MEC-E8003 Beam, plate and shell models, examples 6

1. Curvilinear (s,«,n)— coordinate system of a shell is defined by mapping

F(s,a,n) = (R + n)cos(%)? +(R+ n)sin(%)] +alK

in which R and L are some constants, and n is the transverse coordinate. Derive in detail the
expressions for the basis vectors, the non-zero basic vector derivatives, gradient operator, and
the curvature tensor of mid-surface.

2. Derive the component forms of cylindrical shell moment equilibrium equations in the (z,¢,n)
coordinate system starting from the invariant form (Vo -M — &€, -M —&, -F +C)x&, =0
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3. A thin walled cylindrical body of length L, (mid-surface)
radius R, and thickness t is subjected to shear loading zt
[zt]= N/m at the free end z =L as shown in the figure.
Assuming rotation symmetry, use the membrane equations
in (z,¢,n) coordinate system to derive the relationship
between the moment resultant T (in the direction of z-
axis) of the shear loading and the angle of rotation of the
free end defined by 6 =u, /R. X

27R%t

Answer T = Go

4. Consider a torus shaped balloon under the loading caused by
inner pressure difference Ap relative to the ambient pressure.
Use (¢,0,n) coordinate system, assume rotation symmetry with
respect to ¢, and solve for the stress resultant components from
the equilibrium equations:
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Displacement and rotation in rigid body motion are G =U + QxF, and Q in which U and Q
are constant vectors in the Cartesian (x,y, z) coordinate system. Calculate the cylindrical shell
stress resultant components M,; and My, in rigid body mode Q,=#0 and
Uy=U,=U,=Q,=0Q,=0.

Answer My s =My, =0

A steel ring of length L, radius R, and thickness t is loaded by
radial surface force p acting on the inner surface. No forces are
acting on the ends. Model the ring as a cylindrical membrane,
write down the equilibrium and constitutive equations, and solve
for the radial displacement. Assume rotation symmetry. Young’s
modulus E and Poisson’s ratio v of the material are constants.
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Answer u, = T p

Consider a simply supported (long) circular cylindrical shell of
radius R, thickness t, and filled with liquid of density p in l
cylindrical (z,¢,n)coordinates. Determine the mid-surface stress
resultants N4, N,4 and N, by assuming that there are no axial
forces at the ends of the shell and bending deformation is
negligible. (J.N.Reddy: Example 11.3.1)

Answer Ny, = —RAp—pgR2 cosg, N4 :pgR(%L—z)sin p+A, N, =,og%(z2 —zL)cos¢

Consider a cylindrical shell of radius R, subjected to bending moment M,, =M and shearing
force Q, =Q attheend z=L. The other end z =0 is clamped. Assuming rotational symmetry,
derive the boundary value problem of Kirchhoff type for deflection u,(z). Start with the
component forms of the Reissner-Mindlin (type) shell equations in cylindrical (z,¢,n)
coordinates.
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Consider a circular cylindrical shell of radius R, subjected to bending moment M,, =M and
shearing force Q, =Q atthe end z=L. The other end z=0 is clamped. Assuming rotational
symmetry, derive the boundary value problem of Reissner-Mindlin type for deflection u,,(z) and
rotation 9¢(z).
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u, =0, 6,=0 at z=0.

A strip of cylindrical shell is loaded by shear force P ([P]=N/m) at
the free end. Write down the boundary value problem of first order
ordinary differential equations consisting of the equilibrium and
constitutive equations according to the Kirchhoff theory. Thickness t,
width H, and the material parameters E, v are constants. Assume that
the solution depends on ¢ only.
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Derive the component forms of cylindrical shell moment equilibrium equations in the (z,¢,n)
coordinate system starting from the invariant form (Vo -M —x€,-M —§&, -F +C)x&, =0.

Solution
Component representations of the quantities in the equilibrium equation are (notice that the transverse
normal components are missing)

F= szézéz + NZ¢§Z§¢ + N¢Z§¢§Z + N¢¢§¢§¢ +QZ§Z§H +QZ§H§Z +Q¢§¢§n +Q¢§n§¢ )

M=M ZZéZéZ +M Z¢§Z§¢ + M¢Z§¢§Z + M¢¢§¢§¢ +M znézén +M nzénéz + M¢n§¢§n +M n¢§n§¢ ,
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In the shell model, the stress resultants may not be symmetric although the stress & always is.
Derivatives of the basis vectors, the unit tensor and curvature tensor are

Y ¢:§n’ a_¢n:_e¢a | =€,€, ¢¢+§n§na
o8, _ 10§ 1 _— 1
K= (voen)c (ez azn ¢Ra¢?)c _¢¢R = k=1 K:—E.

Let us consider the mid-surface and transverse parts of the moment separately to shorten the
expressions, First the mid-surface part
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The second term of the equilibrium equation simplifies to
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Third term
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Finally, combining the terms (all terms in the normal direction vanish due to the cross product with
€)
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A thin walled cylindrical body of length L, (mid-surface)
radius R, and thickness t is subjected to shear loading rt
[zt]=N/m at the free end z=L as shown in the figure.
Assuming rotation symmetry, use the membrane equations in
(z,¢,n) coordinate system to derive the relationship between
the moment resultant T of the shear loading and the angle of
rotation of the free end defined by 6 = Ug /R.

X

Solution
As the solution does not depend on ¢, equilibrium equations of the membrane model and boundary
conditions at the free end simplify to (a cylindrical membrane z —strip problem)

dNZZ sz¢ 1 .
=0, =0, =N, =0 in (O,L),
dz dz R O.L)

N, =0and N,y=7t at z=L.
Solution to the boundary value problem for the stress resultants is given by
NZZ = N¢¢ =0 and NZ¢(Z):Tt. €«

Knowing the stress resultants, the boundary value problem for the displacement components follows
from the constitutive equations and the boundary conditions at the fixed end (in the membrane model,
a boundary condition cannot be assigned to uy, )

tE ,du, 1 tE , du, 1 dug .
—Z_y=u,)=0, —£—-—u,)=0, and tG—~=1t in (O,L),
1.,2°dz 'R n) 1-v? v dz R n) az o0

u, =0, uy;=0 at z=0.
Solution to the boundary value problem is given by
u,=u,=0and u (z)—iz

z n 1/ G

Moment resultant of the shear loading

2r 2 T
T= trR(Rd¢) =27zRtr = 7= .
IO ¢ 27ZR2t
Therefore, at the free end
3
U :lL:;ZT _ro = T-ZRcy. €
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The polar moment predicted here is I, = 27R%t whereas the exact is I :%7th(4R2 +t2) .



Consider a torus shaped balloon under the loading caused by inner
pressure difference Ap relative to the ambient pressure. Use
(¢,0,n) coordinate system, assume rotation symmetry with respect
to ¢, and solve for the stress resultant components from the
equilibrium equations:
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Solution

As the solution should be independent of ¢, partial derivatives with respect to ¢ vanish and the
equilibrium equations of torus geometry simplify to ordinary diffrential equations. In toroidal system
€, is directed outwards and therefore b, = Ap:

dN 2rsin@

#0 rsin )

— N,,=0 N., =0 (clearly asolution),
dé R+rcosd 90 = g0 ( Y )

ngg " rsin@

N, —Ngyy)=0,
do R+rc039( 99 00)
rcosé rcosé
Npg+—— N, —rAp=0 ————— N, =rAp—Ny,,.
00 R+rcos@ 99 P < R+rcosé@ 99 P 06

Eliminating N g from the last two equations gives

rcosé N rsind

—% 4 tan f(——— —— Ny, =0
do (R+rc059 99 R+rcosé@ 00 <
dNgg rsiné

—% 1t tan(rAp—Nyppy)———— N, , =0

do (rap 00) R+rcosé@ 06 <

dNgg  R+2rcosd
do R+rcosé@

)tan &Ny, +rAptand=0.

Solution to the equation can be obtained by using an integrating factor. Let us write the differential
equation in form

A ANy Ler Ay
do do

e 00 +eArAptan9=;—e(eANgg)JreArAptan@:O,



d—A:—w)tane & A=Iog(RcosH+rcosZH) & eAzcose(R+rcose).
do R+rcosé

Continuing with the other equation of the set (integration constant is zero as stress resultant should
vanish when Ap =0)

dd—e(eANgg) = —eArAp tand=-sind(R+rcosO)rap =

eANgg = Aprcosé(R +%r cosd) =

2R +rcosé rAp

Nop=rA and N, =——
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Displacement and rotation in rigid body motion are G =U +QxTFy and Q in which U and Q are
constant vectors in the Cartesian (x,y,z) coordinate system. Calculate the cylindrical shell stress
resultant components M4 and M4, in rigid body mode €, #0 and U, =U, =U, =Q, =Q, =0

Solution
The representations of the quantities in the cylindrical (z,¢,n) coordinate system can be obtained
from the relationship between the basis vectors of the Cartesian and cylindrical system

g, 0 o 10 i 0 o 1] (g

€ r=|-sing cosg O|yjr < (]r=|-sing cosg 0| 1.
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U (61T 0o o 17U, (8" u,
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The displacement and rotation components due to rigid body motion are (rotation of a typical line
segment aligned in the normal disrection does not have a component in the normal direction)

&,)" (U, +RQ,sing-RQ, cosg

0=U+Qxfy=18 1Uycosg—Uysing+RQ, —2Q, cosg—zQsing ,

€, —Uy cosg—U, sing+zQ, sing—zQ, cos¢

é.Z QZ
6 =181 1Qycosg—Qysing..
€n 0
Let us consider the rigid body mode obtained with Q, =0 and U, =U, =U, =Q, =Q, =0 and

substitute the components obtained into the constitutive equations for M5 and M, of the formulae
collection:



u, =QuRsing, uy=-Q,zcos¢, u,=Q,zsing, 6,=0,and 6, =-Q,sing =
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A steel ring of length L, radius R, and thickness t is loaded by radial
surface force p acting on the inner surface. No forces are acting on
the ends. Model the ring as a cylindrical membrane, write down the
equilibrium and constitutive equations, and solve for the radial
displacement. Assume rotation symmetry and uy=0. Young’s
modulus E and Poisson’s ratio g of the material are constants.

Solution
According to the formulae collection, equilibrium and constitutive equations of a cylindrical
membrane in (z, ¢, n) coordinates are (notice that €, is directed inwards)
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Due to the rotation symmetry, the derivatives with respect to the angular coordinate vanishand u, =0
. External distributed force b, =—p is due to the traction acting on the inner boundary. Therefore,
the equilibrium equations and constitutive equations simplify to a set of ordinary differential
equations

dNZZ sz¢ 1 .
=0, =0, =N, —p=0 in (0,L),
dz dz R 7 P in-(O.L)
tE 1 du tE 1 du, )
N,, = —R—Z—u,N_ —R Z_u,), N,,=0 in (O,L),
2z~ 7 R( a4z vup) ¢ —2 ( a4z n) ¢ O,L)

As the edges are stress-free i.e.

N, =0and N,,=0 on {OL}.

Solution to the stress resultants, as obtained from the equilibrium equations, are

NZZZO’ NZ¢:0,and N¢¢:Rp

Constitutive equations give
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Consider a simply supported (long) circular cylindrical shell of radius

R, thickness t, and filled with liquid of density o in cylindrical l g
(z,¢,n)— coordinates. Determine the mid-surface stress resultants N y

, N34 and N, by assuming that there are no axial forces at the ends of
the shell and bending deformation is negligible. (J.N.Reddy: Example
11.3.1)

Solution
The membrane equations of the cylindrical coordinate system are (formulae collection)

1MNzg Ny
R 0¢ 0z
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Z¢ +£ a;¢+b¢:0’and %N¢¢+bn:0

Definition of the external distributed force (let us assume that t/R <1 so that J ~1 to simplify the
setting somewhat)

sz fdn+>" ©

takes into account the volume forces acting on the body and tractions acting on the outer and inner
surfaces. In the present case f =0 and the traction part is due to the hydrostatic pressure of the liquid
inside the cylinder. Therefore
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The hydrostatic pressure inside p;, = pg—9X= pg— p9RCOSH gives y

Pout — Pin = Pout —(Po — PIR COSP) = Ap + pgR COS ¢ \/
in which Ap = pyyt — P IS @ constant. The equations to be solved become (notice that N,,(z,¢).

N¢¢(z,¢), NZ¢(2,¢) and direct integration of a partial differential equation involves unknown
functions instead of integration constants)

1
ENM +Ap+pgRcosg=0 < Ny,(z,¢) =-RAp- pgR® cos ¢,

MNog 1Ny o Nogpcing=0 o N,,(2.4)=—pgRzsing+ A
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In the solution, A(¢) and B(¢) are arbitrary functions subjected to A(g)=A(2z+¢) and
B(¢) =B(27 +¢) V¢ (periodicity) as the domain is closed in the ¢—direction. Also, according to
the assumption, N, vanishes at the ends. Therefore

Noo(2.8) = p5 22 cosg- 2 K@) + B =0 2e{0L} =
B(¢)=0 and pg%LZCOS¢—L%A'(¢)+B(¢)=0 = A’(¢):pgR%Lcos¢ <

A(p) = pgR% Lsing+ A (aconstant now).

Solution to force resultants becomes

N 44 =—RApg — pgR? cos ¢, €
1 i
NZ¢=pgR(EL—z)sm¢+A, €«
1 -
NZZ:ng(z —zL)cos¢ €«

in which pressure difference Ap and integration constant A cannot be determined with the
information given.



Consider a cylindrical shell of radius R, subjected to bending moment M,, =M and shearing force
Q,=Q attheend z=L.The other end z =0 is clamped. Assuming rotational symmetry, derive the
boundary value problem of Kirchhoff type for deflection u,(z). Start with the component forms of
the Reissner-Mindlin (type) shell equations in cylindrical (z,¢,n) coordinates.

Solution

Cylindrical shell Reissner-Mindlin equilibrium and constitutive equations in (z,¢,n)-coordinate
system are given in the formulae collection. Under the assumption of rotational symmetry, derivatives
with respect to ¢ vanish and uy=0. As the loading is through the boundary conditions, the
equilibrium equations of cylindrical shell in (z, ¢,n) — coordinate system simplify to

dN,, dMm dQ, 1

=0, Z _Q, =0, and +=N,, =0.
dz dz R iz R ?

Constitutive equations for the stress resultant components simplify to (notice that the constitutive
equation for the shear force is replaced by the Kirchhoff constraint duy, / dz + 05 =0 which is used to
eliminate rotation o from the constitutive equations)

tE du 1d%u,
N,, = =z _ -y )+D= ,
2z dz R n) R d22

Et du 1 d?u, 1du
N z ’ =-D n z
o = 1- R 7z (d22 R dZ)

Force equilibrium equation in the axial boundary condition, constitutive equation for the axial stress
resultant and the boundary condition at the free edge give

dN—ZZ:O in (O,L) and N,(L)=0 = N, =0, therefore
tE du, 1 d% du, 1 1-v?_1dZ
= —_— VvV — D n :0 _Z: — Uy — D n
z dz 'R ") R dz2 ~ @z R" R g2
giving with notation a=t/R
Et  du, ) 1 1-v? _1d%,,, Et 1 d%
N, = y—2L = -D=u, - pL1@Uny —yD=——"1,
o l—vz( a4z n) 2 [( )R n—Vv {E R a2 )] R Uy, —v R dz2

1
IVlzz = un]-

RZ " tE R2 72

2 2
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The moment equilibrium equation is used next to eliminate the shear force from the remaining
equilibrium equation to get



d?Mm 1 a?_d*u 2 d%u tE .
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Boundary conditions at the loaded end take the forms

dM,, 1 2 dSlJn 1 duy
0= -Q=-D[1-—a +v——="]-Q=0 and
Q-Q dz Q I 12 ) a2 R dz] Q
1 a2 d%u 1
M,, —M =-D[(l-—a“)— +v—u =0 at z=L, €
77 [( 12 ) d22 R2 n]

and those for the clamped end

du,

u, =0, —=0 at z=0. €



Consider a circular cylindrical shell of radius R, subjected to uniform bending moment M,, =M
and shearing force Q, =Q atthe end z=L. The other end z=0 is clamped. Assuming rotational
symmetry, derive the boundary value problem of Reissner-Mindlin type for deflection u,(z) and
rotation 9¢(z).

Solution
As derivatives with respect to the angular coordinate vanish, the equilibrium equations of cylindrical
shell in (z,¢,n) coordinate system simplify to

dNZZ:0 M -Q, =0, and Q. 1
dz d dz

tE du, 1 1do, Et duZ 1
- Mz Zu)-D=—2 Ny, = ),
z 1_V2(dz "R n) R d w2 (V )
Q, =Gt(4 +—“) and M —D(——ld“ 2,
a ¢ “ dz R dz

Force equilibrium equation in the axial boundary condition, constitutive equation for the axial stress
resultant and the boundary condition at the free edge give

dN—ZZ=0 in (O,L) and N,,(L)=0 = N,(z)=0, therefore

tE  du,

— L _ = n)_

— 2 déo
G, 1 12146,
]_—V dz R

tE R dz

With the relationship, the constitutive equation for N g and N, simplifyto (a=t/R)

Et  du, 1 Et . 2 .1 1-v 2 1d6y Et 1 do
Nys = —ZL_—u))=——[(v -)=u,+ =——u, +vD=—%,
99 1_V2(V ra——— 1_V2[(V SRV PR - R PRy
dé 1 1-v2 1 df 1 ,.dé 1
[ [ 2 [
M, =D(—2 —v—u, - — D——2)=D[l-—a%)—2 —v—u_.].
z (dZ VRZ n {E R2 dZ) [ 1 ) a4z VRZ nl

When the constitutive equations are substituted there, equilibrium equations in terms of u,, and o
take the forms

sz 9 dZUn Et
+ N Gt+ D— Gt =0 in (O,L), €&
4z b = =( |4 ) 02 O,L),
29
dM,, ¢ 1 dup

_pra-Lanyd% 1 duy duy
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Boundary conditions at the ends are

du,

)-Q=0 at z=L, €

M —M—D[(l—iaz)dﬂ—viu ]-M=0 at z=L €
zo= 12 "dz Rr2 ™ ©

u, =0, ;=0 at z=0. €



A strip of cylindrical shell is loaded by shear force P ([P]= N/m) at the
free end. Write down the boundary value problem of first order ordinary
differential equations consisting of the equilibrium and constitutive
equations according to the Kirchhoff theory. Thickness t, width H, and the
material parameters E, v are constants. Assume that the solution depends
on ¢ only.

Solution

Equilibrium and constitutive equations of cylindrical shell in (z,4,n)— coordinate system are given
in the formulae collection. In a shell strip problem, it is enough to consider the force equilibrium
equations in the plane of the figure and the moment equilibrium in the normal direction of the plane
and constitutive equations for the stress resultants (appearing in the equilibrium equations). In the
Kirchhoff model, the constitutive equation for the shear force is replaced by the Kirchhoff constraint.
Also, derivatives with respect to z vanish. Therefore the differential equations and constitutive
equations simplify to

dN du
iﬂ_£Q¢ N¢¢_—tE i(_¢_un)+Didﬁ
R d¢ R 1-v?> R d¢ R? d¢
d du
£&+£N¢¢ =0 and M¢¢—D—£dﬁ+i(—¢—un)] =01in (O,Z) €«
Rdg R R dg R? dg¢ 2
1dMy 1 1 du,
— 2~ My, - = (=" +uy) -6
R dp R R R(d¢ #)= 0

whereM,; =0 due to the Kirchhoff constraint. The boundary conditions are

N U
Qs—Py=0 at ¢=% and {u,;r=0 at ¢=0. €
Mg 0,

As the force resultants are known on one edge, equilibrium equations can be solved for the force
resultants. Knowing these, displacements and rotation follow from the constitutive equations.



