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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise
problems about the shell model:

O Reissner-Mindlin and Kirchhoff shell models and Kirchhoff constraints.

O Shell equilibrium and constitutive equations in their tensor forms.

O Component representations of the membrane and shell equations for cylindrical and

spherical geometries

O Derivation of shell equations by using the principle of virtual work, integration by parts,

and the fundamental lemma of variation calculus.
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GAUSS’S THEOREM

Let us consider a vector valued function a e CO(Q) on a surface embedded in three-space
Q e R? of the unit normal €,, outward unit normal on the boundary i, and tangential line

element dS =€, xnds. Then . 5
Flat: jQ (Vo -d)dA= jaQ (fi-3)ds

Curved: jQ (Vo - &8,)-adA= jag (fi-3)ds.

In both forms, the area integral is over the surface and the boundary integral over the
boundary of the surface. Term x =V, -€, Is twice the mean curvature of the mid-surface or

-

the trace of curvature tensor kx =x: | .
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Selection d&=F -50 and vector identity V-(F-ou)=(V-F)-8u+F :(VJ0), gives the

useful integral identity
I, (Vo (F-80)-x(8, F)-suldA=[_ (i-F)-suds =
jQ If:(VO5U)CdA:—jQ [Vo-lf—K(én-lf)]-éﬁdA+jaQ (ﬁ.ﬁ).ggds &

The last form can be taken as integration by parts formula on a curved surface. If =0 or

&, -F =0, the usual form used already in connection with plates is obtained.
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VOLUME AND AREA ELEMENTS

The integrals of the virtual work expression are always over a body. Representations of the
volume and area elements consist of the mid-surface elements and scaling factors taking

Into account the offset in the transverse direction. dn

scaling factor

- RAOL. é
/— domain element .
R—n,» 5 .
dV =( > )=dn(R“sin@)dgd & ey
> mid-surface Rsinf@dg ™

\ area element

small dimension

The scaling factors for the area elements depend on the direction of the boundary fi (the unit

outward normal vector), curvature of the mid-surface <, and normal coordinate n.
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GRADIENT REPRESENTATION

In derivation of equilibrium equations from virtual work expression of shell, gradient needs

to be expressed in terms of the mid-surface gradient V, offset scaling D, and the normal

part: Scalilng mid-surface part
Generic: V=D-(Vy+§, ai) <— normal part
N
. R o 1 0 0

Cylindrical: V =(€,¢, + 6,6,+6,6,)-(6,—+—6,—+6,—

y (zz R_n¢¢ nn)(zaz R¢8¢ nan)

: R R 1 o 1 o

Spherical: V= 6,6, + 6,6y +6,6.)- ] +—68y)—
P (R—n %0 " R_n 70 n) (Rsine P04 R Y00

.0
+en%)

In flat geometry D = I and in the thin body limit (t/ R <1) D ~ I . Notice that integration

by parts formula on curved surfaces Is concerned with Vj.
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EXAMPLE As a generic vector identity, Gauss’s theorem is valid also when a thin body
has curved mid-surface geometry. However, all parts of the boundary need to be accounted
for correctly. As an example, let us consider a cylindrical body of constant thickness t of

mid-surface area and line elements dA, ds and vector a(z,¢). Then, using I'=[-t/2,t/ 2]

Jo 0 V@)V =] (i-&dA =
IQXF (VO'é)(l_%)dndAZIaQXF (ﬁ'é)(l_%)dnds_i_zar I@Q (ﬁ'é)(l_%)dA —
Jo (Vo @)dA=[  (1-a)ds- [ =(a-&)dA

In the last term on the right-hand side 1/ R = -V -&,. The additional term related with the
curvature takes into account the different areas of the inner and outer surfaces of the

cylindrical body.
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6.1 SHELL MODEL

fdv

thin curved body

N\

tdA

\ g

Kinematic assumption: Straight line segments perpendicular to the mid-surface remain
straight in deformation (Reissner-Mindlin) or straight and perpendicular to the mid-surface

(Kirchhoff) in deformation, so G = Ty + 6y x N&,, = Uy + Nddy.

Kinetic assumption: Stress component o,,, =0.
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EFFECT OF CURVATURE

Sphere subjected to internal pressure:

1 1
N¢¢ :EpR and N(gg :EpR —

- 1 1 .
N =—pR(€ €, +€E,6,) =— PRI (isotropic stress
L (€484 +€5€p) 5 PRI (isotrop )

Long cylinder subjected to internal pressure:

N —1pR and Ngy=pR =

22 — A
2 \
“curvature”

- 1 o o
N :E pR( 7€5 +26¢e¢)
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6.2 SHELL EQUATIONS

Virtual work expression of shell, principle of virtual work, integration by parts on curved

surfaces (Kelvin-Stokes), and the fundamental lemma of variation calculus give:

- 3
(VO—Kén)'F+b=O
s in Q
(Vo—x€;)-M —& -F+C)x€, =0
i-F-F=0 or Uy—Uy=0 \
> on oQ .
(n-M-M)x€,=0 or o—Qo—OJ ﬁ! 6. =&, xii o0

Shell and plate equations differ in the “derivative” operator. Conditions on 0Q2 need to be

expressed finally with component representations in the boundary (€,,,€) basis.
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Virtual work expression of the shell model coincides with the plate model. However, as the

mid-surface is not flat, the simple Gauss theorem is replaced by a version valid on curved

surfaces

s:" (E sig)" (b sig)" (E
avvzj (- : )dA+j : dA+j 47 Lds.
2 o), (M ©\sag| e X say| | M

Integration by parts in terms containing derivatives of the variations gives (mean curvature

k=Vg-€,) with the version of the Gauss theorem and the tensor identity
V-(b-d)=(V-b)-a+b,:Va gives

jQ ﬁ:(voauo)ch:_jQ (vo.ﬁ—xén.ﬁ).augdmjm (- E - 5tig)ds,

jQ M :(voaasg)chz—jQ (Vo -M —Kén-l\ﬁ)-5a30dA+jaQ (fi- M - 5@)ds
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and thereby an equivalent but a more useful form of the virtual work expression

- = T _ - =T _
(V—Kén)'F+b 5“0 ﬁF—E 5“0

W = . . - dA-| 1 - ds.
(V-«€,)-M-¢,-F+C oay i-M— Oay

When definition 6@, = 56, x &, and the vector identity a- (b xC) = (dxb)-C are used there

1<

(to recover the original rotation variable), the principle of virtual work and the fundamental

lemma of variation calculus imply that (notice the terms due to curvature)

(Vo—x&,)-F+b=0 in Q I
equilibrium egs.

boundary conditions



RESULTANT DEFINITIONS

Stress and external force resultants are integrals over the thickness (@g = 670 x 8,). Stress

resultant definition gives the constitutive equations:

A C 1 n] . - . 5 (Vs +6.G
s

n n K Voay

h -1 211
b}:j f{ }Jdn+z t{n}‘]’ external force and moment

.

C n per unit area
(E 1 external force and moment
< i :j t{n}Jnd”' per unit length

Elasticity tensor E is assumed to satisfy the minor and major symmetries and condition

6.6, :E =0. For athin shell tx <1, scaling factors D~ 1, J =1, and J,, ~1.
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MEMBRANE EQUATIONS

Shell equations combine the thin-slab and bending modes. The membrane model, i.e., thin-
slab model in curved geometry, applies to thin materials of negligible bending rigidity. The
invariant forms of the shell model equilibrium and constitutive equations follow from the

—_
—

shell equations with the assumptions U =U,, Q =0, M =0: .

)
Sy

VO'N+6=O in Q,

-
-

N :A:Vouo in Q

—

~N=0 or Gy—-Uy=0 on aQ. ﬁ!
n

21

N -

é 5.9)

The membrane model finds use ,e.g,, in textile material, balloon, air-supported hall etc.

applications.
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CYLINDRICAL MEMBRANE (z,4,n)

Equilibrium and constitutive equations of a cylindrical membrane follow from the
coordinate system invariant forms of the membrane equations when gradient etc. are

represented in (z,¢,n)-coordinate system:

36N2¢+6sz+bz %
R 09 oz v o7
ON ON 7 ou
<—Z¢+i ¢¢-|-b¢ > =0, <N¢¢>:t[E] <i—¢—un)>-
oz R 04 N o R a4
29 )
iN¢¢+bn 1y, +8u¢
R Rop oz

Boundary conditions on 0 should be expressed in the boundary system with

— —

N =¢€,n, +€;ny and & =€, x M =€;n, —ENy.
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In cylindrical geometry and (z, ¢,n) coordinates, gradient operator takes the form

o R .1 0 0 = 0
V=g —+ Z6, 2 g, =D (Vo +6,—),
2 oz (R—)R¢a¢ o~ D VotEng)
where
0 0 = 1 1
Vog=6,—+k€,—, D=¢€,E, + €,6,+6,6,, and x=—.
0" 2o T o T R

-

Direct calculation with representations N = N,€,€; +N;4€,€5 + N €48, + N4,€,€,

b =b,&, + bs€s +Dbn€, and the known derivatives of the basis vectors gives

i oN y
oz R 0¢

_ 1
+b¢)+en(EN¢¢+bn)=O.
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-
>

Tensor A of shell constitutive equation depends on the plate model elasticity tensor E,
scaling D, and Jacobian J =1— xn. Assuming a thin membrane t/ R <1 for simplicity so

that J ~1 and D ~ | (the precise expressions will be discussed later)

- — \T = 3
3 3 ¢ #%
A=[ (B;-E-DJ)dn=1 &g . t[E] 1 &&
_’¢é’z +§Z _’¢ é¢§z +éz _’¢

Only the translation part U = u,€, + U4€, +U,€, of the kinematic assumption matters. Direct

calculation with the known derivatives of the basis vectors gives

. ou,_. . Ouy _ 1ou,.. 10U . ou, .. 1 OUp .y -
Vol =—%§,E, +—¢eZ 5+ =268, +E(a—;—un)e¢e¢ +8—Z”ezen +E(u¢ +a—¢’;)e¢en

Therefore, the constitutive equation takes the form
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(1 au
__¢_un)
R 0¢

ou,

0z

My 10ou,

oz R g |
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EXAMPLE 6.1 A thin walled cylindrical body of length L, (mid-surface) radius R, and
thickness t is subjected to distributed loading b = b,&, + b€, + b€, Of constant components
and boundary loading F =t(c¥, +7€4) at the free end z = L. Assume rotational symmetry
and use the membrane equations in (z,4,n) coordinate system to solve for the mid-surface

stress resultants.

} ol

X
Answer: N, =ot+b,(L—2), Nyy=7t+by(L—2), and Ns =-byR
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A rotational symmetric solution does not depend on ¢. Then the equilibrium equations of

the membrane model and the boundary conditions at the free edge simplify to

dN 1 :
_z+bZ:O’ dzz¢ +by =0, =Ngg +by =0 in O,L)

NZZ_Gt:O’ NZ¢—Tt:0 at z=L.

Solution to the boundary value problem of two ordinary first order differential equations

and one algebraic equation for the stress resultants is given by

NZZ =(7t+bz(|_—2), NZ¢=Tt+b¢(L—Z), and N¢¢=—bnR. &
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\

—[csca

SPHERICAL MEMBRANE (¢#,6,n)

Ny; ON
¢ a%

+cot&d(Ny, + N +b
) (Ngs + Ngg)l+Dby

+cotd(Nyy — N +b
=0 (Ngg —Nyg)l+by

1
E(NW +Ngg)+ Db,

-

\

u
cscé(cosbu +—¢ —u
( o 5¢) n

cscasin Hau—‘g —Up,
06

ou
csc@au—‘g— cot9u¢ +—¢
ol 00
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EXAMPLE 6.2 Consider a balloon in (¢,0,n) coordinates under positive pressure
difference Ap = pi, — Poyt- ASSUMING a rotational symmetric solution with respect to two
axes, so that all stress resultants and displacement components are independent of ¢ and &

, find the membrane stress and displacement of the surface.

Answer: N = A—ZR(%% +8,8y) and U=-

ApR?(1—v) _
en
2tE

NOTICE. Linear elasticity theory assumes an equilibrium initial geometry with N, Apy,
and Ry. The aim is to find the new equilibrium N, Ap, and R due to the change in pressure.

Here, displacement gives the change in radius due to the increase in the pressure difference.
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According to the assumption, derivatives with respect to ¢ and @ vanish. The components
of distributed force are by =by =0 and b, =-Ap (n Is directed inwards). Equilibrium

equations (Ngy4 = N4 ) simplify to
2COt0N¢6; =0, COt@(NQQ—N¢¢)=O, NQQ+N¢¢—ADR=0 in Q =

ApR
N¢9:0 and N99:N¢¢:T. 6

With the solution above, constitutive equations give

- (1) C 0 cotg —1][uy) (U] o2 0)
Ap <1>:L[E] 0 0 -1ljkug;y © Jugp=-— P (_V)<0> €
2 R © 2tE
\ —cotd O O ||u, U, 1)
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6.3 CYLINDRICAL SHELL (z¢,n)

In curved geometry, the thin-slab and bending modes are always connected. In cylindrical

geometry and (z,¢,n) coordinates, the equilibrium equations of shell take the forms to

0
N i Q¢n+ann +£N¢¢+bn
18N¢Z+a|\|zz+b R 0¢ 0z
R : oM
R 09 oz =0, - 8!\/I_ZZ+£ /7 Qn; +C; =0
oz R opg R MY M5 1My 1
oz R o4 R " Qng *C

The boundary conditions on 6€2 need to be deduced from the generic forms for the boundary
system with n=g;n,+€;n,; and €& =€, xn=€yn, —€,ny. The non-zero constitutive

equations for a thin shell (t/ R)2 < 1) take the forms

continues ...
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In-plane and shear force resultants

tE au, 1a<9¢
Al —(—— n)]-D
1-yv2 6z R o¢ R oz
N f
sz (—— n)+1/6ﬁ]—Di28(9Z 0¢+%
4 ¢¢$:4 R" o¢ oz" R Op| {@}ZGR oz
N2g 10u, Ouy 1 00, Qy T yy-9
Gt(— + )+ R 0¢ ¢ z
N s R 0 oz R o1 L
ou 00
G2 Nz Ty, —(1 V)Di—¢
R 0 o1 op |

It is noteworthy that N, # N, although o,4=0y4,. The Kirchhoff constraints can be
deduced from the shear force expressions is the same manner as with the model in flat
geometry (plate). In the moment resultants

continues ...
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00,100, v, |
0z R op R oz
(M, | 00 ou
|\/|ZZ y 200 L (C )
¢ 0z R og R? 04 1.1 0uy

%1 _pl $,M¢n——(1— v)D +Ug) = 6,]
el Lot D 20y 1%, R
kM¢ZJ 2 R O0¢ 0z R oz

1 66’ 1 ou

Za-niESe D7l

2 R 0¢ 0p "

M4 # My, and the one needs also the expression for component M 4, which is not present
In the flat geometry equilibrium equations. The stress resultant definitions give expressions
for all the components, but only those appearing in the equilibrium equations are needed in

displacement analysis.
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EXAMPLE 6.3 Consider a cylindrical container of radius R subjected to distributed force
b, due to internal excess pressure p. Assuming rigid end plates and rotation symmetry
(derivatives with respect to ¢ vanish and u, = 6, =0), derive the differential equation and
the boundary conditions for the transverse deflection w(z)=u,(z) according to the
Kirchhoff model. Material is linearly elastic with properties E and v. Thickness of the

container wall is t. z

d*w 2v d?w Et 1 vN
Tt Tt W (—+Db,)=0
dz* R? dz2 DR D R

Answer:
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In the Kirchhoff model, constitutive equations for the shear forces are replaced by Kirchhoff
constraints. With relationship 6, =—du, /dz and the assumptions of the problem, the non-

zero constitutive equations for the stress resultants simplify to

2
Nz = th(duz _Viun)*‘Did i
1-v%2 dz R R dz?
tE du 1
N, = v—L——_u,),
=12V R
2
M,, =D Y, LUz
d22 R dz

Equilibrium equations simplify to

dN,,
dz

dQ, , 1

dzE

dM ,,
dz

:O, Q¢:0, N¢¢+bn20, and

-Q;=0.
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and after elimination of the shear force (using the moment equation)

2
N, =0 and d |VIZZJriN +b, =0.
R PP n

dz dz?

The constitutive equations for N, and M, can be expressed in terms of uy, by using the

equilibrium and constitutive equations for N, :

N 2
d_ZZ:o = N, = tE (Cqu —viun)+ Did Un _ N =const. =
dz 1—V2 dz R R d22
2 2
dﬁ:viun—kl | %4 (N—Did un)
dz R tE R dz2

Hence after elimination of du, /dz and with the shorthand notation a=t/R
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tE du, 1 tE 1 d2un

N, = y WMz Ly N1y,
¢¢ 1_V2( dZ R n) R n ( R d22 )
2 2 2 2
M, =D 10z g 8y 0%U, LT1mvE g
d22 R dz 12 d22 R tE R2

Using notation u, = w, equilibrium equation in the transverse direction gives

2 2 44 2
d Mzz —|—£N +b :_D[(l_a_)d_w+v 2 d W]_ tE W-I-VE-I-b =0. €
2 R #° 12" gz R2d2° RZ R

Assuming that the end plates are rigid so that the displacement and rotation vanish at ends
of the cylindrical container and a® <1, the boundary value problem for the transverse

displacement (positive inwards) takes the form
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4 2
d'w_ 2 d’w_tE W_%(V%ern):o in (0,L), €

V
dz* R? dz2 DR?

W:CC:—W:O on {0,L}. €
Z

The fourth order differential equation can further be simplified by omitting the second

derivative term as negligible compared to the fourth order derivative term.
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6.4 SPHERICAL SHELL

In spherical geometry and (¢,0,n) coordinate system, the equilibrium equations of shell

simplify to

1,0 o
—(=—=Ngy +cscd—N,+2cotdIN 9 —Q,) +Db
= (5 Now og 90 ~Qy)+Dy

N

%(%Nee +CSCH%N¢9 +C0t(9N99 —COtHN¢¢ —Q9)+bg > =0,

1.0
R 060

0
+cscd—Q, +cotdQ,+N,p+N .. )+b
Qy 8¢Q¢ Qp + Ngg + Nyg) + Dy

1,0 o
E(£M9¢+CSC98—¢M¢¢ +2C0t9M¢9)—Q¢ +C¢

%(%M@g +CSC9%M¢9 +COt9M99—COt8M¢¢)—Q6}+C9
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In-plane and shear force resultants are

ou
(ugcot&+—¢csc€—un)+v(?—g—un)
N A
” Et 1 ouy ou
INgy b= —Sv(ugcotd+—Lcscd—u, )+ (=L —u
0= 7R (Ug n) (ae n)
N
90 ) _ ou
1—V(—u¢cot¢9+au—gcsc6’+—¢
2 0 00

. where cscé =

sing

For the spherical geometry Ngs = Nyg and (the Kirchhoff constraints can be deduced from

the shear force expressions in the same manner as those for the flat geometry)

-

Qp
Qy

o

1 ou
—0,+—(Ug +—2
5 R(e 86’)

"

By +i(u¢ +au—”csc6’)
R 0¢
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The expressions for the moment resultants of the equilibrium equations are given by

3\

06

—H¢cot6+%csce—v—¢

M) 0@ 06

Y1 56 26
TMgg r =D =+ v(—<9¢cot¢9+—9cscé?)——¢ .

R ol 06

Mo 1-v 30 06

Y (220 _ g, cot 0 - —2 csc )
| 2 00 0@ )

Again, for the spherical geometry Mg, =My,. The stress resultant definitions give
expressions for all the components, but only those appearing in the equilibrium equations

are needed in displacement analysis.
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6.5 VIRTUAL WORK DENSITIES

Virtual work densities of the shell model follow from the generic expression for linear

elasticity theory and the kinematic and kinetic assumptions of the model. Integration over

the thin dimension gives

- T = - — — —
: 0. Vol +€hap
5w'”t:—{ C:} :{E},Where{i}—{ 00 }
onl. (M 7 Vo

fdv

tdA




All the kinematical quantities need to be expressed in terms of the kinematical quantities of

the mid-surface Ty, 6, V etc. With @y = 6, x&,, displacement gradient
L= ~ 0\, . 2 e
VU = D(VO +ena—)(UO+na)o)= D'(8+n77),
n

where £ =Vly +€,0p and 77 =Vyay are the strain measures. With the vector identities
4:(b-€)=(&-b):¢ and (4-b). =hy - &, the virtual work density of internal forces takes the

form
AT -
O. o3
o mt——(V&U)C o =—(0¢, +norj;) (D - G) = { 8} :{D G}.

The volume element can be expressed as dV = JdndA, in which dA is the mid-surface area

element. Therefore, integration over the domain occupied by the body gives
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})dA €

<; T

- 58" 1) . 681"
Wi = [_{5;} ( {n}JDC-é’-dn)]dA:fQ (-{5‘;} :{

C C

In which the stress resultants

{;}:j {i}JD’C .&dn

are work conjugates to the strain measures. It is noteworthy that F and/or M of shell theory
need not to be symmetric although the balance law of moment of momentum requires that

o = 0.. Volume and area forces contribute to the virtual work of external forces.

SW et :j N\, +j T -SudA.
Q o0Q)

There, the boundary contribution needs to be divided into parts coming from the outer and

inner surfaces and from the edge (the sum is over the outer and inner surfaces n==+t/2)
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El ¢ [
}ds, where {M}_I {n}w(n)dn. €
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6.6 CONSTITUTIVE EQUATIONS

Constitutive equations F = F(y,6,), M = M (iiy,6,) follow from the generalized Hooke’s

law, the definition of small strain, and the kinetic and kinematic assumptions of the model:

/ notice this!

=) |A G| (& A C 1 nl . Za
E =| . {i} where | _ :j 5 (D.-E-DJ)dn
M G C n n

Elasticity tensor E is assumed to satisfy the minor and major symmetries and condition
€6 E = 0. Elasticity tensors A, B and C of shell depend on the material, positioning of
the mid-surface (actually the reference surface), thickness of the shell, and curvature of the

mid-surface. Assuming a thin shell xt <1so that D~ 1 and J ~1, the expressions boil

down to the plate expressions.
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Constitutive equations follow from the stress resultant definitions when the stress expression

IS substituted there

F 1) . .
{M}:j ({n}JDC-a)dn.

The stress resultant tensors may not be symmetric even though the stress tensor always is.

The displacement gradient expression was earlier found to be

P N (g £ (Voo +8.@
Vi=D-(Vo+8 )by +ndg) =1 + D10 where {1=] 007 L
on n n n Voa)o

Let us assume a linearly elastic material and an elasticity tensor satisfying the minor and
major symmetries and condition €,€,: E =0. Stress-strain relationship gives (tensor
identity a:(b-€)=(a-b): ¢)
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) 0T - )
&:E:vuz{} (E-[“)):{«}.
n n

The stress-resultant definition gives now expression

{;}:j ({i}JﬁC.g)dn:j {1 nz}(J[“)CE-[“))dn:{ } =
n n

=1 |A C| (& A C|l ([t n] o =
{E}z . :{9},Where . :j{ 2}(JDC-E-D)dn. €

LF

St

n n

which depends on the material properties, position of the mid-surface (actually the reference
surface), thickness of the shell, and curvature of the reference surface. Without
simplifications the membrane and bending modes are always connected.
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SIMPLIFIED CONSTITUTIVE EXPRESSIONS

The practical expressions of constitutive equations are often simplified by omitting the

“small terms”. The simplified expressions of the stress resultants should

(1) vanish in rigid body motion of the shell G =U +Qx T and 6 = Q in which U and Q are

constant vectors in the Cartesian (X, Y, z) coordinate system

(2) satisfy the moment equilibrium &, - F x&, + V- (F x5) + V- (M x&,) = 0, in which the

underbars denote constants with respect to the gradient operator.

Both conditions are satisfied by the constitutive equations of spherical shell and by the
cylindrical no matter the number of terms used for g(«) (not all simplifications of the

constitutive equations satisfy conditions (1) and (2)).

6-42



The latter requirement is the local form of balance law of moment of momentum for shell
(symmetry of stress ¢ = o, of classical elasticity is the outcome of the same law). With the

equilibrium equations (b =¢ =0 for simplicity), one obtains
jagz (FO><If+§n><I\ﬁ)ds:—jQ [V-(FxTy+M x8&,)— &€, - (F xTy + M x&,)]JdA=0 =

jaﬂ (roxlf+éan)ds=—jQ [6,-F x&,+ Vg (F xf)+ Vg (M x&,)]dA=0

In which the underbars denote constants with respect to the gradient operator. As Q is

arbitrary, the second form implies that

én'leé}] +VO'(EXFO)+VO'(I\_Z Xén):O.
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CYLINDRICAL SHELL CONSTITUTIVE EQUATIONS

Derivation of the constitutive equations is a straightforward but somewhat tedious task. If
the origin of the n—axis is placed at the mid-surface, constitutive equations take the forms
(Fan =Mpy =0)

tE 1 tE _ou, 09¢
F2, :m(‘gzz +V5¢¢)_ DEKZZ = 1—1/2[ 82 R (8_¢_ n)]—-D P
iy =— +(g-T)Rig] = )+v i (g-nSL]
99 1— 99 R 6¢ Un O
1 1 6U¢ 1 ou, 100,
FZ¢ :Gt(82¢+g¢2)_5(1_V)DEKZ¢ ZGt(E ——¢) E( _V)Dﬁé_
1 du, 0U

b g 1%
a¢ oz +(g-1) a¢]’

6-44 continues...

Gt[g€¢z +€Z¢+(g 1)RK¢Z] Gt[ —




ou
an—Gt(é‘nz +6‘2n) —(1 V)D (KnZ+Kzn) Gt(l9¢—|— 8Zn

ou
Fnz_Gt(gnz +6‘2n)——(1 V)D (an""Kzn) Gt(l9¢—|— 8Zn

1 oup

Fsn —Gt[g8¢n+gn¢+(g 1)RK¢n] Gtg[ U¢) 0,1,

1 ,0u,
Fng = Gt(8n¢+g¢n)——(l v)Dxyy = Gt[-6, +_(_¢+u¢)]

1 06 106, 1ou,
MZZ = D(KZZ +VK'¢¢ _E‘c"ZZ): D 6_Z¢_V—6_¢Z_E pe )
1060, 006 1 ou
M¢¢ D(fK'¢¢ +VK,; + f— 8¢¢) D[— E 6¢ + v 6Z¢ o a_;_un)];
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1
M Z¢ :E(l_

M =—a

1

M,,==01-
n =5

1

M., ==(1-
=5

1
Mn¢ :E(l_

1
M, ==(1-
on 2(

1 1 06, 1 t9¢ 1 6u¢
V)D(Kz¢ +Kgz _EEM) Zz(l—V)D[(—é—ZZJFE%) _EG_Z]’
1005 06 1 ou
¢ z z
V)D(fK'¢Z+K'Z¢+f €¢Z)——(1— )D(f—a¢ — az +f?% y
1 1 1 ou
v)Dlxsn + iy _E(gzn +énz)] = _E(l_V)D (_n_|_ 05)
1 ,0u
v)Dl&n, + &0 - (gnz"'gzn)]—__(l v)D—(—+ +6y),
1
V)D(Kn¢ +K¢n —E8n¢) = O,
1 1 1 1 0u,
v)D(fEe‘¢n+Kn¢+ f/c¢n):§(l—v)Df E[—QZ —(—¢+u¢)],

where the functions depending on the relative thickness a=t/R
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a 1
~l+—+—+..., and f =12—(q-1).
2~ 1 e AU

In the simplified constitutive equations, shell is assumed to be thin in the sense that
a=1t/R <1 so that the first (g 1, f =0) or the first two terms (g ~1+a° [12, f =1) of
g give an accurate enough representation. No matter the number of terms used, constitutive

equations satisfy the moment balance of the domain element

1 1
FnZ_FZn :O, FZ¢_F¢Z +EM¢Z:0’ and Fﬂ¢_F¢n+EM¢n:0

‘a priori’. Also, stress resultants vanish in the rigid body motion of the shell
(z,¢,n)=Uy+QgxF and 6(z,4,n) =0y

in which U and Q are constant vectors.
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EXAMPLE 6.4 Consider a cylinder subjected to shear forces acting on the inner and outer
surfaces as shown. Use the Reissner-Mindlin type shell model in (z,¢,n)—coordinate
system to derive the expression of displacement G(n). Assume that the only non-zero
displacement/rotation component &, is constant and that the cylinder is in equilibrium so

that the shear forces per unit area satisfy z=7_(1+a/ 2)2 =7, (1-a/ 2)2 where a=t/r.

Answer U:in§¢ when a:i<<1
G R
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As all other displacement/rotation components except &, are assumed to vanish, the

equilibrium and constitutive equations (g, =1+ a’ /12 and f, =1) take the forms

2
1 a
EM¢n+Q¢—C¢=O, Q¢:—Gt(92, and M¢n:_GtERHZ'

The distributed force and moment follow from definition
b - (1 (1
=\ f Jdn+ > t J
HREBLEUN
inwhich f is the external volume force (due to gravity for example) and T is the given area

force acting on the outer and inner surfaces. The sum is over the coordinates {n_,n, } of

surfaces. Notice that — side iIs the outer surface and + the inner surface since n is directed
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inwards in (z,4,n) coordinates. Here f =0 and scaling coefficient expression J =1-n/R

for the cylindrical shell

4 7€
1-@/2?

e to t
c=> = (1+%)(—§)(—f_)e¢ i (1—%)(5)@)% ~R

When the constitutive equations are substituted there, equilibrium equation simplifies to

(assuming that a’ < 1)

~Gtd, —Rar=0 = @, :—é.

Finally, using the kinematic assumption of the shell-model U = 6,€, xne, =-né,€; and

therefore
I
u:ane¢. &

6-50



