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Course Content: /leaming from breaking things

e Load

- loadframes, actuators, and grips
- quasi-static, dynamic, and cyclic loading
e Measure

- measurement of force, displacement,
and strain

- di%ital image correlation and _
other full-field measurement techniques

« Analyse

- selected special challenges in mechanical
testing (ask for yours!)

- introduction to inverse problem
methodologies in experimental
mechanics
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Nature of light

electromagnetic radiation in the (limited) frequency band that
the human eye is sensitive to

eV 1kf'v L gsv ~ photon energy E=hc/A
frequency v=c/A L AtHz - AeHz o AMHz ulkkl,-iz‘ . e
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visible light
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Maxwell’s laws

Coupled evolution of E and B in
time and space

Reduces to a wave equation

- 1n vacuum or in homogeneous linear
materials

evolution of electromagnetic fields
is equivalent to superposition of
electromagnetic waves

— “radiation”
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Polarization

Electromagnetism only allows
transverse waves

- two independent directions of
electric and magnetic fields E and B
with same propagation direction

- can be expressed in different vector
basis, e.g. circular polariztion
Affects interaction with
birefringent materials and at
oblique interfaces

- various operating principles for
polarization filters
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coherent light

Wave nature of light manifests itself through phenomena like
interference and diffraction

Field strength is vector-additive

Aalto University
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incoherent light

= superposition of a large number of electromagnetic waves with
stochastically independent phase

— classical geometric optics:
« Beams or rays are the fundamental carrier of light.
« Light intensity (RMS field strength) is additive.

The light field or plenoptic function fully determines the state of incoherent
hght It gives light intensity as a function of:
Location
- Direction
- Wavelength
- Time

Aalto University
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History of the light field concept

« 1846: Michael Faraday was the first to propose that light should be
interpreted as a field, much like the magnetic fields on which he had
been working for several years.

« 1874: James Clerk Maxwell provided formalisation of this concept.

« 1936: The phrase light field was coined by Arun Gershun in a classic
paper on the radiometric properties of light in three-dimensional space

- the amount of light arriving at points in space varies smoothly from
place to place (except at well-defined boundaries like surfaces or
shadows) and could therefore be characterized using calculus and
analytic geometry

« The phrase has been redefined by researchers in computer graphics to
mean something slightly different.
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Applications of light field concept

« with advent of computers, color displays, and digital sensors, we can
record, manipulate, and display light fields

 In computer graphics, some selected applications of light fields are:
- Illumination engineering

Light field rendering

Multiperspective panoramas

Synthetic aperture photography

3D display

Aalto University
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Plenoptic function

 In geometrical optics, rays are the fundamental light carrier.

« The amount of light traveling along a ray is radiance 5'
- denoted by L
- measured in watts (W) per steradian (sr) per meter squared (m?). ~— G“; 0 -

« The radiance along all such rays in a region of 3D space illuminated by
an arrangement of lights is called the plenoptic function.

« Since rays in space can be parameterized by
coordinates, X, y, and z and angles 0 and «,
along with wavelength dependence and the
time variable it is a 7-dimensional function.

L(x,y,2,9,0)
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Interaction of light with matter

index of refraction n = /&,
- Snell’s law: n, sinf; = n, sin 6,
absorptionn =n + ik

- Beer-Lambert law: I(x) = e *™ %

scattering
- from inhomogeneities

reflection and refraction
- at interfaces
- specular reflectance and diffuse reflectance at rough interfaces

Aalto University
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camera’s Arawler Fessbation of Prvlole Comara
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camera obscura

« “pinhole camera”
« relation to lightfield




Lenses




Lens equation
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Depth of focus




Depth of focus
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Modulation transfer function

« Attenuation of higher spatial frequencies in the image

Object Represemahve Lens/ Lens Assenbly

White _

Image

White
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Black
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Lens aberrations
— Nz
2

chromatic aberration

spherical aberration

e |
=

coma

Single-slit diffraction pattern

Intensity




Lens distortions

“barrel” or “pincusion”
« Magnification depends on
location in the image

« for axisymmetric setups only the
radial distance to the optical axis
is distorted

Strain is distorted more than
displacement
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characterizing distortion by inverse

methods

adjustable parameters related

to setup

 imposed rigid body motion

 pinhole camera model with
radial distortion

e camera positions

very similar to normal camera

calibration

e no real difficulties to invert
distortion

Horizontal displacements Vertical displacements
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Stereo imaging
relation between images from different locations

point in one image is view along a line emanating from the camera,
called the epipolar line




Stereo calibration

bundle adjustment

« parameter optimisation to
minimize projection error
between images of calibration
object

« intrinsic parameters of each
camera

« extrinsic parameters of relative
camera positions




School of Engineering

Digital Image
Correlation




Digital Image Correlation
principle

Find displacement fields that map
sequence of images of un-deformed material onto
observed sequence of images of deformed material
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Image Requirements
feasibility

any image in digital format

 data must be converted to pixel array

« optical, electron, scanning probe, tomography...
predictable image of deformed object

o distinguishable from original

« uniform (or known) imaging geometry and illumination
e no new or missing features

Aalto University
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Image Requirements
quality

large pixel count, low noise

« maximize potential information content

small feature spacing

« allow small correlation window for best spatial resolution

high contrast, irregular, well-resolved features
« give significant changes in correlation for best accuracy and precision

Aalto University
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Digital Image Correlation

Implementation

digitally deform the image of the deformed state to match the image of
the undeformed state

numerical optimization of a cost function that quantifies how closely
two images match

Aalto University
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Cost Functions
for quantifying when digital images are equal

scalar number that increases when images are more different

« e.g., sum of squared or absolute differences

« optionally normalize intensity and contrast

« choice is irrelevant when images are nearly the same

sum of squared differences

« convenient for digital images and software implementation
correlation

« inverse Fourier transform of magnitude squared of Fourier transform
 convenient for theoretical analysis

Aalto University
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Mathematical formulation
DIC as inverse problem
optical flow constraint dz oI

VI - =0

« image intensity “moves with object” at o

Lucas-Kanade
 approximate flow in a neighborhood of each point of interest

e “subset-based” A, ) SO I X 0ulody o _1 S0, 10(I — I)
[ } [E 0z1o0ylo  3°(0ylo)? } [E Oy Io(I —Io)}

Horn & Schunck

« global minimization arg min / / — Ip|z_ ‘+a? ||V27~_’:||
()
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Mathematical formulation
DIC as inverse problem

Local DIC
« solve optimisation separately at each location (subset)
« many small optimization problems

Global DIC

« parametrize entire displacement field
- e.g. using finite element shape functions

« much larger optimization problem

Integrated DIC
o calculate displacement field from a physics-based model
 optimize model parameters so its predictions agree with images

Aalto University
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interpolation in DIC

grayscale imaging is source of sub-
pixel resolution in DIC

interpolation needed to apply sub-
pixel displacements

error analysis typically assumes

band-limited continuous-tone

images

« interpolation error calculated from
frequency response

 noise bias towards points with smaller
RMS interpolation coefficient

« predicts that best patterns have high
contrast, thus not band-limited
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0.05

DIC error analysis
interpolation error =5 I
« relative to “sinc” interpolation
which is exact for band-limited
signals N
noise-induced bias I
good patterns have high contrast
 better contrast reduces both / SN SN (k) - VT(()o)]
variance and systematic errors E(w) = uo - SN SV Te(E)o))
« highest-contrast images are not N2g2
band-limited! e S o [VT((&)o))
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Optimally sharp band-limited pattern

autocorrelation is i_nverse Fourier
transform of magnitude squared
of Fourier transform

« maximum at zero displacement
equals sum of squares of Fourier
coefficients

 phase identically zero

- normalized peak can only be
blunted by low-frequency content

maximum sharpness when only
highest resolvable frequency
content contributes

 low information content

o Hankel transfqrm of delta function
1s Bessel function

reciprocal pixels \
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8 i T




Experimental results
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