Exercise Session 5

Problem 1:

A radiowave propagates down through seawater, with electric field function $\mathbf{E}(\mathbf{z})=\mathbf{a}_{\mathbf{x}} E_{0} \exp \left(-j k_{c} z\right)$ Here $E_{0}=10 \mathrm{~V} / \mathrm{m}$ is the magnitude of the electric field at the surface, and k_{c} is the (complex) propagation factor. The (real part of the) permittivity of seawater is $\varepsilon^{\prime}=80 \varepsilon_{0}$ and its conductivity $\sigma=3 \mathrm{~S} / \mathrm{m}$. The frequency of the wave is 1 MHz .
i. What is the average power density of the wave (in $\mathrm{W} / \mathrm{m}^{2}$) at the surface $(z=0)$?
ii. What is the average power density of the wave (in $\mathrm{W} / \mathrm{m}^{2}$) two meters below the surface $(z=2 \mathrm{~m})$?

The time-average Poynting vector - in Cheng's notation $\mathscr{P}_{\mathrm{av}}$ - is the real part of the complex Poynting vector $\mathbf{S}=\mathbf{E} \times \mathbf{H}^{*} / 2$ (where \mathbf{E} and \mathbf{H} are the time-harmonic (complex) electric and magnetic fields).

Solution:

Since $\frac{\sigma}{\omega \epsilon}=\frac{3}{2 \pi 1 \cdot 10^{\sigma}\left(\frac{1}{\operatorname{san}} \cdot 10^{-7}\right) 80}=675 \gg 1$ we can use the formulas for good conductors:
The attenuation constant:
$\alpha=\sqrt{\pi f \mu \sigma}=\sqrt{\pi 10^{6} 4 \pi \cdot 10^{-7} 3} \approx 3.44 \mathrm{~Np} / \mathrm{m}$
The phase constant:
$\beta=\sqrt{\pi f \mu \sigma} \approx 3.44 \mathrm{rad} / \mathrm{m}$
The intrinsic impedance:
$\eta_{c}=(1+\mathrm{j}) \sqrt{\frac{\pi f \mu}{\sigma}}=(1+\mathrm{j}) \sqrt{\frac{\pi 10^{6} 4 \pi \cdot 10^{-7}}{3}} \approx(1+\mathrm{j}) 1.15 \Omega$
The average power density of the wave is given by the time-average Poynting vector:

$$
\begin{aligned}
\mathscr{P}_{\mathrm{av}}(z) & =\frac{1}{2} \Re\left\{\mathbf{E} \times \mathbf{H}^{*}\right\}=\frac{1}{2} \Re\left\{\left(E_{0} e^{-\alpha z} e^{-\mathrm{j} \beta z} \mathbf{a}_{x}\right) \times\left(\frac{E_{0}}{\eta_{c}} e^{-\alpha z} e^{-\mathrm{j} \beta z} \mathbf{a}_{y}\right)^{*}\right\} \\
& =\frac{1}{2} \Re\left\{\left(E_{0} e^{-\alpha z} e^{-\mathrm{j} \beta z} \mathbf{a}_{x}\right) \times\left(\frac{E_{0}^{*}}{\eta_{c}^{*}} e^{-\alpha z} e^{+\mathrm{j} \beta z} \mathbf{a}_{y}\right)\right\} \\
& =\frac{1}{2} \Re\left\{\frac{\left.E_{0}\right|^{2}}{\eta_{\dot{c}}} e^{-2 \alpha z} \mathbf{a}_{x} \times \mathbf{a}_{y}\right\}=\Re\left\{\frac{1}{\eta_{c} \dot{c}}\right\} \frac{\left|E_{0}\right|^{2}}{2} e^{-2 \alpha z} \mathbf{a}_{z}
\end{aligned}
$$

i. The average power density at the surface is:

$$
\mathscr{P} \mathcal{a v}(0)=\Re\left\{\frac{1}{\eta_{c}}\right\} \frac{\left|E_{0}\right|^{2}}{2} e^{-2 \alpha \cdot 0}=0.435 \cdot \frac{|10|^{2}}{2} \approx 22 \mathrm{~W} / \mathrm{m}^{2}
$$

ii. What is the average power density of the wave (in $\mathrm{W} / \mathrm{m}^{2}$) two meters below the surface ($z=2 \mathrm{~m}$) ?

$$
\mathscr{P}_{\mathrm{av}}(2)=\Re\left\{\frac{1}{\eta_{\dot{c}}}\right\} \frac{\left|E_{0}\right|^{2}}{2} e^{-2 a \cdot 2}=0.435 \cdot \frac{|10|^{2}}{2} e^{-2 \cdot 3.44 \cdot 2} \approx 23 \mu \mathrm{~W} / \mathrm{m}^{2}
$$

Problem 2:

Consider plane wave reflection from the planar interface between two lossless materials. Assume that the wave arrives from free space (air, $\varepsilon_{1}=\varepsilon_{0}$ and $\mu_{1}=\mu_{0}$) into a non-magnetic dielectric materials ($\varepsilon_{2}=4 \varepsilon_{0}$ and $\mu_{2}=\mu_{0}$). The wave has a normal incidence (incidence angle $\theta_{1}=0$). The peak value of the incident electric field is E_{0}.
i. Compute the power density of the incident wave (= amplitude of the Poynting vector $\mathbf{S}_{i}=\mathbf{a}_{z} S_{i}$).
ii. Compute the power density of the reflected wave ($=$ amplitude of the Poynting vector $\left.\mathbf{S}_{r}=-\mathbf{a}_{z} S_{r}\right)$.
iii. Compute the power density of the transmitted wave ($=$ amplitude of the Poynting vector $\mathbf{S}_{t}=\mathbf{a}_{z} S_{t}$).

$$
\varepsilon_{1}, \mu_{1} \quad \varepsilon_{2}, \mu_{2}
$$

reflected (r)
iv. Do your results satisfy the energy balance (that the powers of the reflected and transmitted fields match that of the incident wave)?

Solution:

Let's assume an incident electric field of $\mathrm{E}_{i}(z)=E_{0} e^{-\mathrm{j} k z} \mathbf{a}_{x}$ which has the corresponding incident magnetic field of $\mathbf{H}_{i}(z)=\frac{E_{0}}{\eta_{0}} e^{-\mathrm{j} k z} \mathbf{a}_{y}$. The plane wave has a normal incidence $\theta_{1}=0^{\circ}$.
i. The complex Poynting vector is:
$\mathbf{S}_{i}=\frac{1}{2} \mathbf{E} \times \mathbf{H}^{*}=\frac{1}{2}\left(E_{0} e^{-\mathrm{j} k z} \mathbf{a}_{x}\right) \times\left(\frac{E_{0}}{\eta_{0}} e^{-\mathrm{j} k z} \mathbf{a}_{y}\right)^{*}=\frac{1}{2}\left(E_{0} e^{-\mathrm{j} k z} \mathbf{a}_{x}\right) \times\left(\frac{E_{0}^{0}}{\eta_{0}} e^{+\mathrm{j} k z} \mathbf{a}_{y}\right)=\frac{\left|E_{0}\right|^{2}}{2 \eta_{0}} \underbrace{e^{-\mathrm{j} k z} e^{+\mathrm{j} k z}}_{=1} \overbrace{\mathbf{a}_{x} \times \mathbf{a}_{y}}^{=\mathbf{a}_{y}}$
$=\frac{\left|E_{0}\right|^{2}}{2 \eta_{0}} \mathbf{a}_{z}$
Thus the amplitude is $S_{i}=\frac{\left|E_{0}\right|^{2}}{2 \eta_{0}}$.
ii. The reflection coefficient is:
$\Gamma=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=\frac{\frac{1}{\sqrt{4}} \eta_{0}-\eta_{0}}{\frac{1}{\sqrt{4}} \eta_{0}+\eta_{0}}=\frac{\frac{1}{2}-1}{\frac{1}{2}+1}=-\frac{1}{3}$
Since we are dealing with power density, the reflection coefficient has to be squared. Thus we get the Poynting vector for the reflected wave:
$\mathbf{S}_{r}=-\left(-\frac{1}{3}\right)^{2} \frac{\left|E_{0}\right|^{2}}{2 \eta_{0}} \mathbf{a}_{z}$
Which gives us the amplitude of $S_{r}=\frac{1}{9} \frac{\left|E_{0}\right|^{2}}{2 \eta_{0}}$
iii. The transmission coefficient is:
$\tau=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}=\frac{\frac{2}{\sqrt{4}} \eta_{0}}{\frac{1}{\sqrt{4}} \eta_{0}+\eta_{0}}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}$
Again, since we are dealing with power density, the transmission coefficient has to be squared. Thus we get the Poynting vector for the transmitted wave:
$\mathbf{S}_{t}=\left(\frac{2}{3}\right)^{2} \frac{\left|E_{0}\right|^{2}}{2 \eta_{2}} \mathbf{a}_{z}$
Which gives us the amplitude of $S_{t}=\frac{4}{9} \frac{\left|E_{0}\right|^{2}}{2 \eta_{2}}$
iv. The net power flow should be the same on both sides of the boundary:
$\mathbf{S}_{i}+\mathbf{S}_{r}=\frac{\left|E_{0}\right|^{2}}{2 \eta_{0}} \mathbf{a}_{z}-\frac{1}{9} \frac{\left|E_{0}\right|^{2}}{2 \eta_{0}} \mathbf{a}_{z}=\left(1-\frac{1}{9}\right) \frac{\left|E_{0}\right|^{2}}{2 \eta_{0}} \mathbf{a}_{z}=\frac{4 \cdot 2}{9} \frac{\left|E_{0}\right|^{2}}{2 \eta_{0}} \mathbf{a}_{z}=\frac{4}{9} \frac{\left|E_{0}\right|^{2}}{2 \eta_{2}} \mathbf{a}_{z}=\mathbf{S}_{t}$
Thus, the energy balance is satisfied.

