IQM

Mikio Nakahara Lecture notes on PHYS-C0254 Quantum Circuits www.meetiqm.com

1

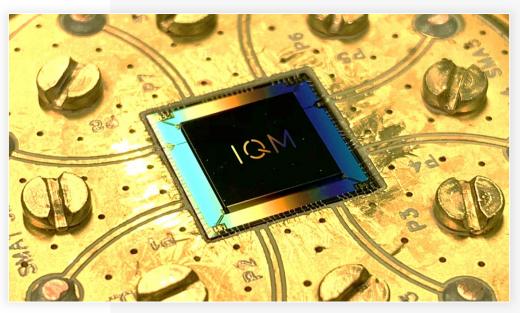
About me: From science to industry

- Originally from Sasebo, Japan
- 1971 1975: Science student at Kyoto University, Japan
- 1975 1981: PhD student in Physics at Kyoto.
- 1980 1982: Research Fellow & Postdoc at University of Southern California, LA.
- 1982 1983: Math Student at King's College, London
- 1983 1985: Postdoc at University of Alberta, Canada
- 1985 1986: Postdoc at University of Sussex, UK
- 1986 1993: Associate Prof. at Shizuoka University, Japan
- 1993 2017: Associate Prof & Prof at Kindai University, Japan
- 2017 2020: Prof at Shanghai University, PR China
- 2023 today: Quantum Education Manager at IQM
- 2001- ??: Lectured quantum computing at Helsinki University of Technology (TKK)

IQM in brief

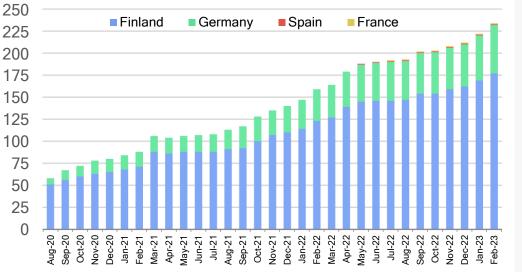
Quantum computing scale-up

- Spinout of Aalto University and VTT in July 2019
- Develop and sell on-premises quantum computers based on superconducting technology
- Secured 2 rounds of private investment funding (Seed & A)
- Sold 2 quantum computers thus far (Finland, Germany)

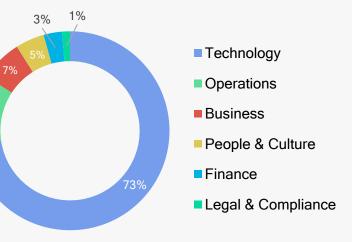


Employees

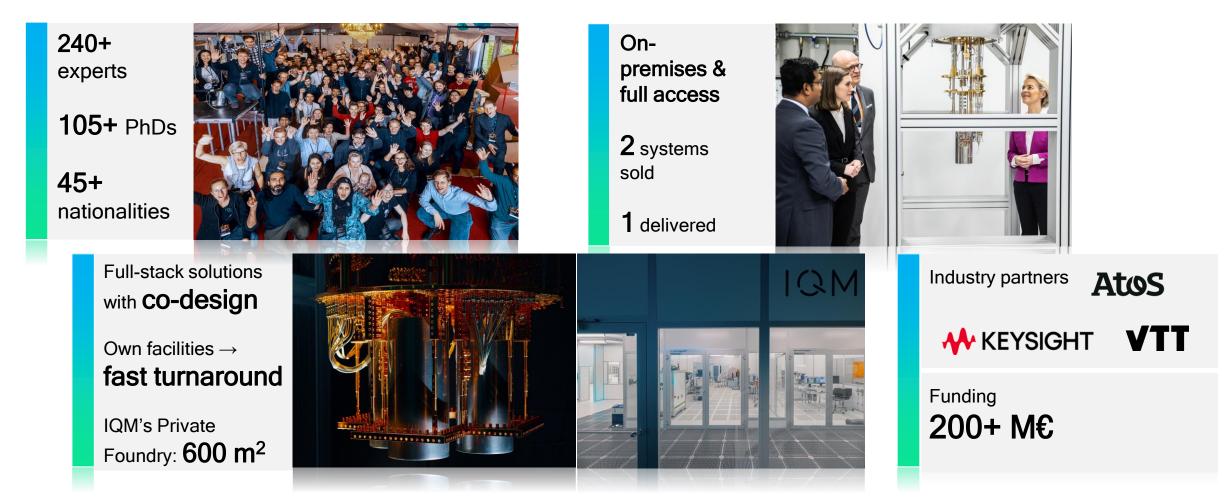
- 220+ employees
- 105 PhDs
- 11 Professor-level tech leaders
- 45+ nationalities



QM

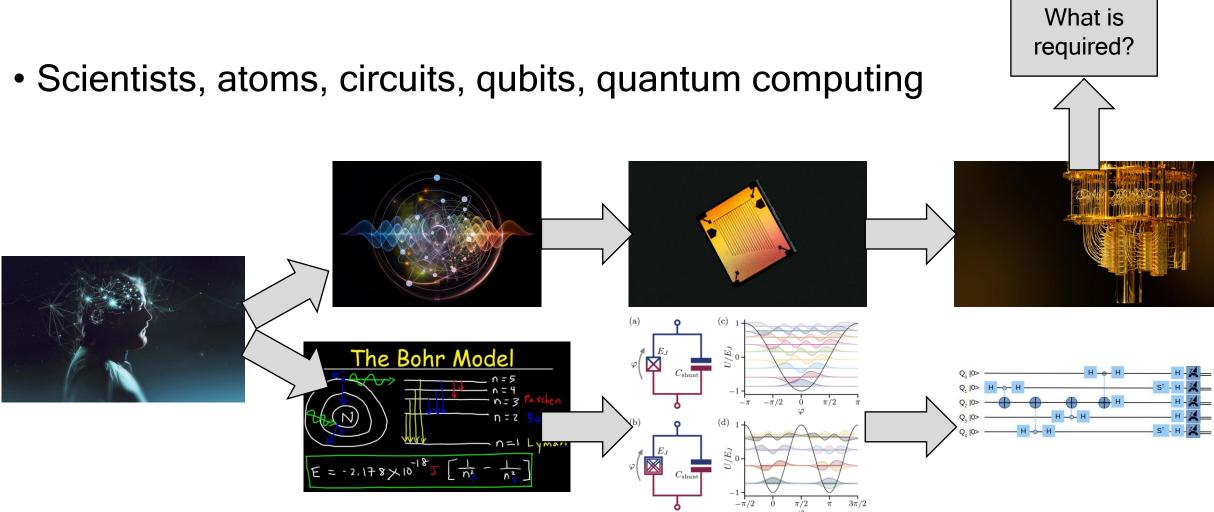


IQM builds and delivers quantum computers



Our Mission: To build world-leading quantum computers for the well-being of humankind, now and for the future

How does everything fit into the big picture?



Di Vincenzo Criteria and where you can find them in this course

Statement of the criteria

- 1. A scalable physical system with well characterized qubit
- 2. The ability to initialize the state of the qubits to a simple fiducial state
- 3. Long relevant decoherence times
- 4. A "universal" set of quantum gates
- 5. A qubit-specific measurement capability

Agenda for lectures 8-12

- 8. Quantization of electrical networks
 - a. Harmonic oscillator: Lagrangian, eigenfrequency
 - b. LC oscillator, Legendre transform to Hamiltonian
 - c. Quantization of oscillators
- 9. Superconducting quantum circuits
 - a. Qubits: Transmon qubit, Charge qubit, Flux qubit 1st DiVincenzo criteria
 - b. Circuit-QED: Rabi model
 - c. Rotating Wave approximation: Jaynes-Cummings model

10.Single-qubit operations:

- a. Initialization 2nd DiVincenzo criteria
- b. Readout 5th DiVincenzo criteria
- c. Control:T1, T2 measurements, Randomized benchmarking 3rd DiVincenzo criteria

11. Two-qubit operations: Architectures for 2-qubit gates 4th DiVincenzo criteria

- a. iSWAP
- b. cPhase
- c. cNot
- 12. Challenges in quantum computing
 - a. Scaling
 - b. SW-HW gap
 - c. Error-correction

Agenda for today

- 7. Quantization of electrical networks
 - a. Harmonic oscillator: Lagrangian, eigenfrequency
 - b. LC oscillator, Legendre transform to Hamiltonian
 - c. Quantization of oscillators

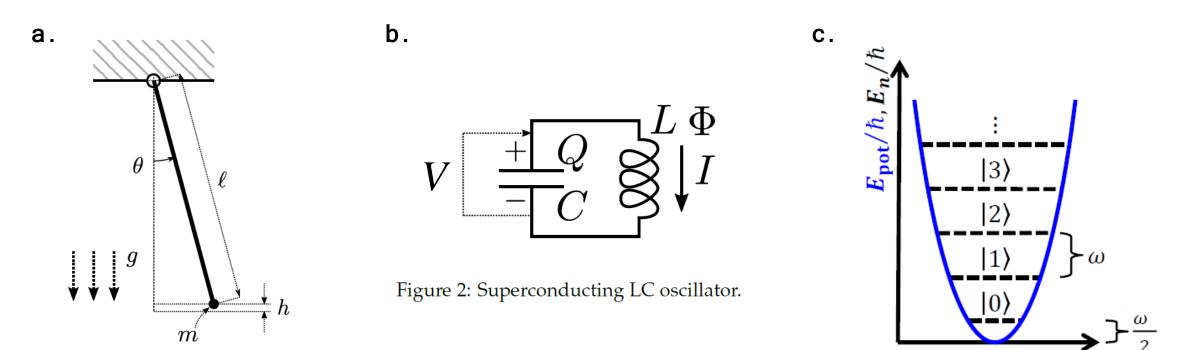


Figure 1: Classical pendulum.

General note: Harmonic oscillators

- General note: In physics, many phenomena can be explained by harmonic oscillators. They are the standard tool in our physics toolbox. $V(x) = V(0) + V'(0)x + \frac{1}{2}V''(0)x^2 + \cdots$
- Usually, there are two important variables involved like position and momentum, q and p.
- One can often find analogies where two system variables are equivalent to q and p. For example, in an LC oscillator these are flux and charge.

Short review: Lagrangian & Hamiltonian

- During this course, Lagrangian and Hamiltonian mechanics are used for analyzing quantum computing circuits.
- Recall that the Lagrangian is defined as the kinetic energy T minus the potential energy V: $L(\dot{q},q) \equiv T(\dot{q},q) - V(q)$
- Quite often the Hamiltonian represents the total energy of the system: $H(p,q) \equiv T(p,q) + V(q)$ Legendre transformation

The Euler-Lagrange equation states

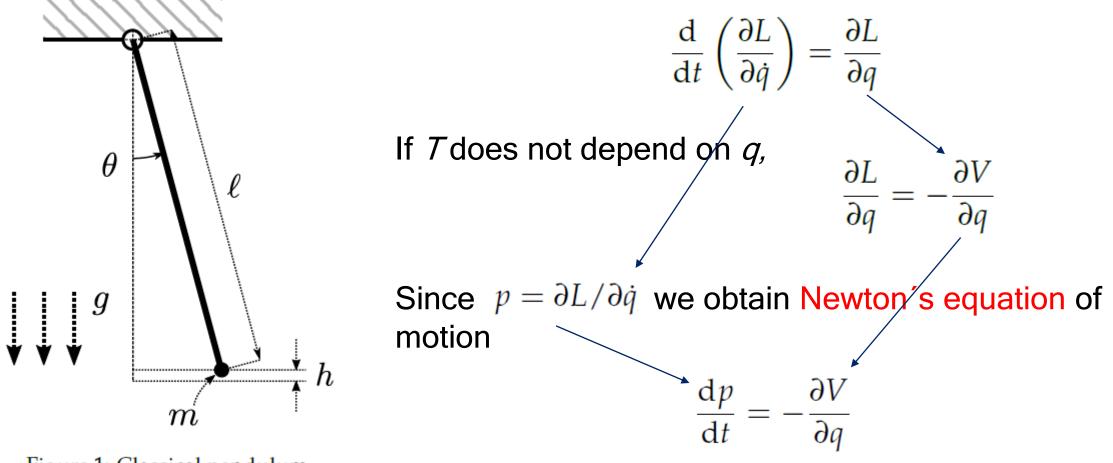
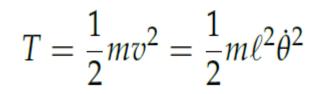


Figure 1: Classical pendulum.

The kinetic energy is



The potential energy for small oscillation is

$$V = mgh = mg\ell \left(1 - \cos\theta\right) \approx \frac{1}{2}mg\ell\theta^2$$
$$L \equiv T - V .$$

We introduce generalized coordinates q and generalized momentum p as

$$\begin{split} q &\equiv \theta, \\ p &\equiv \frac{\partial L}{\partial \dot{\theta}} \simeq \frac{\partial}{\partial \dot{\theta}} \bigg(\frac{1}{2} m \ell^2 \dot{\theta}^2 - \frac{1}{2} m g \ell \theta^2 \bigg) = m \ell^2 \dot{\theta} \end{split}$$

p is the angular momentum.

Figure 1: Classical pendulum.

m

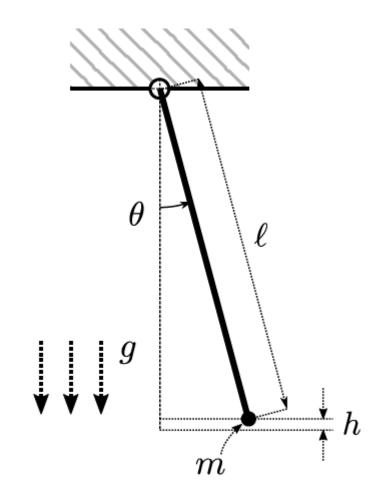
 θ

g

IQM * Details in lecturenotes-EQS_Helsinki_2019.pdf

h

l



Applying our example to the Euler-Lagrange equation gives $\dot{p} = -mg\ell\theta$.

By differentiating $p = m\ell^2 \dot{\theta}$ wrt time, we obtain

 $\dot{p} = m\ell^2 \ddot{\theta}.$

Equating these yields

$$m\ell^2\ddot{\theta} + mg\ell\theta = 0 \rightarrow \ddot{\theta} + \frac{g}{\ell}\theta = 0.$$

Figure 1: Classical pendulum.

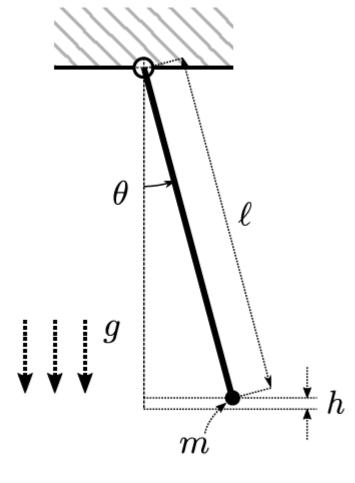


Figure 1: Classical pendulum.

Because we are smart, we chose a trial function

 $\theta = C \exp(i\omega t)$

Inserting this function into the differential equation yields:

$$i^2\omega^2 C \exp(i\omega t) + \frac{g}{\ell}C \exp(i\omega t) = 0$$

This equation is satisfied for any *t* if we choose

 $\omega = \sqrt{g/\ell}$

Key takeaway: Starting from the equation of motion, we derived the eigenfrequency of the system

Agenda for today

- 7. Quantization of electrical networks
 - a. Harmonic oscillator: Lagrangian, eigenfrequency
 - b. LC oscillator, Legendre transform to Hamiltonian
 - d. Quantization of oscillators

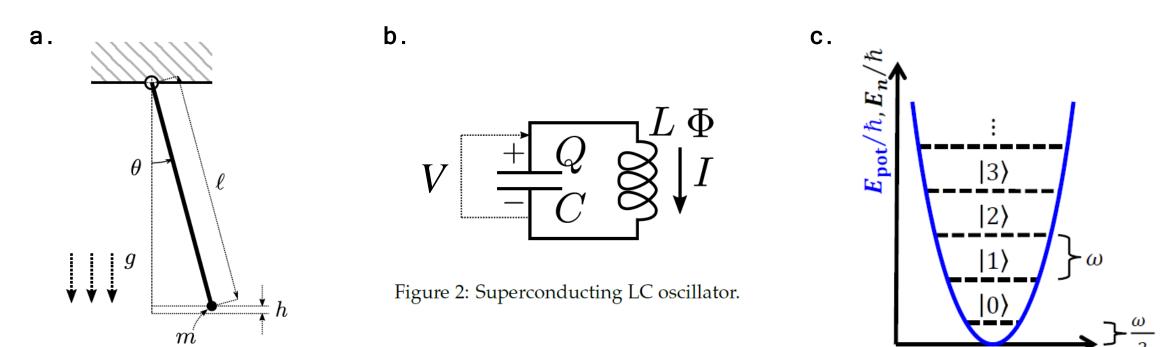


Figure 1: Classical pendulum.

General note: LC oscillators

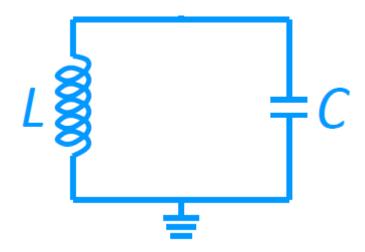
 General note: Once you understand the harmonic oscillator, you can easily apply the concept to any other oscillator.

Position $\hat{q} \leftrightarrow \operatorname{Flux} \hat{\Phi}$

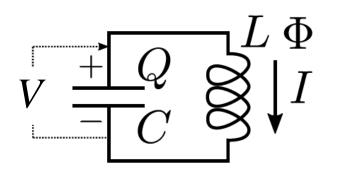
Momentum $\hat{p} \leftrightarrow$ Charge \hat{Q}

Mass $m \leftrightarrow$ Capacitance C

Frequency $\omega \leftrightarrow \omega = 1/\sqrt{LC}$



We consider an electrical circuit consisting of inductance L and capacitance C. For the magnetic flux Φ through a coil, it holds that



 $\Phi = LI$

The Lenz law tells us that

 $\dot{\Phi} = V$

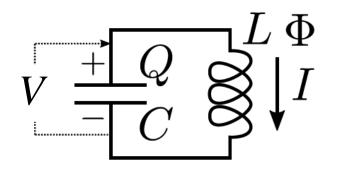
Figure 2: Superconducting LC oscillator. Hence, the potential energy stored in the inductor is

$$U = \int_{t_0}^{t_1} P \, dt = \int_{t_0}^{t_1} VI \, dt = \int_{t_0}^{t_1} \frac{\Phi \dot{\Phi}}{L} \, dt = \frac{\Phi^2}{2L},$$

where we defined Φ as the generalized coordinate.

The charge stored in the capacitor is

$$Q = CV.$$



The power fed into the circuit is P = V/ and consequently $P = V\dot{Q} = VC\dot{V}$.

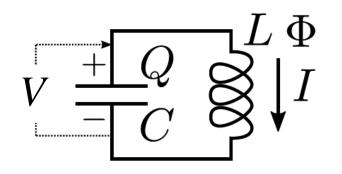
Figure 2: Superconducting LC oscillator.

Hence, the kinetic energy stored in the capacitor is

$$T = \int_{t_0}^{t_1} P \, dt = \int_{t_0}^{t_1} V C \dot{V} dt = \frac{CV^2}{2} = \frac{C}{2} \dot{\Phi}^2$$

To apply Lagrangian mechanics, we use the previous results

$$T = \frac{C}{2} \dot{\Phi}^2, \qquad U = \frac{\Phi^2}{2L}$$



allowing us to write the Lagrangian as

$$L = \frac{C}{2} \dot{\Phi}^2 - \frac{\Phi^2}{2L}$$

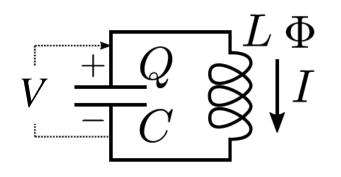
Figure 2: Superconducting LC oscillator.

To derive the equation of motion, we again introduce generalized coordinate and momentum

$$q = \Phi, \qquad p = \frac{\partial L}{\partial \dot{\Phi}} = C \dot{\Phi} = CV = Q.$$

Remind yourself again of Euler-Lagrange equation:

d	(∂L)	∂L
1 <i>t</i>	(<u>Əġ</u>)	$=\overline{\partial q}$



Using the above results gives the equation of motion for flux:

$$C\ddot{\Phi} + \frac{\Phi}{L} = 0 \rightarrow \ddot{\Phi} + \frac{\Phi}{LC} = 0.$$

Figure 2: Superconducting LC oscillator.

Using a similar ansatz for the trial function yields the resonance frequency

$$\omega = \frac{1}{\sqrt{LC}}$$

$$\rightarrow \omega = \sqrt{g}$$

20

Key takeaway: Starting from the equation of motion, we derived the eigenfrequency of the system

Legendre transformation to Hamiltonian*

Hamiltonian gives two 1st order differential equations, while Euler Lagrange gives one 2nd order

 $\delta H = p \delta \dot{q} + \dot{q} \delta p - \frac{\partial L}{\partial \dot{q}} \delta \dot{q} - \frac{\partial L}{\partial a} \delta q$

 $\rightarrow \frac{dq}{dt} = \frac{\partial H}{\partial p}, \frac{dp}{dt} = -\frac{\partial H}{\partial q}$

 $= \dot{q}\delta p - \dot{p}\delta q = \frac{\partial H}{\partial p}\delta p + \frac{\partial H}{\partial q}\delta q$

 $\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = 0$

We need the Hamiltonian to write down the Schrodinger Equation. The general definition of a Hamiltonian is

$$H(p,q) = \dot{q}p - L(\dot{q},q).$$

21

We take the total time derivative to show *H* is conserved;

$$\frac{d}{dt} = \ddot{q}p + \dot{q}\dot{p} - \frac{\partial L}{\partial q}\dot{q} - \frac{\partial L}{\partial \dot{q}}\ddot{q} - \frac{\partial L}{\partial \dot{q}}\ddot{q} - \frac{\partial L}{\partial \dot{t}}.$$
Since $p = \partial L/\partial \dot{q}$ and $\frac{\partial L}{\partial t} = 0$, we have
$$\frac{dH}{dt} = \ddot{q}p + \dot{q}\dot{p} - \frac{\partial L}{\partial q}\dot{q} - p\ddot{q} = \dot{q}\left[\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q}\right] = 0$$

The Hamiltonian is a constant of motion, i.e. the energy is conserved.

Legendre transformation to Hamiltonian*

Hamiltonian gives two 1st order differential equations, while Euler Lagrange gives one 2nd order

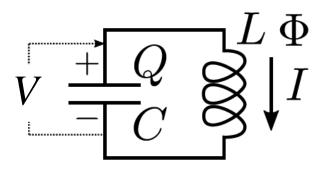


Figure 2: Superconducting LC oscillator.

We can use the general definition for the Hamiltonian to find

$$H = Q\dot{\Phi} - \left(\frac{C}{2}\dot{\Phi}^2 - \frac{\Phi^2}{2L}\right) = \frac{Q^2}{2C} + \frac{\Phi^2}{2L}$$

 $T = \frac{Q^2}{2C}$ is the energy of a capacitor while $V = \frac{\Phi^2}{2L}$ is the energy of the inductor.

Hence, the Hamiltonian represents the total energy of the system.

 $H(\Phi,Q) = T(Q) + V(\Phi)$

Key takeaway: Starting from Lagrangian, we derived the Hamiltonian of the system. This is necessary to derive energy quantization.

Agenda for today

- 7. Quantization of electrical networks
 - a. Harmonic oscillator: Lagrangian, eigenfrequency
 - b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
 - d. Quantization of oscillators

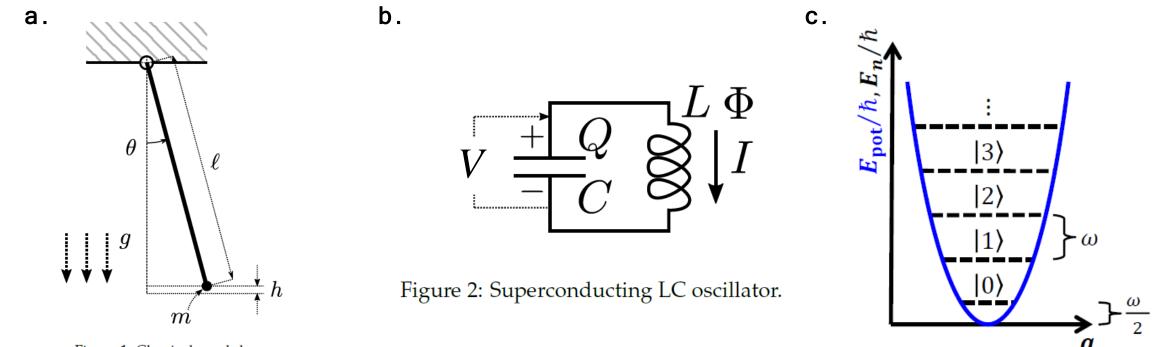
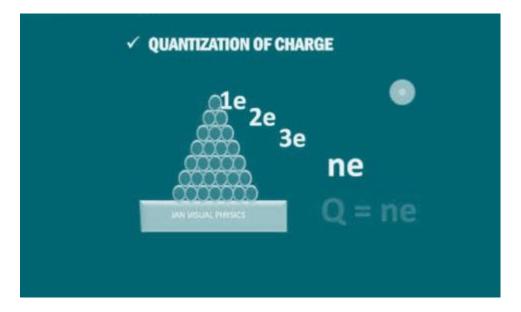
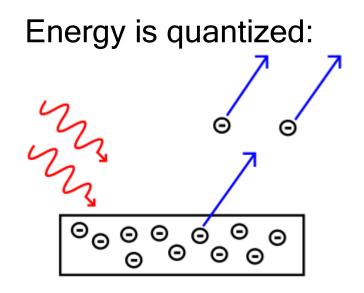


Figure 1: Classical pendulum.

Classical \rightarrow Quantum



Photoelectric effect \rightarrow Electromagnetic field is quantized $\rightarrow E = \hbar \omega (n + \frac{1}{2})$



General note: Quantization of oscillators

- General note: In quantum mechanics, the energy of a system is given by an eigenvalue of the Hamiltonian.
- In a harmonic oscillator, the energy is quantized equidistantly.
- Energy quantization can be seen as counting the number of photons stored in the oscillator.

In quantum mechanics, variables are replaced by operators:

$$q \rightarrow \hat{q}, \ p \rightarrow \hat{p} = -i\hbar \frac{\partial}{\partial q}$$

For practical reasons, we often use matrix representations $\int (O\psi)_1 \sqrt{O_{11} O_{12}}$

$$O_{k\ell} = \langle e_k | \hat{O} | e_\ell \rangle$$

 $\begin{pmatrix} (O\psi)_1\\ (O\psi)_2\\ ...\\ (O\psi)_i\\ ... \end{pmatrix} = \begin{pmatrix} O_{11} & O_{12} & ... & O_{1j} & ...\\ O_{21} & O_{22} & ... & O_{2j} & ...\\ ... & ... & ... & ...\\ O_{i1} & O_{i2} & ... & O_{ij} & ...\\ ... & ... & ... & ... & ... \end{pmatrix} \begin{pmatrix} \psi_1\\ \psi_2\\ ...\\ \psi_j\\ ... \end{pmatrix}$

Two conjugate variables follow the commutation relation $[\widehat{p}, \widehat{q}] \equiv \widehat{p}\widehat{q} - \widehat{q}\widehat{p} = -i\hbar$

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

IQM * Details in lecturenotes-EQS_Helsinki_2019.pdf

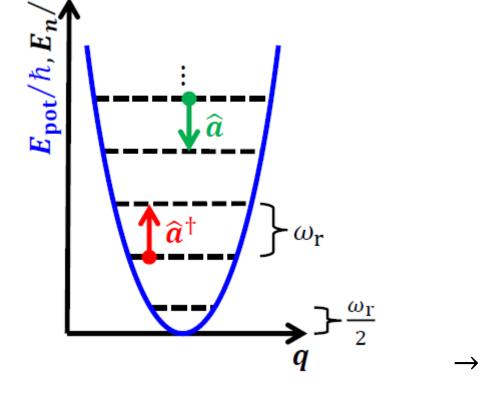
 $E_{
m pot}/\hbar, E_n$

|3>

|2)

 $|1\rangle$

It is convenient to transform \hat{q} and \hat{p} to \hat{a} and \hat{a}^{\dagger} to find the eigenvalues algebraically.



$$\hat{q} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger}), \qquad \hat{p} = -i\sqrt{\frac{\hbar m\omega}{2}} (\hat{a} - \hat{a}^{\dagger})$$
$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \hat{q} + i\sqrt{\frac{1}{2m\hbar\omega}} \hat{p}, \\ \hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \hat{q} - i\sqrt{\frac{1}{2m\hbar\omega}} \hat{p}$$
$$[\hat{p}, \hat{q}] = -i\hbar \rightarrow [\hat{a}, \hat{a}^{\dagger}] = 1. \text{ (Exercise)}$$
$$H = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{q} = \frac{\hbar\omega}{2} (\hat{a}^{\dagger}\hat{a} + \hat{a}\hat{a}^{\dagger}) = \hbar\omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2})$$

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

Let us work out the eigenvalue problem of a harmonic oscillator.

Let $\hat{n} = \hat{a}^{\dagger}\hat{a}$ and $|n\rangle$ be an eigenvector of \hat{n} , $\hat{n}|n\rangle = n|n\rangle$. From $[\hat{n}, \hat{a}] = -\hat{a}$ and $[\hat{n}, \hat{a}^{\dagger}] = \hat{a}^{\dagger}$ (exercise) we find $\hat{n}(\hat{a}|n\rangle) = (n-1)(\hat{a}|n\rangle), \ \hat{n}(\hat{a}^{\dagger}|n\rangle) = (n+1)(\hat{a}^{\dagger}|n\rangle),$ showing $\hat{a}|n\rangle \propto |n-1\rangle$ and $\hat{a}^{\dagger}|n\rangle \propto |n+1\rangle$.

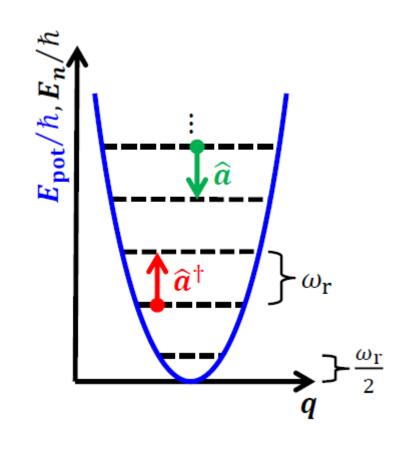
 $\hat{a}^{k}|n\rangle$ has eigenvalue n - k, which must be nonnegative; $\langle n - k | \hat{a}^{\dagger} \hat{a} | n - k \rangle = (n - k) = |||a|n - k\rangle ||^{2} \ge 0$ $\rightarrow k \le n$

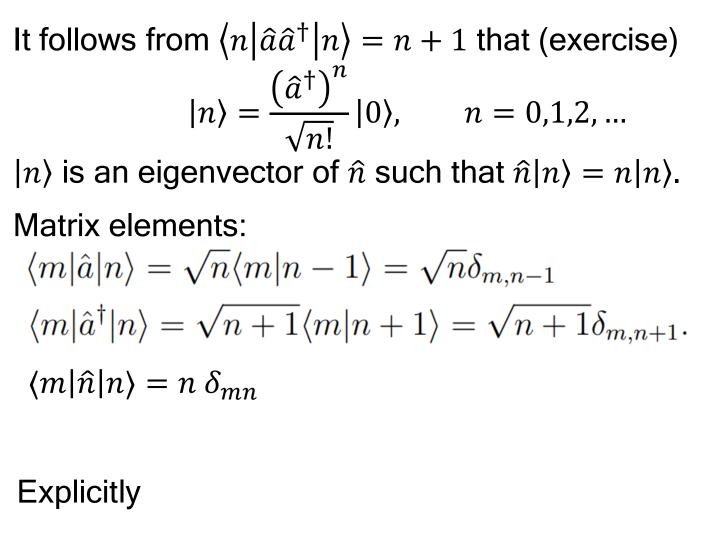
This is possible if there is $|0\rangle$ such that $\hat{n}|0\rangle = 0$. There is no " $|-1\rangle = \hat{a}|0\rangle$ ". $|0\rangle$ is called the vacuum state.

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

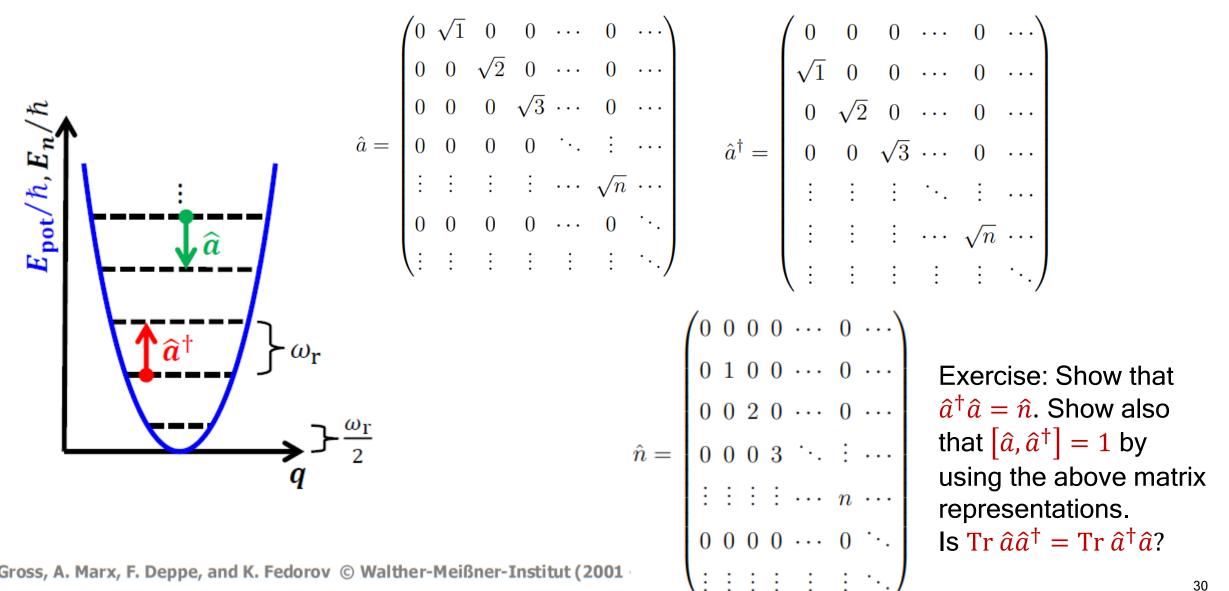
IQM * Details in lecturenotes-EQS_Helsinki_2019.pdf

 $E_{
m pot}/$

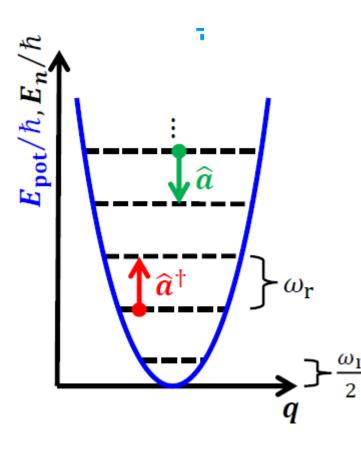




R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)



R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 IQM * Details in lecturenotes-EQS_Helsinki_2019.pdf



In summary, the eigenvalues of a harmonic oscillator are quantized as

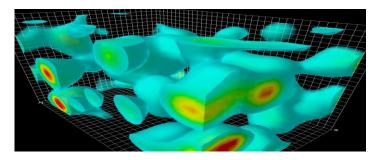
$$E_n = \hbar \omega \left(n + \frac{1}{2} \right), n = 0, 1, 2, \dots$$

The difference between the adjacent eigenvalues is $\hbar\omega$ independent of *n*.

This may be interpreted as "there are *n* photons (or quanta) in $|n\rangle$ state". \hat{a} annihilates one photon while \hat{a}^{\dagger} creates one photon. \hat{a} (\hat{a}^{\dagger}) is called the annihilation (creation) operator.

Vacuum $|0\rangle$ is not empty. There

is zero-point fluctuation. $E_0 = \frac{\hbar\omega}{2}$ is called the vacuum energy or the zero-point energy.



R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

Quantization of the LC oscillator

For the superconducting LC resonator, we have

$$\hat{H} = \frac{\hat{Q}^2}{2C} + \frac{\hat{\Phi}^2}{2L} = \frac{\hat{Q}^2}{2C} + \frac{1}{2}C\omega^2\hat{\Phi}^2$$

We aim to diagonalize \widehat{H} by rewriting it in terms of

$$\hat{\Phi} = \sqrt{\frac{\hbar}{2C\omega}} \left(\hat{a} + \hat{a}^{\dagger} \right), \quad \hat{Q} = -i\sqrt{\frac{\hbar C\omega}{2}} \left(\hat{a} - \hat{a}^{\dagger} \right)$$

Here $\omega = 1/\sqrt{LC}$. The square root factors have been inserted so that $[\hat{a}, \hat{a}^{\dagger}] = 1$. Then \hat{H} is written as $\hat{H} = \hbar \omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) = \hbar \omega \left(\hat{n} + \frac{1}{2} \right)$ as before.

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

IQM * Details in lecturenotes-EQS_Helsinki_2019.pdf

 h, E_n

 E_{pot}

|3>

 $|2\rangle$

0

Quantization of the LC oscillator

The Hamiltonian

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right) = \hbar\omega \left(\hat{n} + \frac{1}{2} \right)$$

with $\omega = 1/\sqrt{LC}$. The eigenvalues and eigenvectors $n = 0,1,2,..., |0\rangle, |1\rangle, |2\rangle,...$

The energy eigenvalues are $E_0 = \frac{1}{2}\hbar\omega, E_1 = \frac{3}{2}\hbar\omega, E_2 = \frac{5}{2}\hbar\omega, ...$

n denotes the number of photons in the circuit. Zero-point energy E_0 even when n = 0. Φ and Q cannot vanish simultaneously, $[\hat{Q}, \hat{\Phi}] = -i\hbar$.

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

IQM * Details in lecturenotes-EQS_Helsinki_2019.pdf

 $E_{\mathrm{pot}}/\hbar, E_{n_{\mathrm{c}}}$

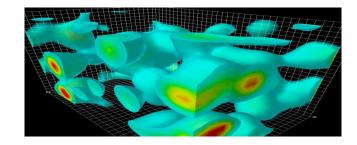
|3>

 $|2\rangle$

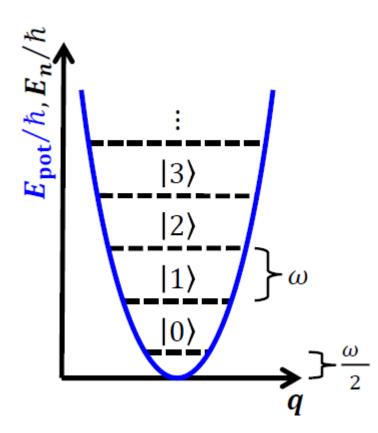
0

Zero-Point Energy from Uncertainty Relation

$$\begin{split} &\Delta Q \Delta \Phi \geq \frac{1}{2} |\langle [Q, \Phi] \rangle| = \frac{\hbar}{2} \text{ where } \Delta Q^2 \equiv \langle Q^2 \rangle - \langle Q \rangle^2 \text{ etc.} \\ &\text{Let } \Delta Q \Delta \Phi \simeq \frac{\hbar}{2} \\ &\Delta Q^2 \Delta \Phi^2 \simeq \frac{\hbar^2}{4} \rightarrow \Delta \Phi^2 \simeq \frac{\hbar^2}{4\Delta Q^2} \rightarrow H \simeq \frac{\Delta Q^2}{2C} + \frac{\Delta \Phi^2}{2L} \simeq \frac{\Delta Q^2}{2C} + \frac{\hbar^2}{8L\Delta Q^2} \\ &\frac{\partial H}{\partial \Delta Q^2} \simeq \frac{1}{2C} - \frac{\hbar^2}{8L(\Delta Q^2)^2} = 0 \rightarrow \Delta Q^2 = \frac{\hbar}{2} \sqrt{\frac{C}{L}} \rightarrow H \simeq \frac{\hbar}{4} \sqrt{\frac{1}{LC}} + \frac{\hbar}{4} \sqrt{\frac{1}{LC}} = \frac{\hbar\omega}{2}. \end{split}$$



Problem of an LC oscillator as a qubit



Does an LC oscillator work as a qubit? $\{|0\rangle, |1\rangle\}$?

Transition between $|0\rangle \leftrightarrow |1\rangle$ is realized by absorption & emission of a photon of energy $\hbar\omega$. But the energy eigenvalues are equidistant, and the same photon induces transition between arbitrary $|n\rangle$ and $|n \pm 1\rangle$. It is impossible to confine the qubit state within Span{ $|0\rangle$, $|1\rangle$ }.

This problem is circumvented by introducing nonlinearity in V (Φ). We see in the following lectures that this will be realized by replacing the inductor in the circuit with a Josephson junction.

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)

Agenda for today (done)

- 7. Quantization of electrical networks
 - a. Harmonic oscillator: Lagrangian, eigenfrequency
 - b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
 - c. Quantization of oscillators

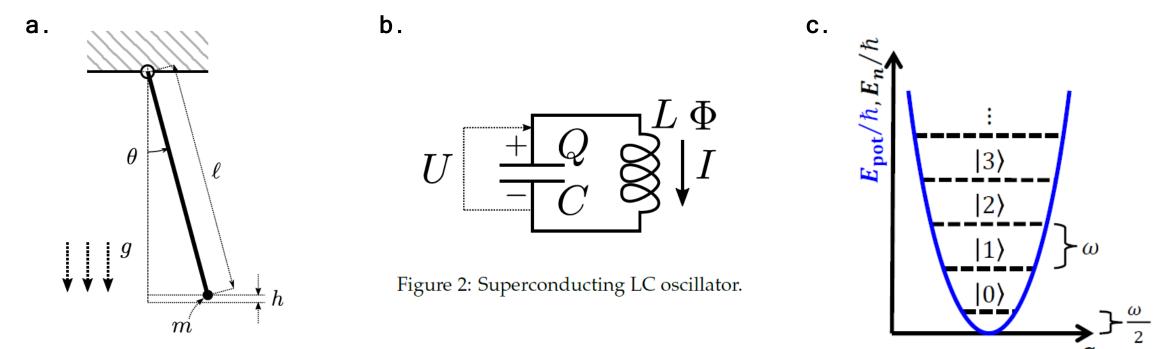


Figure 1: Classical pendulum.

Add-on: Vacuum fluctuations & thermal photons (if time allows)

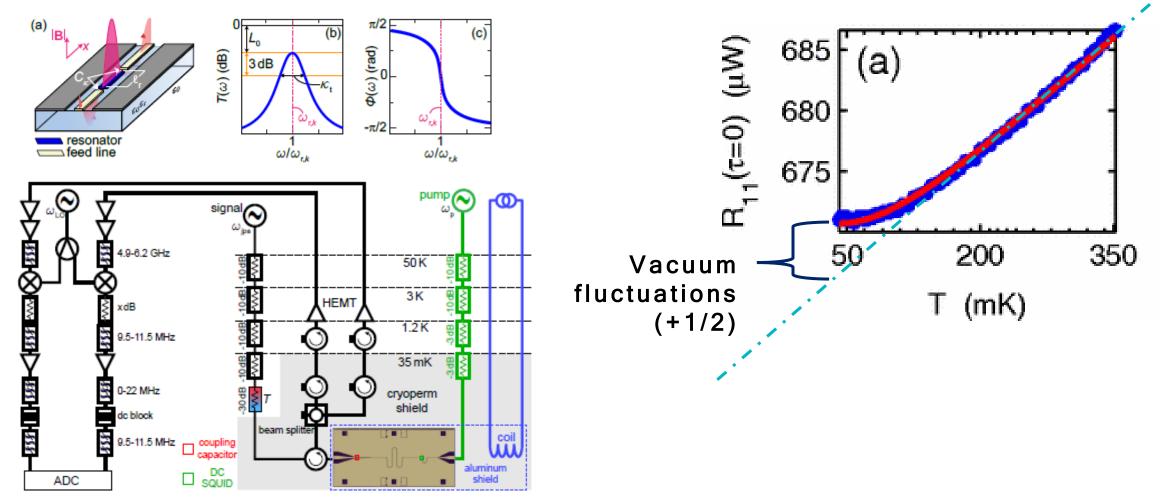


Figure 4.38: Schematics of the dual-path setup.

Legendre transformation to Hamiltonian*

Hamiltonian gives two 1st order differential equations, while Euler Lagrange gives one 2nd order

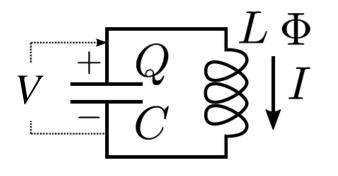


Figure 2: Superconducting LC oscillator.

Using the above terms in the total time derivative yields

$$\frac{dH}{dt} = \ddot{q}p + \dot{q}\dot{p} - \frac{\partial L}{\partial q}\dot{q} - \frac{\partial L}{\partial \dot{q}}\ddot{q} - \frac{\partial L}{\partial \dot{t}}$$

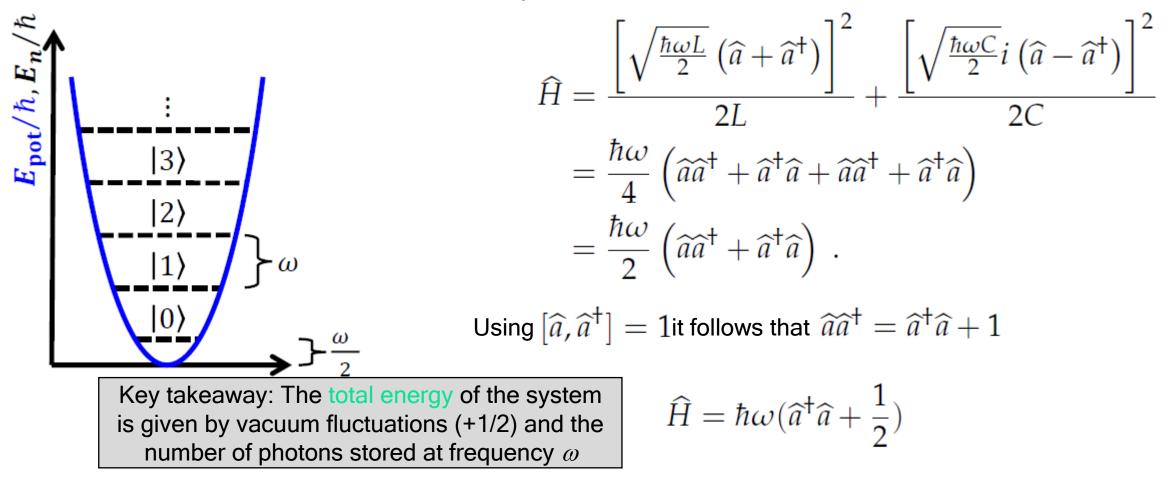
Simplifying this formula further results in since $\frac{\partial L}{\partial t} = 0$. The RHS vanishes due to Euler-Lagrange equation, and hence

since $\frac{\partial L}{\partial t} = 0$. The RHS vanishes due to Euler-Lagrange equation, and hence $\frac{dH}{dt} = 0$

The Hamiltonian is a constant of motion, i.e. energy is conserved.

Quantization of the LC oscillator

The previous Hamiltonian becomes



R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-Meißner-Institut (2001 - 2020)