}
$$

Using $\left[\widehat{a}, \widehat{a}^{\dagger}\right]=1$ it follows that $\widehat{a} \widehat{a}^{\dagger}=\widehat{a}^{\dagger} \widehat{a}+1$

$$
\begin{aligned}
& \text { Key takeaway: The total energy of the system } \\
& \text { is given by vacuum fluctuations (+1/2) and the } \\
& \text { number of photons stored at frequency } \omega
\end{aligned} \widehat{H}=\hbar \omega\left(\widehat{a}^{\dagger} \widehat{a}+\frac{1}{2}\right)
$$

[^0]: Figure 4.38: Schematics of the dual-path setup

