Problem 1: Charge phase relation

At $T=0$ and $V=0$, charge can only flow through cents of Cooper pairs. We want to describe the behavior of junction in terms of number of cooper pairs.

Define \hat{N} which represents number of coper pain on side of ter jicenction.
$\hat{N}|n\rangle=n|n\rangle \rightarrow \hat{N}$ tels you neember of cooper pair on one side of junction.

Phave is another quantity that defines a superconductors. We want to relate there

$$
\left.\begin{array}{l}
|\varphi\rangle=\sum_{n=-\infty}^{\infty} e^{i n \varphi}|n\rangle \\
\text { between the basis, } \\
|n\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi e^{-i n \varphi}|\varphi\rangle
\end{array}\right] \begin{aligned}
& \text { Fourier cikz relation } \\
& \text { just lire } \hat{x}-\hat{p} .
\end{aligned}
$$

(a) $|n\rangle=\frac{1}{2 \pi} \int_{0}^{2 *} d \varphi e^{-i n \varphi} \sum_{m=-\infty}^{\infty} e^{i m \varphi}|m\rangle$

When evaluating this, use kronecker delta relation

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} d x e^{-i\left(x-x^{\prime}\right) k}=\delta x x^{\prime}
$$

(b) $\left.\langle\varphi| \varphi\left\rangle=\sum_{n=-\infty}^{\infty} e^{-i n \varphi}\langle n| \sum_{m=-\infty}^{\infty} e^{i m \varphi^{\prime}}\right| m\right\rangle$

For charge states, orthogonality ian poses $\langle n \mid m\rangle=\delta_{n m}$

Recognize discrete Dirac delta function

$$
\delta\left(\varphi-\varphi^{\prime}\right)=\frac{1}{2 \pi} \sum_{n} e^{-i n\left(\varphi-\varphi^{\prime}\right)}
$$

Problem 2: Exponent of a phave operator

$$
e^{i \hat{\varphi}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi^{\prime} e^{i} \varphi^{\prime}\left|\varphi^{\prime}\right\rangle\left\langle\varphi^{\prime}\right|
$$

(a) Evaluate $e^{i \hat{\varphi}}|\varphi\rangle$

$$
\Rightarrow e^{i \varphi}|\varphi\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi^{\prime} e^{i \varphi^{\prime}}\left|\varphi^{\prime}\right\rangle\left\langle\varphi^{\prime} \mid \varphi\right\rangle
$$

Recognize $\left\langle\varphi \mid \varphi^{\prime}\right\rangle$ from Problem \perp (Dirac delta)
(6) $e^{i \hat{\varphi}}|n\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi^{r} e^{i} \varphi^{\prime}\left|\varphi^{\prime}\right\rangle\left\langle\varphi^{\prime} \mid n\right\rangle$

Use orthogonality $\delta \mathrm{mm}$ and configure the expresicin as in exp (2) of problem 1
(c) $e^{i \hat{\varphi}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi^{\prime} e^{i \varphi^{\prime}} \sum_{m=-\infty}^{\infty} e^{i m \varphi^{\prime}}|m\rangle \sum_{n=-\infty}^{\infty} e^{-i n \varphi^{\prime}}\langle n|=\sum_{n}|n-1\rangle\langle n|$

1 use the definition of $e^{i \hat{\varphi}}$
2° Ore definition of $\left|\varphi^{\prime}\right\rangle$ and $\left\langle\varphi^{\prime}\right|$
3° convince the exponential
4 Form Kronecker delta form
5 Apply kronecker delta to get ind of one sunn.

$$
e^{-i \hat{\varphi}}=\sum_{n}|n\rangle\langle n-1|
$$

$\&$ Final remelt?

Problem 3: Josephson Junction

$$
H_{J}=-\frac{E_{J}}{2} \sum_{n}|n\rangle\langle n+1|+|n+1\rangle\langle n|
$$

(a) $H_{J}|n\rangle=-\frac{E_{J}}{2} \sum_{m}|m\rangle\langle m+1 \mid n\rangle+|m+1\rangle\langle m \mid n\rangle$
\# Use orctojamility with dirac delta.
(b) $H_{J}=-\frac{E_{J}}{2} \sum_{n}|n\rangle\langle n+1\rangle+|n+1\rangle\langle n|$
\# Expren intervy of $\exp (\pm i \hat{\phi})$. Then, use $\frac{e^{i \hat{y}}+e^{-i \varphi}}{2}=\cos \hat{\phi}$

Problem 4:

$$
L=\frac{1}{2} m \dot{x}^{2}+e \dot{x} \cdot A(x, t)-e \varphi(x)
$$

generalized co-ordenate: $(\bar{x}, \dot{x})=(x, y, z, \dot{x}, \dot{y}, \dot{z})$
(a) Eular-Langrage equation [equation of notion] Use $\frac{d}{d x}(\bar{a} \cdot \bar{b})=\frac{d \bar{a}}{d x} \cdot \bar{b}+\bar{a} \cdot \frac{d b}{d x}$

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=0 \\
& \left.\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}=0 \quad\left[\begin{array}{l}
L=\frac{1}{2} m\left(U_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)+\left(A_{x}(\bar{x}, t), A_{y}\left(\bar{x}_{x}+1\right), A_{z}(\dot{x}, i\right.
\end{array}\right] e\left(U_{x} A_{x}+u_{y} A_{y}+v_{t}+A_{z}\right)\right] \\
& -e \varphi(x)]
\end{aligned}
$$

1 Conilder x-coordinate girt.

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial v_{x}}\right)-\frac{\partial c}{\partial x}=0
$$

$$
\frac{\dot{x}}{\prime}=\left(v_{x}, v_{y}, v_{z}\right)
$$

$\bar{\psi}$ is a $3 d$ vector (x, y, z)
$\dot{\bar{X}}$ is a derivative of che position x, y.

Fist evaluate.
$\frac{\partial L}{\partial v_{x}}=\#$ only us term survives and $\varphi(\bar{x})$ does not depend on u_{x}
You should get something like this,

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial v_{x}}\right)=\frac{d}{d t}(m \dot{x})+e \cdot \frac{d}{d t} A(\bar{r}, t) H \text { USe } \frac{d}{d t} \bar{A}\left(r_{r}, t\right)=\frac{\partial A}{\partial x}+\frac{\partial A}{\partial y}+\frac{\partial A}{\partial t} \leftarrow \frac{\partial A}{\partial t}
$$

Then evaluate. \quad Product rule is $\frac{\partial u_{i}}{\partial i}=0 . \quad i \in\{x, y, z\}$

$$
\frac{\partial L}{\partial x}=-e \frac{\partial \varphi}{\partial x}+e \cdot \frac{\partial}{\partial x}\left(v_{x} A_{x}(r, t)+v_{y} A_{y}(r, f)+v_{z} A_{z}(\tilde{r}, t)\right)
$$

Use $\bar{E}=-\left(\frac{\partial \bar{A}}{\partial t}+\nabla \varphi\right)$ and $\bar{B}=\overline{\bar{A}} \times \bar{A}$ to get $\bar{U} \times \bar{\nabla} \times \bar{A}=\bar{V} \times \bar{B}$. to recognise the rexelting term for x. Sravicar wettrod can be used to fend y, and z component.
(b) $\bar{P}=\frac{\partial L}{\partial \dot{x}} \quad$ It Evaluate the derivative
cc) $H=\dot{x} p-L$ Use result LLb) in here
\# expires \dot{x} in terns of \bar{P} from $4(B)$.
Problem 5
(a) Use the definition: $\ln \rangle=\frac{\left(\hat{a}^{+}\right)^{n}}{\sqrt{n!}}|0\rangle$ and use the fact

$$
|n+1\rangle=\frac{\left(a^{+}\right)^{n+1}}{\sqrt{(n+1)!}}|0\rangle
$$

(b) Use the complete Saris: $\hat{I}=\sum_{n}|n\rangle\langle n|$ and the fact that $\hat{a}^{\dagger}=\hat{a}^{+} \hat{I}$ and $\hat{a}=\hat{a} I$. Use core definition of $|n\rangle$.
(c) Write docun the matrix (see lecture motes) and compete the terms.

Problenn 6
(a) Usc $|z\rangle=I_{n}|z\rangle=\sum_{n=0}^{\infty} c_{n}|n\rangle \quad$ with completeven $I_{n}=\sum_{n=0}|n\rangle(n \mid$.

- Oce the definition of $\left.\ln S=\frac{\left(\hat{a}^{t}\right)^{n}}{\sqrt{n!}} 10\right\rangle$. Rementor to take the conjupate for $\langle n|$.
$-\hat{a}|z\rangle=|z\rangle$ (given)
(b) Use $(z \mid z)=1$
- Plug $\langle z|$, and $\mid z)$ from $6(a)$. Remember to conjupate $(z \mid$.
- Recognice taylor expernion

$$
e^{x}-\sum_{n} \frac{x^{n}}{n!}
$$

(c) Find $p(n)=|\langle n \mid z\rangle|^{2}$

- Use |z] from 6(9) with propor nonalization comfant foeend in 6(b).
(d) $i^{0}\langle z| \hat{n}|z\rangle=\langle z| \hat{a}^{+} \hat{a}|z\rangle \quad$ use $\hat{n}=\hat{a}^{+} \hat{a}$.
- $\hat{a}|z|=z|z\rangle$ given
- Remenber $(\hat{a} \mid z)^{+}=\langle z| a^{+}$.
$2^{0}\langle z| \hat{n}^{2}|z\rangle=\langle z| \hat{n} \hat{n}|z\rangle=\langle z| \hat{a}+\hat{a} \hat{a}+\hat{a}|z\rangle$
- Ure $\hat{a} \hat{a}^{+}=1+\hat{a}^{+} \hat{a}$. Evaluate $(\Delta n)^{2}$.

