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« Tritium economy in a fusion power plant
— Tritium generation and inventory cycle

— Blanket technologies

 Radiation safety

- Tritium and neutrons
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Deuterium-tritium reactions are favored since it has

the highest reaction rate at the lowest temperature

¢ AED-T—>4He =17.6 MeV

 Energy in neutrons (~80%)
for energy production (e.g.,
heating of blanket, also
tritium production)

« 4He (fast a particles) for
Internal, self-sustained
‘ 4He + 3.5 MeV heating of the fusion

Process
n+ 14.1 MeV
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Deuterium-tritium reactions are favored since it has

the highest reaction rate at the lowest temperature

« Reaction rates have a
maximum, depending
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A wide range of reactants may be used besides

hydrogen isotopes
D+T 4He (3.5 MeV) + n (14.1 MeV)

D+D 50%: T (1.01 MeV) + p (3.02 MeV)

50%: 3He (0.82 MeV) + n (2.45 MeV)

D+3He “He (3.6 MeV) + p (14.7 MeV)
T+T 4He + 2n + 11.3 MeV
SHe+3He “He + 2p

SHe+T 51%:4He +p+n+12.1 MeV

43%: “He (4.8 MeV) + D (9.5 MeV)

6%: 4He (0.5 MeV) + n (1.9 MeV) + p (11.9 MeV)

D+6Li 2 “He + 22.4 MeV
SHe+6Li 24He +p + 16.9 MeV
p+iB 34He (1.7 MeV) + 8.7 MeV

Kikuchi et al., Fusion Physics (2012) www-pub.iaea.org/MTCD/Publications/PDF/Pub1562 web.pdf

A_ _ Mathias Groth - Fusion Technology PHYS-E0463 “Safety & environment/ tritium cycle”, Aalto University 5



Tritium is a radioactive isotope of hydrogen with a

half-life of 12.3 years

« T — He+e (B)+ve(antineutrino)
 No natural tritium available:
- trace amounts due cosmic rays (g to kg per year)

- afew dozen kgs dissolved in oceans due to atmospheric
nuclear testing between 1945-80

- few grams in existing nuclear warheads

*Willms LANL Report LA-UR-05-1711 (2004)
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Tritium Is currently produced in Canadian-type

CANDU reactors by neutron absorption in deuterium

JET used ~20q, ITER
will use ~ 1kg / yr

1 GW fusion power ~

« 38 CANDU reactors in service, 22 in Canada
 Production: 130g / yr ~ 2kg total per year
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Muyi Ni et al., “Tritium Supply Assessment for ITER and DEMOnstration Power Plant,” Fusion Engineering and Design 88, no. 9-10 (October 2013):

2422-26,

https://doi.org/10.1016/j.fusengdes.2013.05.043.

Mathias Groth - Fusion Technology PHYS-E0463 “Safety & environment/ tritium cycle”, Aalto University



In fusion reactors tritium is planned to be bred in-situ

by using 14.1 MeV fusion neutrons

www.euro-fusion.org: picture KIT-ITeP-TLK

Deuterium / Tritium reaction (plasma) Tritium production (Breeding Blanket)
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* n+6Li — 4He (2.05 MeV) + 3H (2.75 MeV) (exothermic reaction)
* nNn+7Li—>4He +3H +n (endothermic react.: -2.5 MeV)

« SLjabundanceis 7.5% in natural Li
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http://www.euro-fusion.org/

Neutron yield must be > 1 in steady state because of

Imperfect capture

www.euro-fusion.org: picture KIT-ITeP-TLK

Deuterium / Tritium reaction (plasma) Tritium production (Breeding Blanket)
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 Neutron multiplier elements: large cross section, high melting
point, low activation, availability

« Beryllium (Be) in compound and lead (Pb) in alloy or liquid form
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The tritium fuel cycle includes all elements of start-up

Inventory, breeding and recycling plant

Abdou et al., Fusion Eng. Design 2015
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The required tritium breeding ratio must exceed unity

by a margin to compensate of a range of losses

e 1 i SR 35 O A TR R Abdou et al., Fusion Eng. Design 2015
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 Radioactive decay (5.47% per year)
 Reserve storage inventory for continuous operation

« Supply start-up inventory for other reactors
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The design of tritium breeding blankets is a

compromise between cooling and tritium permeation

Rampal et al., Fusion Eng. Design 2010

EU design of helium-
cooled lithium-lead
tritium breeding module

poloidal
|a:
=
o

Tritium Breeder
Li;TiO3 (< 2 mm)

Japanese design solid breeder
blanket cooled by supercritical water

First Wall
(RAFS, F82H)

Enoeda et al., Nucl. Fusion 2003
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ITER will test different blanket technologies = to be

used for DEMO (demonstrate tritium cycle)

Iter.org

Six experimental Test
ﬁ Blanket Modules in ITER
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Tritium release to the environment Is one incentive to

keep the plant tritium inventory as low as possible

* Initial cost of tritium and material embrittlement of structures are
the other two primary reasons

 Radiological impact on humans, in particular through tritiated
water (T,0, THO, TDO), is significant

- Annual personal dose of the order 1-2 mSv (natural
background, medical x-rays, inhalation of radioactive mater.)

- Dose from ingestion of 1 mg of tritium ~ 7 Sv

« Tritium is may leave reactor through vacuum pumping system,
coolant system, blanket tritium removal system, material
permeation, outgassing from removed components = stringent
containment: estimated tritium release to air at site boundary approx.
50 uSv / year
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Tritium can be removed from vacuum system by

cryogenic distillation or diffusion through membranes

PRIMARY COOLANT LOOP BARRIER COOLANT LOOP e Removal from
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exchanger generator blanket and coolant
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Radioisotopes are generated in any areas of

sighificant neutron fluxes

« Activation of surrounding materials (e.g., vanadium) =
R&D on reduced-activation and martensitic steel

* In (potential) molten salt blankets stored heat,
generation of chemical toxins (e.g., LiF), and
radioisotopes (e.g., 18F, 3H)

 Plan for structural radioactivity to decay sufficiently within
100 years = storage of materials onsite, reprocessing of
them afterward

« Decommissioning, disassembly and disposition of plant
and its radioactive materials = entombment and/or
removal and cleanup of site (like any other power plant)
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Summary

 Fusion reactors after ITER need adequate in-situ tritium
breeding ratios (of > 1.15 T per fusion neutron = beryllium
or lead neutron multiplier)

 Main hazard of fusion power are tritium (release) and
radioactive structures, including dust

« Extensive safety analyses of fusion plant operation and
potential accidents were performed = plants are designed
for public not needed to be evacuated in case of accident

« Fusion facilities are nuclear facilities = nuclear regulations of
host countries (and IAEA) apply
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