
MEC-E8003 Beam, plate and shell models, examples 5

1.  Derive the components of the elastic isotropic Kirchhoff plate constitutive equation for bending.
Consider the Cartesian ( , , )x y n coordinate system and use the definitions :M B 

    and

0 0w   
 . Cartesian coordinate system representation of the elasticity tensor is
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2.   Show that the transverse displacement of the Kirchhoff plate model satisfies the biharmonic
equation 2 2

0 0 nD w b   . Start with the Reissner-Mindlin plate model equations for the bending
mode:
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3. Consider a cantilever Reissner-Mindlin plate strip (long in the
y  direction) loaded by its own weight. Assuming that the
solution is independent of y, determine the first order ordinary
differential equations and the boundary conditions giving

( )xxN N x , ( )xQ Q x , ( )xxM M x , ( )u x , ( )w x  and ( )x
as solutions. Thickness of the plate t , density  , Young’s
modulus E ,  and Poisson’s ratio  are constants.
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4.  Consider a plate strip of the figure loaded by its own
weight. Determine deflection w  and rotation   of the plate
according to the Kirchhoff model. Thickness, and length of
the plate are t  and L , respectively. Density  , Young’s
modulus E , and Poisson’s ratio  are constants. Assume
that stress resultants, displacements, and rotations depend
on x  only (consider a plate of width H ).
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5. Consider the plate strip shown loaded by its own weight.
Thickness, length and width of the plate are t , L , and H,
respectively. Density  , Young’s modulus E , and
Poisson’s ratio  are constants. Find an approximation to
the transverse displacement w  of the plate using series

0a (1 / )( / )w x L x L   (just one term of a series) in which

0a  is an unknown parameter. Use the principle of virtual
work in form 00  aW     and
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6.  A simply supported rectangular plate of size L H
and thickness t  is loaded by its own weight. Material
parameters E,  , and ρ are constants. Determine the
displacement at the center point with

0a ( / )(1 / )(1 / )w xy LH x L y H    (just one term of
a series) in which 0a  is an unknown parameter. Use
the principle of virtual work in form 0W 

0a  . Assume that the solution does not
explicitly depend on  . Virtual work expression
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7.  A simply supported rectangular plate of size L H  and
thickness t  is loaded by its own weight. Material
parameters E,  , and ρ are constants. Find an
approximation to the transverse displacement by using

0a sin( / )sin( / )w x L y H   (just one term of a series)
in which 0a  is an unknown parameter. Use the principle
of virtual work in form 00  aW     and assume
that the solution does not explicitly depend on  . Virtual
work expression of the bending mode
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8.   Find the representation 0 0( ) 0nM b     


of the Kirchhoff plate bending equation in terms of
components ,rrM rM   and M of the polar coordinate system. Assume rotation symmetry so
that the moment components depend on r  only.
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9.  Derive the components of the elastic isotropic Kirchhoff plate constitutive equation for bending
in polar ( , , )r n coordinate system. Use definitions :M B 

   , 0 0w   
  and assume

rotation symmetry / 0w    . The polar coordinate system representation of the bending
elasticity tensor of plate model is
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10.  A simply supported circular plate of radius R  is loaded by its own
weight as shown in the figure. Determine the displacement of the plate
at the midpoint by using the Kirchhoff plate model in the polar
coordinate system. Problem parameters E,  ,   and t are constants.
Assume that the solution depends on the radial coordinate only.
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Derive the components of the elastic isotropic Kirchhoff plate constitutive equations for bending.
Consider the Cartesian ( , , )x y n coordinate system and use the definitions :M B 

    and

0 0w   
 . Cartesian coordinate system representation of the elasticity tensor is

T

1
2

1 0
1 0

0 0 (1 )

ii ii
B jj D jj

ij ji ij ji






    
         
          

 
  

   
 in which

3

2)12(1
EtD


 .

Solution
The (mid-plane) gradient operator of the Cartesian ( , , )x y n coordinate system coordinate system
gives
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By using the constitutive equation and elasticity tensor
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Therefore, the Cartesian coordinate system components of the bending moment constitutive equation
are
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Show that the vertical displacement ( , )w x y of the Kirchhoff plate model satisfies the biharmonic
equation 2 2

0 0 nD w b   . Start with the Reissner-Mindlin plate model equations for the bending mode:
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Solution
Kirchhoff constraints are first used to write the constitutive equations in terms of the transverse
displacement
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In the Kirchhoff model, shear forces xQ  and yQ  are in the role of constraint forces to be solved from
the moment equations. Eliminating the shear forces from the equilibrium equation in the transverse
direction by using the moment equations gives
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The biharmonic equation for the transverse displacement follows from the equilibrium equation
above, when the constitutive equations for the moments are substituted there
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The last invariant form holds also, e.g., in the polar coordinate system.



Consider a cantilever Reissner-Mindlin plate strip (long in the y 
direction) loaded by its own weight. Assuming that the solution is
independent of y, determine the first order ordinary differential
equations and the boundary conditions giving ( )xxN N x ,

( )xQ Q x , ( )xxM M x , ( )u x , ( )w x  and ( )x  as solutions.
Thickness of the plate t , density  , Young’s modulus E ,  and
Poisson’s ratio  are constants.

Solution
Equilibrium and constitutive equations of the thin-slab and bending modes are
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Derivatives with respect to y  vanish, / 2xb gt , and / 2nb gt  . The Reissner-Mindlin
plate equations of the planar problem simplify to
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Boundary conditions can be deduced from the figure:

0u  , 0w  , 0  at 0x  , 

0N  , 0M  , 0Q  at x L . 

Solution to equations can be obtained by considering the equilibrium equations and the boundary
conditions at the free end first. After that, solutions to the displacement components follow from the
constitutive equations and the boundary conditions at the clamped edge.
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Consider a plate strip of the figure loaded by its own weight.
Determine deflection w  and rotation   of the plate
according to the Kirchhoff model. Thickness, and length of
the plate are t  and L , respectively. Density  , Young’s
modulus E , and Poisson’s ratio  are constants. Assume
that stress-resultants, displacements, and rotations depend
on x  only (consider a plate of width H ).

Solution
Assuming that all derivatives with respect to y  vanish, the plate equations of the formulae collection
(just the equations associated with the bending modes) are
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Taking into account only the equations needed and using notation xxM M  and xQ Q
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   in (0, )L .

Boundary conditions specify either displacement or shear force and bending moment or rotation.
From the figure

0M    and 0w    on {0, }L .

After elimination of the shear force and the bending moment, the boundary value problem for the
deflection w   becomes  (the equation system can also be solved one equation at a time in its original
form)
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Generic solution to the differential equation can be obtained by repeated integrations
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Boundary conditions imply that (the equations can be solved starting from the first, then using the
already obtained solution in the second etc.)
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Therefore, using the expressions of the coefficient in the displacement solution, expression of the
distributed force nb gt   , and the constraint /dw dx    of the Kirchhoff model
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Consider the plate strip shown loaded by its own weight.
Thickness, length and width of the plate are t , L , and H,
respectively. Density  , Young’s modulus E , and Poisson’s
ratio  are constants. Find an approximation to the transverse
displacement w  of the plate using series 0a (1 / )( / )w x L x L 
(just one term of a series) in which 0a  is an unknown parameter.
Use the principle of virtual work in form 00  aW   
and
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Solution
Principle of virtual work gives a straightforward way to find approximate/series solutions to beam,
plate etc. problem. First, approximation of the “right” form is substituted into the virtual work
expression. The approximation is a sum of terms having multipliers to be determined. Second,
principle of virtual work and the fundamental lemma of variation calculus are applied with respect to
the multipliers. Finite element method, sine series solutions, etc. can be taken just particular cases of
the method. Virtual work expression of the Kirchhoff plate model bending mode
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are substituted there. Approximation to the transverse displacement (notice that the polynomial shape
is known and variation of displacement is through the multiplier)
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When the approximation is substituted there, virtual work expression simplifies to
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Therefore, an approximation to the transverse displacement is given by
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A simply supported rectangular plate of size L H  and
thickness t  is loaded by its own weight. Material parameters
E,  , and ρ are constants. Determine the displacement at the
center point with 0a ( / )(1 / )(1 / )w xy LH x L y H    (just
one term of a series) in which 0a  is an unknown parameter.
Use the principle of virtual work in form 00  aW   
and assume that the solution does not explicitly depend on 
. Virtual work expression of the bending mode
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Solution
As the solution does not depend on the Poisson’s ratio   (additional information), one may consider
D  and   as the two independent material parameters of a linearly elastic material and choose a
convenient value like 1   to simplify the calculations. Then, the virtual work expression simplifies
to
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Approximation to the transverse displacement is chosen to be (the polynomial shape is known and
variation of displacement is through the multiplier)
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When the approximation is substituted there, virtual work expression takes the form
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Principle of virtual work 0W  0a  and the fundamental lemma of variation calculus imply that
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Therefore, approximation to the transverse displacement becomes
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Notice! The double sine series solution with 100 terms in both directions gives in case of the square
plate displacement 40.0041 /nw b L D  at the center point. Displacement given by the one parameter
approximation is 40.0036 /nw b L D .



A simply supported rectangular plate of size L H  and
thickness t  is loaded by its own weight. Material parameters
E,  , and ρ are constants. Find an approximation to
transverse displacement by using

0a sin( / )sin( / )w x L y H   (just one term of a series) in
which 0a  is an unknown parameter. Use the principle of
virtual work in form 00  aW     and assume that the
solution does not explicitly depend on  . Virtual work
expression of the bending mode
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Solution
As the solution does not depend on the Poisson’s ratio   (additional information), one may consider
D  and   as the two independent material parameters of a linearly elastic material and choose a
convenient value like 1   to simplify the calculations. Then, the virtual work expression simplifies
to
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Principle of virtual work gives a straightforward way to find approximate/series solutions to beam,
plate etc. problem. First, approximation of the “right” form is substituted into the virtual work
expression. Second, principle of virtual work and the fundamental lemma of variation calculus are
applied with respect to the multipliers. Approximation to the transverse displacement is chosen to be
(variation of displacement is through the multiplier)
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Orthogonality of sines and cosines and known integrals like
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simplify the calculations with sinusoidal shape functions. When the approximation is substituted
there, virtual work expressions of the internal and external forces take the forms
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Principle of virtual work 0W  0a  and the fundamental lemma of variation calculus imply that
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Therefore, approximation to the transverse displacement becomes
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Derive the component form of the Kirchhoff plate equation (bending)

0 0( ) 0nM b     


in terms of components ,rrM rM   and M of the polar coordinate system. Assume rotation
symmetry so that the moment components depend on r  only.

Solution
Assuming symmetry cM M

 
, the component representations of the planar gradient operator and

moment tensor in the ( , , )r n  coordinate system are
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First divergence of the moment tensor by considering the four terms of M
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Therefore, the divergence of the moment simplifies to

0
1 1[ ( ) ] [ ( ) ]r rr r r

d dM e rM M e rM M
r dr r dr        

   .

Application of the divergence operator again gives
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Finally, combining the terms
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Derive the components of the elastic isotropic Kirchhoff plate constitutive equations for bending in
polar ( , , )r n coordinate system. Use definitions :M B 

   , 0 0w   
  and assume rotation

symmetry / 0w    . The polar coordinate system representation of the bending elasticity tensor of
plate model is
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Solution
The (mid-plane) gradient operator of the polar ( , , )r n coordinate system gives
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By using the constitutive equation and the elasticity tensor
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Therefore, the polar coordinate system components of the bending moment constitutive equation are

2

2
1( )rr

d w dwM D
r drdr

   ,
2

2
1( )d w dwM D
r drdr    ,  and 0r rM M   . 



A simply supported circular plate of radius R  is loaded by its own weight
as shown in the figure. Determine the displacement of the plate at the
midpoint by using the Kirchhoff plate model in the polar coordinate
system. Problem parameters E,  ,   and t are constants. Assume that the
solution depends on the radial coordinate only.

Solution
Under the rotation symmetry assumption, the equilibrium equation and the two constitutive equations
of Kirchhoff plate bending
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Give, after elimination of the moment resultants, the equilibrium equation
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The boundary value problem for a simply supported circular plate of the problem
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  in (0, )R    and 0rrw M   at r R .

Repeated integrations in the equilibrium equation give
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or by redefining the coefficients to get a more compact solution
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The generic solution contains parameters a , b , c , and d  to be determined from the boundary
conditions. As origin belongs to the solution domain and only the distributed load is acting on the

g

R



plate, derivatives should be bounded at the origin which implies that 0c d  . Boundary condition
on the outer edge
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Displacement at the center point when nb gt 
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