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I. SUPERCONDUCTING QUANTUM CIRCUITS

General Approach

• Superconducting circuits have quantized energy levels.

• Josephson junctions are non-linear elements which allow us to make the energy spacing

non-equidistant.

• We can create a situation where all but 2 energy levels can be ignored creating effec-

tively a quantum two-level system, i.e., a qubit.

II. SHORT REVIEW: EJ , Ec, EL

EJ =
Φ0Ic
2π

(1− cosφJ)

Ec =
e2

2C

E` =
1

2
(Lg + Lk)I2`

The Charge Qubit

To derive properties of a charge qubit, we follow the ”standard” procedure: Start with

a Lagrangian and do a Legendre transform.

For a charge qubit there is fixed gate voltage, which we model as an external mode with a

well-defined flux φV = Vgt, meaning φ̇V = Vg. Setting φT = (φ, φV ) we write the capacitance

matrix

C =

CJ + Cg −Cg

−Cg Cg

 . (1)

From this, we can write the Lagrangian L = T − V , i.e.,
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L =
1

2
φ̇TCφ̇+ EJ cosφ , (2)

From the Euler-Lagrange equation

d

dt

∂L
∂φ̇n

=
∂L
∂φn

. (3)

The Hamiltonian of the circuit can be found by a simple Legendre transformation of the

Lagrangian. First we define the conjugate momentum to the node flux

qn =
∂L
∂φ̇n

, (4)

which in vector form becomes

q = Cφ̇ . (5)

This requires that the capacitance matrix be invertible.

The qubit zoo as shown in arXiv:1905.13641v3.

The charge qubit

The Hamiltonian can now be expressed in terms of the node charges for the kinetic en-

ergy and node fluxes for the potential energy, i.e.,
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H = φ̇T q − L =
1

2
qTC−1q + Epot(φ) . (6)

A charge qubit.

Upon solving for φ̇ and applying the Legendre transformation, we find the Hamiltonian

H =
1

2(Cg + CJ

(q + CgVg)
2 −

CgV
2
g

2
− EJ cosφ . (7)

Adopting the conventional notation and defining the effective capacitive energy

Ec =
e2

2(Cg + CJ

, (8)

Further, we quantize the dynamic variables and remove constant terms:

Ĥ = 4Ec(n̂− ng)
2 − EJ cos φ̂ , (9)

where the offset charge is

ng = CgVg/2e . (10)

We now consider certain parameter regimes:

where
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Energy ratio Effective Hamiltonian Interpretation

EJ/Ec = 0 ĤC = 4Ec
∑∞

n=−∞(n− ng)2|n〉〈n| Charge states of the capacitor

EJ/Ec = 1.0 Ĥ = ĤC + ĤJ Lifted degeneracy, qubit states exist

ĤJ = −EJ

2

∞∑
n=−∞

(|n〉〈n+ 1|+ |n+ 1〉〈n|) . (11)

Lowest lying states of a single Cooper pair box as a function of the bias (gate) charge ng.

From arxiv.org/pdf/2103.01225.pdf

We can move to a half-integer voltage offset and ignore all the higher-level states. Then

we have a two-level system which is commonly described as

Hq =
ωq

2
σ̂z , (12)

where we have used the Pauli z-operator

σz =

1 0

0 −1

 (13)
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for the qubit eigenbasis

ψz+ =

1

0

 , ψz− =

0

1

 . (14)

Charge qubit with a large shunt capacitor CB.

As can be seen from the above figure, when we shunt the charge qubit with a large

capacitance CB, we are able reduce the charge dispersion. Further, the Josephson junction

(non-linear inductor) increases the anharmonicity of the system.

Anharmonic oscillator: The transmon qubit

We have learned that an LC oscillator has equidistant level spacing

H = ~ωr

(
a†a+

1

2

)
. (15)

To introduce non-equidistant level spacing (qubits) we use a non-linear inductor (Jos-

esphson junction)

LJ =
Φ0

2πIc cosφJ

= LC
1

cosφJ

. (16)

The Hamiltonian of a capacitively shunted Josephson junction has two components

Htr = 4Ecn̂
2 − EJ cos φ̂ . (17)
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Here, we have two parameters, i.e., Ec and EJ . We have to get rid of one.

To approach quantization, we define the operators

n̂ = inzpf (ĉ+ ĉ†) , (18)

φ̂ = φzpf (ĉ− ĉ†) . (19)

Here, ĉ is the transmon annihilation operator, so as to distinguish it from the evenly-

spaced energy modes of â

ĉ =
∑
j

√
j + 1|j〉〈j + 1| . (20)

The pre-factors describe vacuum fluctuations (zero point fluctuations, zpf):

nzpf =
( EJ

32Ec

)1/4
, (21)

φzpf =
(2Ec

EJ

)1/4
. (22)

To assume φ� 1, we choose Cs � CJ and Taylor expand the EJ term:

EJ cos(φ) =
1

2
EJφ

2 − 1

24
EJφ

4 +O(φ6) . (23)

In the ĉ basis the complete Hamiltonian reads

H = −4Ecn
2
zpf (ĉ+ ĉ†)2 − EJ

(
1− 1

2
φ2
zpf (ĉ− ĉ†)2 +

1

24
φ4
zpf (ĉ− ĉ†)4 + · · ·

)
(24)

≈
√

8EcEJ

(
ĉ†ĉ+

1

2

)
− EJ −

Ec

12
(ĉ† − ĉ)4 .

Expanding the terms of the transmon operator and dropping the fast-rotating terms

(those with an uneven number of ĉ and ĉ†), and adopting the relations ~ω0 =
√

8EJEc and

δ = −Ec, we find after neglecting constants

Ĥtr = ω0ĉ
†ĉ+

δ

2
ĉ†ĉ†ĉĉ . (25)

This is the Hamiltonian of a (non-linear) Duffing Hamiltonian. The energy levels of the

system are calculated as
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LC oscillator and the transmon qubit along with their corresponding energy levels.

ωj =
(
ω − δ

2

)
j +

δ

2
j2 , (26)

ω ≡ ω0 + δ .

Key Takeaway: The transmon qubit is actually a non-linear oscillator and we use the two

lowest eigenstates as qubit states. They correspond to having 0 or 1 excitations stored in

the system.

Frequency control: The split transmon qubit

Choosing the two lowest eigenstates as qubit states, allows us to treat the transmon as

a qubit with Hamiltonian

Hq =
ωq

2
σ̂z . (27)

Frequency tunability can be created by replacing the single junction with a split junction,

i.e., a DC SQUID
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ωq ≈
√

8EcEJ0| cos(πfext)| (28)

Closing the loop: The flux qubit

In contrast to the charge- and transmon qubit, the flux qubit operates in the regime

EJ0 � Ec such that magnetic flux is the good quantum variable.

The most common implementation is a closed superconducting loop intersected by three

Josephson junctions. One junction has a reduced Josephson energy by a factor 0.5 < α < 1.

This yields the potential

Uq = EJ0[2 + α− cos(φ1)− cos(φ2)− α cos(φext + φ1 − φ2)] . (29)

Here φext = 2πΦext/Φ0 is the reduced magnetic field threading the qubit loop and φ1, φ2

are the phase differences across the two identical junctions. The third phase difference is

eliminated due to the boundary condition imposed by flux quantization.

Flux quantization is guaranteed by a persistent circulating current

Ip = ±Ic
√

1− (2a)−2 . (30)

The two degrees of freedom result in a two-dimensional potential. For φext = π, the

potential is symmetric and periodic.

Since the two larger junctions are identical, we are confined to move along the line

φ2 = −φ1.

The potential along this line has the form of a double well, where the minima correspond

to circulating currents in opposite directions.
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A flux qubit with three Josesphon junctions illustrating the superposition of the current

states. Two of the junctions have the same Josephson energy EJ0, whereas, the third

junction has an energy lowered by a factor of α, with 0.5 < α < 1.0.

The two-dimensional potential (left panel) of a flux qubit showing the line φ2 = −φ1, and

the corresponding double-well potential (right panel) along this line.

Since the potential barrier has a finite height, there is a certain tunneling probability ∆

between the wells.

The tunneling coupling lifts the energy degeneracy between the states, resulting in a level

splitting. The resulting energy levels can be used as two qubit states.

A change in magnetic flux bias tilts the potential leading to an additional energy ε.
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Hq =
~∆

2
σ̂x +

~ε
2
σ̂z =

~
2

 ε ∆

∆ −ε

 (31)

Level splitting due to the tunnel coupling.

Diagonalizing the system Hamiltonian to transform it into the qubit eigenbasis, we have

Hq =
ωq

2
σ̂z , (32)

where the qubit transition frequency is given as

ωq =
√

∆2 + ε2 . (33)

Key takeaway: The flux qubit is a closed loop of 3 Josephson junctions where the cir-

culating currents provide energy eigenstates that can be treated as a quantum 2-level system.

Circuit QED

• Qubits can be seen as artificial atoms and resonators as microwave light.

• When we bring them close to each other we create ”light-matter” coupling that is

treated in the same way as quantum optics.

• Superconducting circuits allow on-chip study of quantum optics in regimes that cannot

be reached in nature.
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Example: Flux qubit coupled to transmission line resonator.

Generalized light-matter interaction: The quantum Rabi model:

We recall the following physical properties and their quantum mechanical description:

Physical System/Parameter Effective Description

Qubit Ĥq =
ωq

2 σ̂z

Resonator H = ~ωr

(
a†a+ 1

2

)
Magnetic field LIvac(â+ â†)

Qubit energy bias ε(σ̂+ + σ̂−)

If we bring the qubit and resonator is close vicinity, we create a mutual inductance

leading to a coupling term (interaction Hamiltonian)

~g(σ̂+ + σ̂−)(â+ â†) , (34)

where all physical properties are hiding in the coupling constant g.

Adding the individual terms for the qubit and resonator results in the system Hamiltonian

HQR =
~ωq

2
σ̂z + ~ωr

(
â†â+

1

2

)
+ ~g(σ̂+ + σ̂−)(â+ â†)︸ ︷︷ ︸

Hint

. (35)

The above Hamiltonian is valid in all regimes for g.

The counter-rotating and counterintuitive terms âσ̂− and σ̂+â
† give rise to the so-called

Bloch-Siegert shift, which is hard to observe in nature but possible with superconducting

systems.

The structure of the quantum Rabi Hamiltonian is such that the physical property parity

is conserved. This is a special form of symmetry and one of the most fundamental concepts
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in physics.

The concept of parity for example gives rise to the selection rules for allowed transitions

in atoms. The same selection rules can be observed in superconducting circuits.

Key Takeaway: Superconducting circuits follow the physics of quantum optics and can

reach parameter regimes that are unreachable in nature.

Jaynes-Cummings Model:

• Usually one operates quantum circuits in a practical parameter regime, called strong

coupling limit.

• In this limit, the coupling between qubit and electromagnetic field is much stronger

as their loss rates but smaller than their eigenfrequencies.

• In this regime, the eigenstates experience a qubit state-dependent energy shift. De-

tecting this stuff is used for qubit readout.

Rotating wave approximation:

We consider a transmon qubit that is capacitively coupled to a transmission line res-

onator. We operate in the strong coupling regime where g � ωq, ωr.

This allows us to move into the interaction picture (a.k.a. rotating frame) defined as

Ĥint(t) =
~g
2

(
âσ̂−e

−i(ωr+ωq)t + â†σ̂+e
i(ωr+ωq)t + âσ̂+e

i(−ωr+ωq)t + â†σ̂−e
−i(−ωr+ωq)t

)
(36)

This Hamiltonian contains both quickly and slowly oscillating components

ωr + ωq ωr − ωq . (37)

To get a solvable model, the quickly oscillating ”counter-rotating” terms are ignored. This

is referred to as the rotating wave approximation, and it is valid since the fast oscillating

term couples states of comparatively large energy difference.
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Transforming back into the Schrödinger picture, the Jaynes-Cummings Hamiltonian is

thus

HJC =
~ωq

2
σ̂z + ~ωr

(
â†â+

1

2

)
+ ~g(σ̂+â+ σ̂−â

†)︸ ︷︷ ︸
Hint

. (38)

With the Jaynes-Cummings Hamiltonian, we can either excite the qubit by absorbing a

photon (σ̂+â) or take one excitation from the qubit and generate a photon (σ̂−â
′
).

In the basis of uncoupled excitation number (nr) and qubit eigenstates, the Hamiltonian

is transformed to

HJC,n =
~
2

2nrωr + ωq g
√
nr + 1

g
√
nr + 1 (nr + 1)ωr − ωq

 . (39)

We diagonalize this Hamiltonian and discuss two parameter regimes: Resonant, i.e. no

detuning between qubit and resonator, and off-resonant, i.e. large detuning.

The eigenfrequencies of the Jaynes-Cummings Hamiltonian are given as

ω±,n =
(
nr +

1

2

)
ωr ±

1

2

√
δ2 + 4g2(nr + 1) . (40)

Here, we have defined the detuning δ ≡ ωq − ωr and the ground state is ω−,0 = −δ/2.

The new dressed eigenstates of the system are the superposition states

|+, nr〉 = cos Θnr |e, nr〉+ sin Θnr |g, nr〉 (41)

|−, nr〉 = cos Θnr |g, nr + 1〉 − sin Θnr |e, nr〉 , (42)

where the mixing angle Θnr is a measure of the degree of entanglement between the qubit

and resonator states:

Θnr = tan−1(2g
√
nr + 1/δ)/2 . (43)

When the qubit and light mode are on resonance, i.e. δ ≡ 0 the mixing angle Θn = π/4

is maximum and consequently there is strong entanglement.
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The resonant regime, i.e. ωq = ωr.

In this regime, a coherent exchange of excitations between qubit and resonator occurs

with the vacuum Rabi frequency 2g. This interaction lifts the degeneracy of the correspond-

ing eigenenergies by 2g
√
nr + 1 to new doublet eigenstates.

In the dispersive regime, the detuning between qubit and resonator frequency is much

larger than the coupling, i.e., δ � g.

The dispersive regime.
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In this regime, there is no exchange of excitations anymore but virtual photons mediate a

dispersive interaction between qubit and light field. This interaction leads to frequency shifts

of the qubit and resonator eigenfrequencies. The dressed states are either more photon-like

or more atom-like.

In the atom-like case (close to qubit states), the Hamiltonian can be derived as

Hdisp ≈ ~ωr

(
â†â+

1

2

)
+

~
2

(
ωq + 2χâ†â︸ ︷︷ ︸

AC-Stark shift

+ χ︸︷︷︸
Lamb shift

)
σ̂z . (44)

In the photon-like case (close to resonator states), the Hamiltonian can be derived as

Hdisp,r ≈ ~ωq
σ̂z
2

+ ~(ωr + χσ̂z)
(
â†â+

1

2

)
, (45)

describing the qubit state-dependent resonator frequency, which we use for readout purposes.

Key takeaway: In the dispersive regime of the Jaynes-Cummings model, resonators can

be used for qubit readout.
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