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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems about the shell model:

  Reissner-Mindlin and Kirchhoff shell models and Kirchhoff constraints.

  Shell equilibrium and constitutive equations in their tensor forms.

  Component representations of the membrane and shell equations for cylindrical and

spherical geometries

  Derivation of shell equations by using the principle of virtual work, integration by parts,

and the fundamental lemma of variation calculus.
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GAUSS’S THEOREM

Let us consider a vector valued function 0 ( )a C 
  on a surface embedded in three-space

3  of the unit normal ne
 , outward unit normal on the boundary n , and tangential line

element nds e nds 
   . Then

Flat: 0( ) ( )a dA n a ds
 

    
  

Curved: 0( ) ( )ne adA n a ds
 

     
    .

In both forms, the area integral is over the surface and the boundary integral over the

boundary of the surface. Term 0 ne  
  is twice the mean curvature of the mid-surface or

the trace of curvature tensor : I 
 .
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Selection a F u 
   and vector identity c( ) ( ) : ( )F u F u F u         

      gives the

useful integral identity

0[( ( ) ( ) ] ( )nF u e F u dA n F uds   
 

         
       

0 c 0: ( ) [ ( )] ( )nF u dA F e F udA n F uds   
  

            
       



The last form can be taken as integration by parts formula on a curved surface. If 0   or

0ne F 
 , the usual form used already in connection with plates is obtained.
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VOLUME AND AREA ELEMENTS

The integrals of the virtual work expression are always over a body. Representations of the

volume and area elements consist of the mid-surface elements and scaling factors taking

into account the offset in the transverse direction.

2 2( ) ( sin )R ndV dn R d d
R

  


The scaling factors for the area elements depend on the direction of the boundary n (the unit

outward normal vector), curvature of the mid-surface  , and normal coordinate n .

scaling factor

small dimension

domain element

mid-surface
area element
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 GRADIENT REPRESENTATION

In derivation of equilibrium equations from virtual work expression of shell, gradient needs

to be expressed in terms of the mid-surface gradient 0 , offset scaling D


, and the normal

part:

Generic: 0( )nD e
n


    


 

Cylindrical: 1( ) ( )z z n n z n
Re e e e e e e e e

R n z R n   
  

      
   

        

Spherical: 1 1( ) ( )
sinn n n

R Re e e e e e e e e
R R nR n R n       

  
   

 
  

  
        

In flat geometry D I
 

and in the thin body limit ( / 1t R ) D I
 

. Notice that integration

by parts formula on curved surfaces is concerned with 0 .

mid-surface partscaling

normal part
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EXAMPLE As a generic vector identity, Gauss’s theorem is valid also when a thin body

has curved mid-surface geometry. However, all parts of the boundary need to be accounted

for correctly. As an example, let us consider a cylindrical body of constant thickness t  of

mid-surface area and line elements dA, ds  and vector ( , )a z  . Then, using [ / 2, / 2]t t  

( ) ( )a dV n a dA
 

   
   

0( )(1 ) ( )(1 ) ( )(1 )n n na dndA n a dnds n a dA
R R R  

          
     

0
1( ) ( ) ( )na dA n a ds a e dA
R  

       
     .

In the last term on the right-hand side 01/ nR e  
 . The additional term related with the

curvature takes into account the different areas of the inner and outer surfaces of the

cylindrical body.
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6.1 SHELL MODEL

Kinematic assumption: Straight line segments perpendicular to the mid-surface remain

straight in deformation (Reissner-Mindlin) or straight and perpendicular to the mid-surface

(Kirchhoff) in deformation, so 0 0 0 0nu u ne u n     
     .

Kinetic assumption: Stress component 0nn  .

thin curved body
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EFFECT OF CURVATURE

Sphere subjected to internal pressure:

1
2

N pR  and
1
2

N pR  

1 1( )
2 2

N pR e e e e pRI     
    

(isotropic stress)

Long cylinder subjected to internal pressure:

1
2zzN pR and N pR  

1 ( 2 )
2 z zN pR e e e e  

    
”curvature”

θ
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6.2 SHELL EQUATIONS

Virtual work expression of shell, principle of virtual work, integration by parts on curved

surfaces (Kelvin-Stokes), and the fundamental lemma of variation calculus give:

0( ) 0ne F b    


in 
0( ) ) 0n n ne M e F c e       

    

0n F F  
 

   or 0 0 0u u 
 

                                                              on 
( ) 0nn M M e   

      or 0 0 0  
 

Shell and plate equations differ in the “derivative” operator. Conditions on   need to be

expressed finally with component representations in the boundary ( , , )n se n e    basis.

https://en.wikipedia.org/wiki/Stokes%27_theorem


6-11

Virtual work expression of the shell model coincides with the plate model. However, as the

mid-surface is not flat, the simple Gauss theorem is replaced by a version valid on curved

surfaces

T TT
0 0

0 0c

( : )
u uF Fb

W dA dA ds
M Mc

 


   

                                   
                   

  
  

    .

Integration by parts in terms containing derivatives of the variations gives (mean curvature

0 ne  
 ) with the version of the Gauss theorem and the tensor identity

c( ) ( ) :b a b a b a       
       gives

0 0 c 0 0 0: ( ) ( ) ( )nF u dA F e F u dA n F u ds   
  

            
        ,

0 0 c 0 0 0: ( ) ( ) ( )nM dA M e M dA n M ds   
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and thereby an equivalent but a more useful form of the virtual work expression

T T
0 0

0 0

( )

( )

n

n n

u ue F b n F F
W dA ds

e M e F c n M M

 


  

                            
                  

 
    

        .

When definition 0 0 ne  
  and the vector identity ( ) ( )a b c a b c    

     are used there

(to recover the original rotation variable), the principle of virtual work and the fundamental

lemma of variation calculus imply that (notice the terms due to curvature)

0( ) 0ne F b    
 in 

0[( ) ] 0n n ne M e F c e       
        in 

0n F F  
 

   or 0 0 0u u 
 

  on 

( ) 0nn M M e   
      or 0 0 0  

 
  on 

boundary conditions

equilibrium eqs.
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RESULTANT DEFINITIONS

Stress and external force resultants are integrals over the thickness ( 0 0 ne  
  ). Stress

resultant definition gives the constitutive equations:

:
A CF

M C B




        
      

   
     , c2

1
( )

nA C
D E DJ dn

n nC B

   
     
     


     
   , 0 0 0

0 0

nu e 


   
      

 


1 1b f Jdn t J
n nc

     
      

    


  
 ,

1
n

F
t J dn

nM

         
     





 .

Elasticity tensor E


 is assumed to satisfy the minor and major symmetries and condition

: 0n ne e E 
  . For a thin shell 1t  , scaling factors D I

 
, 1J  , and 1nJ  .

external force and moment
 per unit area

external force and moment
 per unit length
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MEMBRANE EQUATIONS

Shell equations combine the thin-slab and bending modes. The membrane model, i.e., thin-

slab model in curved geometry, applies to thin materials of negligible bending rigidity. The

invariant forms of the shell model equilibrium and constitutive equations follow from the

shell equations with the assumptions 0u u  , 0Q 


, 0M 


:

0 0N b   


in  ,

0 0:N A u 
  in ,

0n N N  
 

   or 0 0 0u u 
 

   on .

The membrane model finds use ,e.g,, in textile material, balloon, air-supported hall etc.

applications.
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CYLINDRICAL MEMBRANE ( , , )z n

Equilibrium and constitutive equations of a cylindrical membrane follow from the

coordinate system invariant forms of the membrane equations when gradient etc. are

represented in ( , , )z n -coordinate system:

1

1 0

1

z zz
z

z

n

N N b
R z
N N

b
z R

N b
R



 








 
    

        
 

 
  

,   1 ( )

1

z

zz

n

z
z

u
z

N
u

N t E u
R

N uu
R z


 








 
   
           

   
 

   

.

Boundary conditions on   should be expressed in the boundary system with

z zn e n e n  
    and s n r re e n e n e n    

     .
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In cylindrical geometry and ( , , )z n  coordinates, gradient operator takes the form

0
1( ) ( )z n n

Re e e D e
z R n R n n 
   

       
    

    ,

where

0 ze e
z 


 

  
 

  , 1
1z z n nD e e e e e e

n  
  



       ,  and 1
R

  .

Direct calculation with representations zz z z z z z zN N e e N e e N e e N e e         
         ,

z z n nb b e b e b e   
      and the known derivatives of the basis vectors gives

0
1 1 1( ) ( ) ( ) 0z zzz

z z n n
N N NNN b e b e b e N b

R z z R R
  

   
  

           
   

    .
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Tensor A


 of shell constitutive equation depends on the plate model elasticity tensor E


,

scaling D


, and Jacobian 1J n  . Assuming a thin membrane / 1t R  for simplicity so

that 1J   and D I
 

 (the precise expressions will be discussed later)

 

T

c( ) z z z z

z z z z

e e e e

A D E DJ dn e e t E e e
e e e e e e e e

   



   

   
   

       
       



   
        

       
.

Only the translation part z z n nu u e u e u e   
     of the kinematic assumption matters. Direct

calculation with the known derivatives of the basis vectors gives

0 0
1 1 1( ) ( )n nz z

z z z z n z n n
u u u uu uu e e e e e e u e e e e u e e

z z R R z R
 

       
    

        
     

            

Therefore, the constitutive equation takes the form
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T

0 0

1 ( )

:

1

n

z
z z

z z
z

u
u

Re e
uN A u e e t E
z

e e e e
u u
z R



 



 






 
   

                 
 

   

 
   

   
. 
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EXAMPLE 6.1 A thin walled cylindrical body of length L, (mid-surface) radius R, and

thickness t is subjected to distributed loading z z n nb b e b e b e  
   

  of constant components

and boundary loading ( )zF t e e  
  

 at the free end z L . Assume rotational symmetry

and use the membrane equations in ( , , )z n  coordinate system to solve for the mid-surface

stress resultants.

Answer: ( )zz zN t b L z   , ( )zN t b L z    , and nN b R 
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A rotational symmetric solution does not depend on  . Then the equilibrium equations of

the membrane model and the boundary conditions at the free edge simplify to

0zz
z

dN b
dz

  , 0zdN
b

dz


  , 1 0nN b
R      in (0, )L

0zzN t  , 0zN t     at z L .

Solution to the boundary value problem of two ordinary first order differential equations

and one algebraic equation for the stress resultants is given by

( )zz zN t b L z   , ( )zN t b L z    ,  and nN b R   . 
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 SPHERICAL MEMBRANE ( , , )n 

1 ( )

1 [csc cot ( )]

1 [csc cot ( )] 0

n

N N
N N b

N N b
R

R
N N N N b

R

 
  

 




  





 

 
 

 
 

  
      

          
 
 
 






 

csc (cos )

csc sin

csc cot

1

n

n

u
u u

u
N

N t E
R

N
u

uu u





 












 


 


 
 


 







 
 
  
  

   
   
   




 
  



 and N N 

θ
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EXAMPLE 6.2 Consider a balloon in ( , , )n   coordinates under positive pressure

difference in outp p p   . Assuming a rotational symmetric solution with respect to two

axes, so that all stress resultants and displacement components are independent of   and 

, find the membrane stress and displacement of the surface.

Answer: ( )
2
pRN e e e e   


 

       and
2 (1 )
2 n

pR e
tE

u 

 

NOTICE. Linear elasticity theory assumes an equilibrium initial geometry with 0N


, 0p ,

and 0R . The aim is to find the new equilibrium N


, p , and R  due to the change in pressure.

Here, displacement gives the change in radius due to the increase in the pressure difference.
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According to the assumption, derivatives with respect to   and   vanish. The components

of distributed force are 0b b    and nb p   (n  is directed inwards). Equilibrium

equations (N N  ) simplify to

2cot 0N  , cot ( ) 0N N    , 0N N pR     in  

0N  and
2
pRN N 


  . 

With the solution above, constitutive equations give

  1
cot

2
cot

1 0 1
1 0 0
0 0 0 n

u
pR u

u
Et

R 













    
    


    

        


2(

0
01 )

2
1n

u

u

pR
tE

u





   
         
   

  

. 
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6.3 CYLINDRICAL SHELL ( , , )z n

In curved geometry, the thin-slab and bending modes are always connected. In cylindrical

geometry and ( , , )z n coordinates, the equilibrium equations of shell take the forms to

1

0
1 1

z zz
z

z
n

N N b
R z

N N
Q b

z R R



 
 





 
             

,

1 1

1 0

1 1

n zn
n

zzz
nz z

z
n n

Q Q N b
R z R

MM Q c
z R

M M
M Q c

z R R






 
  







 
     

        
  

    
   

.

The boundary conditions on   need to be deduced from the generic forms for the boundary

system with z zn e n e n  
    and s n z ze e n e n e n    

     . The non-zero constitutive

equations for a thin shell 2( / ) 1t R  ) take the forms
continues ...
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In-plane and shear force resultants

2 2

2

2
1[ (

1 1[ ( ) ]
1

1 1 1( (1
2

1 1 1( )

1)]
1

) )

(1
2

)

z
n

z z
n

z z

z

zz

z

z

uu u

G

D

t
z R

u utE u
R z R

uu
R z R

N

z
uu

R z R

E D
R z

N

N
t D

N

Gt D



























 









 





 
  

   
   
      
   
   
   

 
 


 

 
  

  
  

 
  

  
 

  
   

,
1 )(

n
z

n
z

u
Q z
Q u

Gt

R
u




 



            
 




.

It is noteworthy that z zN N    although z z   . The Kirchhoff constraints can be

deduced from the shear force expressions is the same manner as with the model in flat

geometry (plate). In the moment resultants

continues ...



6-26

2

2

1

1 1 (

1 1 1(1 )

1

)

)

[( ]

[

)
2

1 1 1(1 ) ](
2

zz z
n

z z

z

z

z z

z

z R
M

R

u
R

u
uM z R

M u
R z R zM

R z

D

u
R

z

 


  










 
 
 

 



 
 

 
   

    
    

                     
     



   










, 1 1 1[ ((1 ) ) ]
2

n
n z

uM D u
R R  


 

  




z zM M    and the one needs also the expression for component nM  which is not present

in the flat geometry equilibrium equations. The stress resultant definitions give expressions

for all the components, but only those appearing in the equilibrium equations are needed in

displacement analysis.
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EXAMPLE 6.3 Consider a cylindrical container of radius R  subjected to distributed force

nb due to internal excess pressure p. Assuming rigid end plates and rotation symmetry

(derivatives with respect to   vanish and 0zu   ), derive the differential equation and

the boundary conditions for the transverse deflection ( ) ( )nw z u z according to the

Kirchhoff model. Material is linearly elastic with properties E  and  . Thickness of the

container wall is t .

Answer:
4 2

4 2 2 2
2 1 ( 0)n

d w d w Et Nw b
D Rdz R dz DR
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In the Kirchhoff model, constitutive equations for the shear forces are replaced by Kirchhoff

constraints. With relationship /ndu dz    and the assumptions of the problem, the non-

zero constitutive equations for the stress resultants simplify to

2

2 2) 1(
1

1z
zz n

nduN u
d

d uE
dzz

t D
R R







 ,

2
1( )

1
z

n
dutEN u
dz R 


 


,

2

2
1 )( n z

zz
dM
d

u duD
Rz dz

   .

Equilibrium equations simplify to

0zzdN
dz

 , 0Q   , 1 0z
n

dQ N b
dz R    ,  and 0zz

z
dM Q

dz
   .
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and after elimination of the shear force (using the moment equation)

0zzdN
dz

  and
2

2
1 0zz

nN bd
R

M
dz

   .

The constitutive equations for N  and zzM  can be expressed in terms of nu  by using the

equilibrium and constitutive equations for zzN :

0zzdN
dz

 
2

2 2) 1(
1

1 .z
n

n
zz

d udu u
dz

tEN D N const
dzR R

    




22

2
1 1 ( )1 nz

n
d udu u N D

dz R t zRE d
 

   .

Hence after elimination of /zdu dz  and with the shorthand notation /a t R
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2

2 2
1( ) )(

1
1z

nn
nu d udutE tEN u D

dz R R dR z
N


    


,

2 22

22

2

2
1 1 1 1) [(1 ) ]

2
(

1
n nz

zz n
u d udu aM D D N u

R dz R tEdz R
d
dz

 
      .

Using notation nu w , equilibrium equation in the transverse direction gives

2 2 4 2

2 4 2 2 2
2[(1 ) ]

12
1 0zz

n n
d M a d wN d w tE ND w

Rdz dz R dz R
b b

R             . 

Assuming that the end plates are rigid so that the displacement and rotation vanish at ends

of the cylindrical container and 2 1a  , the boundary value problem for the transverse

displacement (positive inwards) takes the form
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4 2

4 2 2 2
2 01 ( )n

d w d w tE Nw
D Rdz R d DR

b
z

         in (0, )L , 

0dww
dz

     on {0, }L . 

The fourth order differential equation can further be simplified by omitting the second

derivative term as negligible compared to the fourth order derivative term.
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6.4 SPHERICAL SHELL

In spherical geometry and ( , , )n  coordinate system, the equilibrium equations of shell

simplify to

1 ( csc 2cot

1 ( csc cot cot 0

1 ( csc cot

)

)

) n

N N N Q b
R

N N N N Q b
R

Q Q Q N N b
R

    

     

    

 
 

  
 

 
 

 


 
 


 

 
  
 
 

 


 

    
 

 


 


 




,

1 ( csc cot

1 ( cs

2

c cot

)

0
co )t

M M M Q c
R

M M M M Q c
R

    

     

 
 

  
 

    
   
 

 
 

 
 

 
 



,

continues...
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In-plane and shear force resultants are

2 s

)( cot csc ( )

( cot c c (

(

1 )

1 cot

)
1

csc )
2

n n

n n

N
EtN

u uu u u

u uu u u

u
N u

u

R

 



















  
 

  
 

  
 



 
 
  
       

   
   

 
 

 
   
 
 

   
 




 


 
 

 where 1csc
sin




  .

For the spherical geometry N N   and (the Kirchhoff constraints can be deduced from

the shear force expressions in the same manner as those for the flat geometry)

1 ( csc )

1 ( )

n

n

Q

R

tG
Q

uu
R

uu



















            
 







.

continues...



6-34

The expressions for the moment resultants of the equilibrium equations are given by

cot csc

( cot csc )

1 ( cot csc )
2

1
M

M D
R

M







 






  
 

  





  
 










 
 
  




 
 


 

 


        




  
 











 
 

.

Again, for the spherical geometry M M  . The stress resultant definitions give

expressions for all the components, but only those appearing in the equilibrium equations

are needed in displacement analysis.
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6.5 VIRTUAL WORK DENSITIES

Virtual work densities of the shell model follow from the generic expression for linear

elasticity theory and the kinematic and kinetic assumptions of the model. Integration over

the thin dimension gives

T
int

c
: Fw

M





  
    

   


 , where 0 0 0

0 0

nu e 


   
      

 


T
ext u bw

c





  
    
   


  ,

T
ext u Fw

M





  
    
   




in which

c
1F JD dn
nM


   

    
  


   ,

1 1b fJdn tJ
n nc

     
      

    


  
 ,  and

1
( )F J n tdn

nM
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All the kinematical quantities need to be expressed in terms of the kinematical quantities of

the mid-surface 0u , 0


, 0   etc. With 0 0 ne  
  , displacement gradient

0 0 0( )( ) ( )nu D e u n D n
n

  
        



      ,

where 0 0 0nu e  
      and 0 0 

 
  are the strain measures. With the vector identities

: ( ) ( ) :a b c a b c  
      and c c c( )a b b a  

   , the virtual work density of internal forces takes the

form

T
int c

c c c c
cc

( ) : ( ) : ( ) :V
D

w u n D
nD

 
     

 
  

           
   

       .

The volume element can be expressed as dV JdndA , in which dA is the mid-surface area

element. Therefore, integration over the domain occupied by the body gives
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T T
int

c
c c

1
[ : ( )] ( : )

F
W JD dn dA dA

n M
 

 
  

      
           

       
  

     

in which the stress resultants

c
1F JD dn
nM


   

    
  


  

are work conjugates to the strain measures. It is noteworthy that F


and/or M


 of shell theory

need not to be symmetric although the balance law of moment of momentum requires that

c   . Volume and area forces contribute to the virtual work of external forces.

extW f udV t udA  
 

    
   .

There, the boundary contribution needs to be divided into parts coming from the outer and

inner surfaces and from the edge (the sum is over the outer and inner surfaces / 2n t  )
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T
0ext

0

1 1
[ ( ) )]

u
W fJdn tJ dA

n n



 

     
       

    
 

  
 

T
0ext

0

u bW dA
c




 

  
    

   



  ,    where

1 1
)b fJdn tJ

n nc
     

      
    


  
 . 

T
0ext

0

1
[ ( ( ) )]

u
W tJ n dn ds

n



 

   
    

  
 

  
 

T
0ext

0

u FW ds
M




 

  
    

   



 ,   where

1
( )F tJ n dn

nM
   

   
  




  . 
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6.6 CONSTITUTIVE EQUATIONS

Constitutive equations 0 0( , )F F u 
   , 0 0( , )M M u 

   follow from the generalized Hooke’s

law, the definition of small strain, and the kinetic and kinematic assumptions of the model:

:
A CF

M C B




        
      

   
     , where c2

1
( )

nA C
D E DJ dn

n nC B

   
     
     


     
  

Elasticity tensor E


 is assumed to satisfy the minor and major symmetries and condition

: 0n ne e E 
  . Elasticity tensors A


, B


 and C


 of  shell depend on the material, positioning of

the mid-surface (actually the reference surface), thickness of the shell, and curvature of the

mid-surface. Assuming a thin shell 1t  so that D I
 

 and 1J  , the expressions boil

down to the plate expressions.

notice this!
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Constitutive equations follow from the stress resultant definitions when the stress expression

is substituted there

c
1

( )F JD dn
nM


   

    
  


   .

The stress resultant tensors may not be symmetric even though the stress tensor always is.

The displacement gradient expression was earlier found to be

T

0 0 0
1

( )( )nu D e u n D
nn





   

              

   
 , where 0 0 0

0 0

nu e 


   
      

 
 .

Let us assume a linearly elastic material and an elasticity tensor satisfying the minor and

major symmetries and condition : 0n ne e E 
  . Stress-strain relationship gives (tensor

identity : ( ) ( ) :a b c a b c  
      )
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T1
: ( ) :E u E D

n





   
      

   

    
 .

The stress-resultant definition gives now expression

c c2

11
( ) ( ) :

nF JD dn JD E D dn
nM n n





      

          
       

 
      

:
A CF

M C B




        
      

   
     , where c2

1
( )

nA C
JD E D dn

n nC B

   
     
     


     
   . 

which depends on the material properties, position of the mid-surface (actually the reference

surface), thickness of the shell, and curvature of the reference surface. Without

simplifications the membrane and bending modes are always connected.
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SIMPLIFIED CONSTITUTIVE EXPRESSIONS

The practical expressions of constitutive equations are often simplified by omitting the

“small terms”. The simplified expressions of the stress resultants should

(1) vanish in rigid body motion of the shell 0u U r 
   and   

 
 in which U


 and 


 are

constant vectors in the Cartesian ( , , )x y z  coordinate system

(2) satisfy the moment equilibrium 0 0 0( ) ( ) 0n n ne F e F r M e        
      , in which the

underbars denote constants with respect to the gradient operator.

Both conditions are satisfied by the constitutive equations of spherical shell and by the

cylindrical no matter the number of terms used for ( )g   (not all simplifications of the

constitutive equations satisfy conditions (1) and (2)).



6-43

The latter requirement is the local form of balance law of moment of momentum for shell

(symmetry of stress c    of classical elasticity is the outcome of the same law). With the

equilibrium equations ( 0b c 
   for simplicity), one obtains

0 0 0( ) [ ( ) ( )] 0n n n nr F e M ds F r M e e F r M e dA
 

                
            

0 0 0 0( ) [ ( ) ( )] 0n n n nr F e M ds e F e F r M e dA
 

              
         

in which the underbars denote constants with respect to the gradient operator. As   is

arbitrary, the second form implies that

0 0 0( ) ( ) 0n n ne F e F r M e        
      .
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CYLINDRICAL SHELL CONSTITUTIVE EQUATIONS

Derivation of the constitutive equations is a straightforward but somewhat tedious task. If

the origin of the n axis is placed at the mid-surface, constitutive equations take the forms

( 0nn nnF M  )

2 2
1 1 1[ (( ) )]

1 1
zz zz

z
zz n

uuF u D
R

t
R

E
R

E D
z

t
z





  

 





 

     
   

,

2 2
1[ ( 1) ] [ ( ) ( 1) ]

1 1
z z

zz n
u utE tEF g g R g u g

R z


  
   

  

  
        

   
,

1 1 1 1 1( ) (1 (
2

) (1
2

) )z z
z z z zD Gt

u uF Gt
z R R z

D
R


   

  


 
  

      
  

 ,

1[ ( 1) ] [ ( 1) ]z
z z z z Gt

uuF Gt g g R g g
R z

 
   


  

 
 

       
  

,

continues...
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11 (1 (
2

( ) ) ( ) )n
zn nz zn nz zn

uF Gt D G
R z

t      
    


  ,

11 (1 (
2

( ) ) ( ) )n
nz nz zn nz zn

uF Gt D G
R z

t      
    


  ,

1[ ( 1) ] [ ( ) ]n
n n n zn

uF Gt g g R Gtg u
R      




     


,

1( ) ) 1(1 (
2

[ )]n
n n zn n

uF G
R

Gt D t u     


   





   ,

1 1 1(( ) )z z
zz zz zz

uM
R z R R

D D
z




    


  
   

  
  ,

2
1 1 1( ) [ )](z

zz n
u

M D f f f f u
R R z

D
R

 
  

   
 

 
    





 


,

continues...
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1 1 1 1 1(1 ) (1( ) [( )
2

])
2

z
z z z z

u
M D

z
D

R R R z
 

   
    


 
 

      
  

,

2
1 1 1 1 1(1 ) ( ) ( (1 ) )
2 2z

z z
z z z

uM D f f D f f
R R z R




  
    
 


  

      
  

 ,

1 1 1 1(1 ) [ ( )] (1 ) ( )
2 2

n
zn nz z zz nn n

uD D
R R z

M       
       


 ,

1 1 1 1(1 ) [ ( )]
2 2

(1 ) ( )nz zn n z
n

z nnz D
R R

uM D
z          


   


,

1 1
2

(1 ) ( ) 0n n n nM
R

D          ,

1 1 1 1 1[ ( )]
2 2

(1 ) ( ) (1 ) n
n n n n z

uM f f f u
R R R

D D      


 


      


  ,

where the functions depending on the relative thickness /a t R
continues...
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2 41 2log( ) 1
2 12 80

a a ag
a a


    


 ,   and 2

112 ( 1)f g
a

 .

In the simplified constitutive equations, shell is assumed to be thin in the sense that

/ 1a t R   so that the first ( 1g  , 0f  ) or the first two terms ( 2 / 21 1g a  , 1f  ) of

g  give an accurate enough representation. No matter the number of terms used, constitutive

equations satisfy the moment balance of the domain element

0nz znF F   , 1 0z z zF F M
R     ,  and 1 0n n nF F M

R    

‘a priori’. Also, stress resultants vanish in the rigid body motion of the shell

0 0 0( , , )u z n U r   
  

  and 0( , , )z n   
 

in which 0U


 and 0


 are constant vectors.
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EXAMPLE 6.4 Consider a cylinder subjected to shear forces acting on the inner and outer

surfaces as shown. Use the Reissner-Mindlin type shell model in ( , , )z n coordinate

system to derive the expression of displacement ( )u n . Assume that the only non-zero

displacement/rotation component z  is constant and that the cylinder is in equilibrium so

that the shear forces per unit area satisfy 2 2(1 / 2) (1 / 2)a a        where /a t r .

Answer u ne
G 



   when 1ta

R
 

x

y

R
ϕ

t
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As all other displacement/rotation components except z  are assumed to vanish, the

equilibrium and constitutive equations ( 21 /12g a    and 1f  ) take the forms

1 0nM Q c
R      , zQ Gt   ,  and

2

12 zn
atM G R   .

The distributed force and moment follow from definition

1 1b f Jdn t J
n nc

     
      

    


  


in which f


 is the external volume force (due to gravity for example) and t


 is the given area

force acting on the outer and inner surfaces. The sum is over the coordinates { , }n n   of

surfaces. Notice that – side is the outer surface and + the inner surface since n is directed
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inwards in ( , , )z n  coordinates. Here 0f 


 and scaling coefficient expression 1 /J n R 

for the cylindrical shell

2(1 )( )( ) (1 )( )( )
2 2 2 2 1 ( / 2)
a t a t ac tnJ e e R e

a
            



   

.

When the constitutive equations are substituted there, equilibrium equation simplifies to

(assuming that 2 1a  )

0zt RG a     z G
 

  .

Finally, using the kinematic assumption of the shell-model z z n zu e ne n e    
    and

therefore

u ne
G 



  . 


