
MEC-E6007
Mechanical Testing 
of Materials
Sven Bossuyt
March, 2023



Course Content: learning from breaking things

• Load
- loadframes, actuators, and grips
- quasi-static, dynamic, and cyclic loading

• Measure
- measurement of force, displacement, 

and strain
- digital image correlation and 

other full-field measurement techniques
• Analyse
- selected special challenges in mechanical 

testing (ask for yours!)
- introduction to inverse problem 

methodologies in experimental 
mechanics



Optical Imaging



Nature of light

electromagnetic radiation in the (limited) frequency band that 
the human eye is sensitive to



Maxwell’s laws

Coupled evolution of E and B in 
time and space
Reduces to a wave equation
- in vacuum or in homogeneous linear 

materials
evolution of electromagnetic fields 
is equivalent to superposition of 
electromagnetic waves 
→ “radiation”



Polarization

Electromagnetism only allows 
transverse waves
- two independent directions of 

electric and magnetic fields E and B
with same propagation direction

- can be expressed in different vector
basis, e.g. circular polariztion

Affects interaction with 
birefringent materials and at 
oblique interfaces
- various operating principles for 

polarization filters



coherent light

Wave nature of light manifests itself through phenomena like 
interference and diffraction 
Field strength is vector-additive



incoherent light

= superposition of a large number of electromagnetic waves with 
stochastically independent phase
→ classical geometric optics: 
• Beams or rays are the fundamental carrier of light.
• Light intensity (RMS field strength) is additive.

The light field or plenoptic function fully determines the state of incoherent 
light. It gives light intensity as a function of:
- Location
- Direction
- Wavelength
- Time



History of the light field concept

• 1846: Michael Faraday was the first to propose  that light should be 
interpreted as a field, much like the magnetic fields on which he had 
been working for several years.

• 1874: James Clerk Maxwell provided formalisation of this concept.
• 1936: The phrase light field was coined by Arun Gershun in a classic 

paper on the radiometric properties of light in three-dimensional space 
- the amount of light arriving at points in space varies smoothly from 

place to place (except at well-defined boundaries like surfaces or 
shadows) and could therefore be characterized using calculus and 
analytic geometry

• The phrase has been redefined by researchers in computer graphics to 
mean something slightly different.



Applications of light field concept

• with advent of computers, color displays, and digital sensors, we can 
record, manipulate, and display light fields

• In computer graphics, some selected applications of light fields are:
- Illumination engineering
- Light field rendering
- Multiperspective panoramas
- Synthetic aperture photography
- 3D display



Plenoptic function

• In geometrical optics, rays are the fundamental light carrier. 
• The amount of light traveling along a ray is radiance
- denoted by L 
- measured in watts (W) per steradian (sr) per meter squared (m2). 

• The radiance along all such rays in a region of 3D space illuminated by 
an arrangement of lights is called the plenoptic function.

• Since rays in space can be parameterized by 
coordinates, x, y, and z and angles θ and φ,
along with wavelength dependence and the
time variable it is a 7-dimensional function. 



Interaction of light with matter

index of refraction 𝑛 = 𝜀!𝜇!
- Snell’s law: 𝑛! sin 𝜃! = 𝑛" sin 𝜃"

absorpti𝑜𝑛 𝑛 = 𝑛 + 𝑖𝜅
- Beer-Lambert law: 𝐼 𝑥 = 𝐼#𝑒

$%&!"#

scattering
- from inhomogeneities

reflection and refraction 
- at interfaces
- specular reflectance and diffuse reflectance at rough interfaces



camera’s

camera obscura
• “pinhole camera”
• relation to lightfield



Lenses



Lens equation



Depth of focus



Depth of focus



Depth of focus



Depth of focus

https://commons.wikimedia.org/wiki/File:DOF-ShallowDepthofField.jpg



Modulation transfer function

• Attenuation of higher spatial frequencies in the image

https://www.edmundoptics.eu/knowledge-center/application-notes/optics/introduction-to-modulation-transfer-function/



Lens aberrations



Lens distortions

“barrel” or “pincusion”
• Magnification depends on 

location in the image
• for axisymmetric setups only the 

radial distance to the optical axis 
is distorted

Strain is distorted more than 
displacement



characterizing distortion by inverse 
methods
adjustable parameters related 
to setup
• imposed rigid body motion
• pinhole camera model with 

radial distortion
• camera positions
very similar to normal camera 
calibration
• no real difficulties to invert 

distortion



Stereo imaging
relation between images from different locations

point in one image is view along a line emanating from the camera, 
called the epipolar line



Stereo calibration

bundle adjustment
• parameter optimisation to 

minimize projection error 
between images of calibration 
object

• intrinsic parameters of each 
camera

• extrinsic parameters of relative 
camera positions



Digital Image 
Correlation



Digital Image Correlation
principle

Find displacement fields that map 
sequence of images of un-deformed material onto 
observed sequence of images of deformed material



Image Requirements
for feasibility of digital image correlation

any image in digital format
• data must be converted to pixel array
• optical, electron, scanning probe, tomography…
predictable image of deformed object 
• distinguishable from original
• uniform (or known) imaging geometry and illumination
• no new or missing features



Image Requirements
for quality of digital image correlation results

large pixel count, low noise
• maximize potential information content
small feature spacing
• allow small correlation window for best spatial resolution
high contrast, irregular, well-resolved features
• give significant changes in correlation for best accuracy and precision



Digital Image Correlation
implementation

digitally deform the image of the deformed state to match the image of 
the undeformed state
numerical optimization of a cost function that quantifies how closely 
two images match



Cost Functions
for quantifying when digital images are equal
scalar number that increases when images are more different
• e.g., sum of squared or absolute differences
• optionally normalize intensity and contrast
• choice is irrelevant when images are nearly the same
sum of squared differences
• convenient for digital images and software implementation
correlation
• inverse Fourier transform of magnitude squared of Fourier transform
• convenient for theoretical analysis



Mathematical formulation 
DIC as inverse problem
optical flow constraint
• image intensity “moves with object”
Lucas-Kanade
• approximate flow in a neighborhood of each point of interest
• “subset-based”

Horn & Schunck
• global minimization



Mathematical formulation 
DIC as inverse problem
Local DIC
• solve optimisation separately at each location (subset)
• many small optimization problems
Global DIC
• parametrize entire displacement field
- e.g. using finite element shape functions

• much larger optimization problem
Integrated DIC
• calculate displacement field from a physics-based model
• optimize model parameters so its predictions agree with images



interpolation in DIC
grayscale imaging is source of sub-
pixel resolution in DIC
interpolation needed to apply sub-
pixel displacements
error analysis typically assumes 
band-limited continuous-tone 
images
• interpolation error calculated from 

frequency response
• noise bias towards points with smaller 

RMS interpolation coefficient
• predicts that best patterns have high 

contrast, thus not band-limited



DIC error analysis

interpolation error
• relative to “sinc” interpolation 

which is exact for band-limited 
signals

noise-induced bias
good patterns have high contrast
• better contrast reduces both 

variance and systematic errors
• highest-contrast images are not 

band-limited!

Y. Q. Wang, M. A. Sutton, H. A. Bruck, and H. W. Schreier: Strain, 45,160–178 (2009)

variance of measured motion when using cubic

interpolation are as follows:
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Remarks

As shown in Equation (7), if exact reconstruction of a

noisy intensity pattern is assumed, then the expec-

tation of 1D translation is unbiased. Furthermore, the

motion variance is a linear function of intensity

pattern variability and inversely proportional to the

sum of the squares of intensity gradients in the

reference subset.

If interpolation is used to reconstruct the translated

pattern, the results for variance are similar to those for

exact reconstruction. However, when interpolation is

used, Equations (14) and (18) clearly show that the

measurements are biased. Defining the displacement

bias, Du ¼ E(u¢) ) u0, Equations (14) and (18) indicate

that Du is the sum of two bias terms. The first term, DuI,

is designated interpolation bias and is due solely to the

use of intensity interpolation. The second term, Dur, is

the noise-induced bias and is due to a combination of

Gaussian intensity pattern noise and interpolation.

One-Dimensional Strain Estimation
by Pattern Matching

For 1D strain in the x direction, and assuming con-

stant applied strain, the initial position xij has the

deformed position [xi + p0 + p1 Æ xi yj]
T after strain has

occurred, and defined the intensity value at this

deformed location is T((nij)0). Letting the measured

position in the deformed pattern be T(nij), where

nij ¼ ½xi þ p00 þ p01 ' xi yj(T the noiseless intensity

value at this position can be written,

TðnijÞ ¼ Tðxi þ p00 þ p01 ' xi; yjÞ ¼ Tðxi þ ðp0 þ p0eÞ
þ ðp1 þ p1eÞ ' xi; yjÞ (19)

where p0e ¼ p00 $ p0 and p1e ¼ p01 $ p1. Here, p00 and

p01 denote the estimated displacement and strain after

image matching respectively. Denoting the noisy

intensity values in the reference image that are

exactly reconstructed as !IðxijÞ, and the corresponding

deformed pattern after strain by !TðnijÞ, the least

squares function in Equation (1) is written as:
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!TðnijÞ is the intensity in the deformed image with

white noise and !IðxijÞ is the intensity in the original

image with white noise. Minimising Equation (20)

with respect to p0e and p1e, the expression for the two

parameters is determined, so that expectations and

variances of p0e and p1e are obtained, and then

calculate expectations and variances of two estimated

parameters, p00 and p01. For the case where no inter-

polation is performed, and the noisy patterns are

reconstructed exactly, error propagation analysis

shows that both parameter estimates are unbiased,

with Eðp00Þ ¼ p0 and Eðp01Þ ¼ p1. As the variance

expressions for both parameters can be shown to be

similar as given for linear interpolation, just replace

!Tx((nij)0) by !Ix(xij)/(1 + p1) for no interpolation

case because undeformed pattern is stretched by

(1 + p1), details for the variance derivation are

provided in the following section.

Linear interpolation of noisy, strained pattern

By the definition of 1D linear interpolation in

Equation (9), the noiseless, exact intensity pattern is

as follows:

TððnijÞ0Þ ¼ TðbijÞ þ fTðbðiþ1ÞjÞ $ TðbijÞg ' si (21)

where bij is the integer pixel location of (nij)0, si is the

fractional part in the x direction of (nij)0. Thus, the

noiseless deformed intensity is:

TðnijÞ ¼ TððnijÞ0Þ þrTxððnijÞ0Þ ' ðp0e þ p1e ' xiÞ (22)

where !Tx((nij)0)¼T(b(i+1)j) ) T(bij). Combining Equa-

tion (22) with optimisation function Equation (20),

we have,
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Y. Q. Wang et al. : Error Assessment in Pattern Matching

patterns for both the undeformed and the deformed

image are synthetically generated using the proce-

dures outlined by Schreier et al. [15]. Each image is

converted into a 1024 · 1024 array of intensity val-

ues with 16 bits (0–65 536 grey-level range).3 The

minimum and maximum intensity values in each

digitised image are assumed to be Imin ¼ 24 084 and

Imax ¼ 42 434, respectively, for all simulations.4 To

study the effect of Gaussian intensity pattern noise

having a standard deviation, r, we introduce the per

cent additive noise, CN, by the equation
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Figure 1: Displacement measurement bias predictions for linear interpolation as a function of sub-pixel motion for a range of
intensity noise levels
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Figure 2: Displacement measurement bias predictions for cubic polynomial interpolation as a function of sub-pixel motion for a
range of intensity noise levels

3This work does not include the effect of quantisation on
error estimates. To ensure that quantisation effects are mini-
mised, images are assumed to be digitised with 16 bits so that
quantisation introduces no more than )1/65 536 in the digi-
tised image.

4The equivalent range for an 8-bit signal would be approx-
imately 94–166.
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Error Assessment in Pattern Matching : Y. Q. Wang et al.



Optimally sharp band-limited pattern
autocorrelation is inverse Fourier 
transform of magnitude squared 
of Fourier transform
• maximum at zero displacement 

equals sum of squares of Fourier 
coefficients

• phase identically zero
• normalized peak can only be 

blunted by low-frequency content
maximum sharpness when only 
highest resolvable frequency 
content contributes
• low information content
• Hankel transform of delta function 

is Bessel function



Experimental results


